1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

[InstCombine] Add tests for range-based saturing math overflow; NFC

Tests for cases where overflow can be determined, but not based on
known bits.

llvm-svn: 356203
This commit is contained in:
Nikita Popov 2019-03-14 21:06:46 +00:00
parent 84f781f880
commit 915ab4173b

View File

@ -339,6 +339,55 @@ define <2 x i8> @test_vector_sadd_neg_neg(<2 x i8> %a) {
ret <2 x i8> %r
}
; While this is a no-overflow condition, the nuw flag gets lost due to
; canonicalization and we can no longer determine this
define i8 @test_scalar_uadd_sub_nuw_lost_no_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_uadd_sub_nuw_lost_no_ov(
; CHECK-NEXT: [[B:%.*]] = add i8 [[A:%.*]], -10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 9)
; CHECK-NEXT: ret i8 [[R]]
;
%b = sub nuw i8 %a, 10
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 9)
ret i8 %r
}
define i8 @test_scalar_uadd_urem_no_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_uadd_urem_no_ov(
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 100
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 -100)
; CHECK-NEXT: ret i8 [[R]]
;
%b = urem i8 %a, 100
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 156)
ret i8 %r
}
define i8 @test_scalar_uadd_urem_may_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_uadd_urem_may_ov(
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 100
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 -99)
; CHECK-NEXT: ret i8 [[R]]
;
%b = urem i8 %a, 100
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 157)
ret i8 %r
}
; We have a constant range for the LHS, but only known bits for the RHS
define i8 @test_scalar_uadd_urem_known_bits(i8 %a, i8 %b) {
; CHECK-LABEL: @test_scalar_uadd_urem_known_bits(
; CHECK-NEXT: [[AA:%.*]] = udiv i8 -66, [[A:%.*]]
; CHECK-NEXT: [[BB:%.*]] = and i8 [[B:%.*]], 63
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[AA]], i8 [[BB]])
; CHECK-NEXT: ret i8 [[R]]
;
%aa = udiv i8 190, %a
%bb = and i8 %b, 63
%r = call i8 @llvm.uadd.sat.i8(i8 %aa, i8 %bb)
ret i8 %r
}
;
; Saturating subtraction.
;
@ -717,6 +766,135 @@ define <2 x i8> @test_vector_ssub_neg_nneg(<2 x i8> %a) {
ret <2 x i8> %r
}
define i8 @test_scalar_usub_add_nuw_no_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_add_nuw_no_ov(
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 9)
; CHECK-NEXT: ret i8 [[R]]
;
%b = add nuw i8 %a, 10
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 9)
ret i8 %r
}
define i8 @test_scalar_usub_add_nuw_eq(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_add_nuw_eq(
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 10)
; CHECK-NEXT: ret i8 [[R]]
;
%b = add nuw i8 %a, 10
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 10)
ret i8 %r
}
define i8 @test_scalar_usub_add_nuw_may_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_add_nuw_may_ov(
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 11)
; CHECK-NEXT: ret i8 [[R]]
;
%b = add nuw i8 %a, 10
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 11)
ret i8 %r
}
define i8 @test_scalar_usub_urem_must_ov(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_urem_must_ov(
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 10)
; CHECK-NEXT: ret i8 [[R]]
;
%b = urem i8 %a, 10
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 10)
ret i8 %r
}
; Like the previous case, the result is always zero here. However, as there's
; no actual overflow, we won't know about it.
define i8 @test_scalar_usub_urem_must_zero(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_urem_must_zero(
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 10
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 9)
; CHECK-NEXT: ret i8 [[R]]
;
%b = urem i8 %a, 10
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 9)
ret i8 %r
}
; We have a constant range for the LHS, but only known bits for the RHS
define i8 @test_scalar_usub_add_nuw_known_bits(i8 %a, i8 %b) {
; CHECK-LABEL: @test_scalar_usub_add_nuw_known_bits(
; CHECK-NEXT: [[AA:%.*]] = add nuw i8 [[A:%.*]], 10
; CHECK-NEXT: [[BB:%.*]] = and i8 [[B:%.*]], 7
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[AA]], i8 [[BB]])
; CHECK-NEXT: ret i8 [[R]]
;
%aa = add nuw i8 %a, 10
%bb = and i8 %b, 7
%r = call i8 @llvm.usub.sat.i8(i8 %aa, i8 %bb)
ret i8 %r
}
define i8 @test_scalar_usub_add_nuw_inferred(i8 %a) {
; CHECK-LABEL: @test_scalar_usub_add_nuw_inferred(
; CHECK-NEXT: [[B:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[A:%.*]], i8 10)
; CHECK-NEXT: [[R:%.*]] = add i8 [[B]], 9
; CHECK-NEXT: ret i8 [[R]]
;
%b = call i8 @llvm.usub.sat.i8(i8 %a, i8 10)
%r = add i8 %b, 9
ret i8 %r
}
define <2 x i8> @test_vector_usub_add_nuw_no_ov(<2 x i8> %a) {
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov(
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 10>
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 9, i8 9>)
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%b = add nuw <2 x i8> %a, <i8 10, i8 10>
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 9, i8 9>)
ret <2 x i8> %r
}
; Can be optimized if the usub.sat RHS constant range handles non-splat vectors.
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat1(<2 x i8> %a) {
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat1(
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 10>
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 10, i8 9>)
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%b = add nuw <2 x i8> %a, <i8 10, i8 10>
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 10, i8 9>)
ret <2 x i8> %r
}
; Can be optimized if the add nuw RHS constant range handles non-splat vectors.
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat2(<2 x i8> %a) {
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat2(
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 9>
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 9, i8 9>)
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%b = add nuw <2 x i8> %a, <i8 10, i8 9>
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 9, i8 9>)
ret <2 x i8> %r
}
; Can be optimized if constant range is tracked per-element.
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat3(<2 x i8> %a) {
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat3(
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 9>
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 10, i8 9>)
; CHECK-NEXT: ret <2 x i8> [[R]]
;
%b = add nuw <2 x i8> %a, <i8 10, i8 9>
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 10, i8 9>)
ret <2 x i8> %r
}
; Raw IR tests
define i32 @uadd_sat(i32 %x, i32 %y) {