mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
[InstCombine] Add tests for range-based saturing math overflow; NFC
Tests for cases where overflow can be determined, but not based on known bits. llvm-svn: 356203
This commit is contained in:
parent
84f781f880
commit
915ab4173b
@ -339,6 +339,55 @@ define <2 x i8> @test_vector_sadd_neg_neg(<2 x i8> %a) {
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
; While this is a no-overflow condition, the nuw flag gets lost due to
|
||||
; canonicalization and we can no longer determine this
|
||||
define i8 @test_scalar_uadd_sub_nuw_lost_no_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_uadd_sub_nuw_lost_no_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = add i8 [[A:%.*]], -10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 9)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = sub nuw i8 %a, 10
|
||||
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 9)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_uadd_urem_no_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_uadd_urem_no_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 100
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 -100)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = urem i8 %a, 100
|
||||
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 156)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_uadd_urem_may_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_uadd_urem_may_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 100
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[B]], i8 -99)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = urem i8 %a, 100
|
||||
%r = call i8 @llvm.uadd.sat.i8(i8 %b, i8 157)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
; We have a constant range for the LHS, but only known bits for the RHS
|
||||
define i8 @test_scalar_uadd_urem_known_bits(i8 %a, i8 %b) {
|
||||
; CHECK-LABEL: @test_scalar_uadd_urem_known_bits(
|
||||
; CHECK-NEXT: [[AA:%.*]] = udiv i8 -66, [[A:%.*]]
|
||||
; CHECK-NEXT: [[BB:%.*]] = and i8 [[B:%.*]], 63
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.uadd.sat.i8(i8 [[AA]], i8 [[BB]])
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%aa = udiv i8 190, %a
|
||||
%bb = and i8 %b, 63
|
||||
%r = call i8 @llvm.uadd.sat.i8(i8 %aa, i8 %bb)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
;
|
||||
; Saturating subtraction.
|
||||
;
|
||||
@ -717,6 +766,135 @@ define <2 x i8> @test_vector_ssub_neg_nneg(<2 x i8> %a) {
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_usub_add_nuw_no_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_add_nuw_no_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 9)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = add nuw i8 %a, 10
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 9)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_usub_add_nuw_eq(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_add_nuw_eq(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 10)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = add nuw i8 %a, 10
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 10)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_usub_add_nuw_may_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_add_nuw_may_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 11)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = add nuw i8 %a, 10
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 11)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_usub_urem_must_ov(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_urem_must_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 10)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = urem i8 %a, 10
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 10)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
; Like the previous case, the result is always zero here. However, as there's
|
||||
; no actual overflow, we won't know about it.
|
||||
define i8 @test_scalar_usub_urem_must_zero(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_urem_must_zero(
|
||||
; CHECK-NEXT: [[B:%.*]] = urem i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[B]], i8 9)
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = urem i8 %a, 10
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %b, i8 9)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
; We have a constant range for the LHS, but only known bits for the RHS
|
||||
define i8 @test_scalar_usub_add_nuw_known_bits(i8 %a, i8 %b) {
|
||||
; CHECK-LABEL: @test_scalar_usub_add_nuw_known_bits(
|
||||
; CHECK-NEXT: [[AA:%.*]] = add nuw i8 [[A:%.*]], 10
|
||||
; CHECK-NEXT: [[BB:%.*]] = and i8 [[B:%.*]], 7
|
||||
; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[AA]], i8 [[BB]])
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%aa = add nuw i8 %a, 10
|
||||
%bb = and i8 %b, 7
|
||||
%r = call i8 @llvm.usub.sat.i8(i8 %aa, i8 %bb)
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define i8 @test_scalar_usub_add_nuw_inferred(i8 %a) {
|
||||
; CHECK-LABEL: @test_scalar_usub_add_nuw_inferred(
|
||||
; CHECK-NEXT: [[B:%.*]] = call i8 @llvm.usub.sat.i8(i8 [[A:%.*]], i8 10)
|
||||
; CHECK-NEXT: [[R:%.*]] = add i8 [[B]], 9
|
||||
; CHECK-NEXT: ret i8 [[R]]
|
||||
;
|
||||
%b = call i8 @llvm.usub.sat.i8(i8 %a, i8 10)
|
||||
%r = add i8 %b, 9
|
||||
ret i8 %r
|
||||
}
|
||||
|
||||
define <2 x i8> @test_vector_usub_add_nuw_no_ov(<2 x i8> %a) {
|
||||
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 10>
|
||||
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 9, i8 9>)
|
||||
; CHECK-NEXT: ret <2 x i8> [[R]]
|
||||
;
|
||||
%b = add nuw <2 x i8> %a, <i8 10, i8 10>
|
||||
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 9, i8 9>)
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
; Can be optimized if the usub.sat RHS constant range handles non-splat vectors.
|
||||
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat1(<2 x i8> %a) {
|
||||
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat1(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 10>
|
||||
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 10, i8 9>)
|
||||
; CHECK-NEXT: ret <2 x i8> [[R]]
|
||||
;
|
||||
%b = add nuw <2 x i8> %a, <i8 10, i8 10>
|
||||
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 10, i8 9>)
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
; Can be optimized if the add nuw RHS constant range handles non-splat vectors.
|
||||
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat2(<2 x i8> %a) {
|
||||
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat2(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 9>
|
||||
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 9, i8 9>)
|
||||
; CHECK-NEXT: ret <2 x i8> [[R]]
|
||||
;
|
||||
%b = add nuw <2 x i8> %a, <i8 10, i8 9>
|
||||
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 9, i8 9>)
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
; Can be optimized if constant range is tracked per-element.
|
||||
define <2 x i8> @test_vector_usub_add_nuw_no_ov_nonsplat3(<2 x i8> %a) {
|
||||
; CHECK-LABEL: @test_vector_usub_add_nuw_no_ov_nonsplat3(
|
||||
; CHECK-NEXT: [[B:%.*]] = add nuw <2 x i8> [[A:%.*]], <i8 10, i8 9>
|
||||
; CHECK-NEXT: [[R:%.*]] = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> [[B]], <2 x i8> <i8 10, i8 9>)
|
||||
; CHECK-NEXT: ret <2 x i8> [[R]]
|
||||
;
|
||||
%b = add nuw <2 x i8> %a, <i8 10, i8 9>
|
||||
%r = call <2 x i8> @llvm.usub.sat.v2i8(<2 x i8> %b, <2 x i8> <i8 10, i8 9>)
|
||||
ret <2 x i8> %r
|
||||
}
|
||||
|
||||
; Raw IR tests
|
||||
|
||||
define i32 @uadd_sat(i32 %x, i32 %y) {
|
||||
|
Loading…
Reference in New Issue
Block a user