1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

Extend getMallocArraySize() to determine the array size if the malloc argument is:

ArraySize * ElementSize
ElementSize * ArraySize
ArraySize << log2(ElementSize)
ElementSize << log2(ArraySize)

Refactor isArrayMallocHelper and delete isSafeToGetMallocArraySize, so that there is only 1 copy of the malloc array determining logic.
Update users of getMallocArraySize() to not bother calling isArrayMalloc() as well.

llvm-svn: 85421
This commit is contained in:
Victor Hernandez 2009-10-28 20:18:55 +00:00
parent 4da1a5215a
commit 917cf94b22
5 changed files with 191 additions and 140 deletions

View File

@ -43,15 +43,8 @@ const CallInst* extractMallocCallFromBitCast(const Value* I);
CallInst* extractMallocCallFromBitCast(Value* I); CallInst* extractMallocCallFromBitCast(Value* I);
/// isArrayMalloc - Returns the corresponding CallInst if the instruction /// isArrayMalloc - Returns the corresponding CallInst if the instruction
/// matches the malloc call IR generated by CallInst::CreateMalloc(). This /// is a call to malloc whose array size can be determined and the array size
/// means that it is a malloc call with one bitcast use AND the malloc call's /// is not constant 1. Otherwise, return NULL.
/// size argument is:
/// 1. a constant not equal to the size of the malloced type
/// or
/// 2. the result of a multiplication by the size of the malloced type
/// Otherwise it returns NULL.
/// The unique bitcast is needed to determine the type/size of the array
/// allocation.
CallInst* isArrayMalloc(Value* I, LLVMContext &Context, const TargetData* TD); CallInst* isArrayMalloc(Value* I, LLVMContext &Context, const TargetData* TD);
const CallInst* isArrayMalloc(const Value* I, LLVMContext &Context, const CallInst* isArrayMalloc(const Value* I, LLVMContext &Context,
const TargetData* TD); const TargetData* TD);
@ -66,16 +59,10 @@ const PointerType* getMallocType(const CallInst* CI);
/// unique bitcast use, then return NULL. /// unique bitcast use, then return NULL.
const Type* getMallocAllocatedType(const CallInst* CI); const Type* getMallocAllocatedType(const CallInst* CI);
/// getMallocArraySize - Returns the array size of a malloc call. For array /// getMallocArraySize - Returns the array size of a malloc call. If the
/// mallocs, the size is computated in 1 of 3 ways: /// argument passed to malloc is a multiple of the size of the malloced type,
/// 1. If the element type is of size 1, then array size is the argument to /// then return that multiple. For non-array mallocs, the multiple is
/// malloc. /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// 2. Else if the malloc's argument is a constant, the array size is that
/// argument divided by the element type's size.
/// 3. Else the malloc argument must be a multiplication and the array size is
/// the first operand of the multiplication.
/// For non-array mallocs, the computed size is constant 1.
/// This function returns NULL for all mallocs whose array size cannot be
/// determined. /// determined.
Value* getMallocArraySize(CallInst* CI, LLVMContext &Context, Value* getMallocArraySize(CallInst* CI, LLVMContext &Context,
const TargetData* TD); const TargetData* TD);

View File

@ -88,64 +88,119 @@ const CallInst* llvm::extractMallocCallFromBitCast(const Value* I) {
: NULL; : NULL;
} }
static bool isArrayMallocHelper(const CallInst *CI, LLVMContext &Context, /// isConstantOne - Return true only if val is constant int 1.
const TargetData* TD) { static bool isConstantOne(Value *val) {
return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
}
static Value* isArrayMallocHelper(const CallInst *CI, LLVMContext &Context,
const TargetData* TD) {
if (!CI) if (!CI)
return false; return NULL;
// Type must be known to determine array size.
const Type* T = getMallocAllocatedType(CI); const Type* T = getMallocAllocatedType(CI);
if (!T)
// We can only indentify an array malloc if we know the type of the malloc return NULL;
// call.
if (!T) return false;
Value* MallocArg = CI->getOperand(1); Value* MallocArg = CI->getOperand(1);
Constant *ElementSize = ConstantExpr::getSizeOf(T); ConstantExpr* CO = dyn_cast<ConstantExpr>(MallocArg);
BinaryOperator* BO = dyn_cast<BinaryOperator>(MallocArg);
Constant* ElementSize = ConstantExpr::getSizeOf(T);
ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize, ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize,
MallocArg->getType()); MallocArg->getType());
Constant *FoldedElementSize = ConstantFoldConstantExpression( Constant *FoldedElementSize =
cast<ConstantExpr>(ElementSize), ConstantFoldConstantExpression(cast<ConstantExpr>(ElementSize), Context, TD);
Context, TD);
// First, check if CI is a non-array malloc.
if (CO && ((CO == ElementSize) ||
(FoldedElementSize && (CO == FoldedElementSize))))
// Match CreateMalloc's use of constant 1 array-size for non-array mallocs.
return ConstantInt::get(MallocArg->getType(), 1);
if (isa<ConstantExpr>(MallocArg)) // Second, check if CI is an array malloc whose array size can be determined.
return (MallocArg != ElementSize); if (isConstantOne(ElementSize) ||
(FoldedElementSize && isConstantOne(FoldedElementSize)))
return MallocArg;
BinaryOperator *BI = dyn_cast<BinaryOperator>(MallocArg); if (!CO && !BO)
if (!BI) return NULL;
return false;
if (BI->getOpcode() == Instruction::Mul) Value* Op0 = NULL;
// ArraySize * ElementSize Value* Op1 = NULL;
if (BI->getOperand(1) == ElementSize || unsigned Opcode = 0;
(FoldedElementSize && BI->getOperand(1) == FoldedElementSize)) if (CO && ((CO->getOpcode() == Instruction::Mul) ||
return true; (CO->getOpcode() == Instruction::Shl))) {
Op0 = CO->getOperand(0);
Op1 = CO->getOperand(1);
Opcode = CO->getOpcode();
}
if (BO && ((BO->getOpcode() == Instruction::Mul) ||
(BO->getOpcode() == Instruction::Shl))) {
Op0 = BO->getOperand(0);
Op1 = BO->getOperand(1);
Opcode = BO->getOpcode();
}
// TODO: Detect case where MallocArg mul has been transformed to shl. // Determine array size if malloc's argument is the product of a mul or shl.
if (Op0) {
if (Opcode == Instruction::Mul) {
if ((Op1 == ElementSize) ||
(FoldedElementSize && (Op1 == FoldedElementSize)))
// ArraySize * ElementSize
return Op0;
if ((Op0 == ElementSize) ||
(FoldedElementSize && (Op0 == FoldedElementSize)))
// ElementSize * ArraySize
return Op1;
}
if (Opcode == Instruction::Shl) {
ConstantInt* Op1Int = dyn_cast<ConstantInt>(Op1);
if (!Op1Int) return NULL;
Value* Op1Pow = ConstantInt::get(Op1->getType(),
pow(2, Op1Int->getZExtValue()));
if (Op0 == ElementSize || (FoldedElementSize && Op0 == FoldedElementSize))
// ArraySize << log2(ElementSize)
return Op1Pow;
if (Op1Pow == ElementSize ||
(FoldedElementSize && Op1Pow == FoldedElementSize))
// ElementSize << log2(ArraySize)
return Op0;
}
}
return false; // We could not determine the malloc array size from MallocArg.
return NULL;
} }
/// isArrayMalloc - Returns the corresponding CallInst if the instruction /// isArrayMalloc - Returns the corresponding CallInst if the instruction
/// matches the malloc call IR generated by CallInst::CreateMalloc(). This /// is a call to malloc whose array size can be determined and the array size
/// means that it is a malloc call with one bitcast use AND the malloc call's /// is not constant 1. Otherwise, return NULL.
/// size argument is:
/// 1. a constant not equal to the size of the malloced type
/// or
/// 2. the result of a multiplication by the size of the malloced type
/// Otherwise it returns NULL.
/// The unique bitcast is needed to determine the type/size of the array
/// allocation.
CallInst* llvm::isArrayMalloc(Value* I, LLVMContext &Context, CallInst* llvm::isArrayMalloc(Value* I, LLVMContext &Context,
const TargetData* TD) { const TargetData* TD) {
CallInst *CI = extractMallocCall(I); CallInst *CI = extractMallocCall(I);
return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL; Value* ArraySize = isArrayMallocHelper(CI, Context, TD);
if (ArraySize &&
ArraySize != ConstantInt::get(CI->getOperand(1)->getType(), 1))
return CI;
// CI is a non-array malloc or we can't figure out that it is an array malloc.
return NULL;
} }
const CallInst* llvm::isArrayMalloc(const Value* I, LLVMContext &Context, const CallInst* llvm::isArrayMalloc(const Value* I, LLVMContext &Context,
const TargetData* TD) { const TargetData* TD) {
const CallInst *CI = extractMallocCall(I); const CallInst *CI = extractMallocCall(I);
return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL; Value* ArraySize = isArrayMallocHelper(CI, Context, TD);
if (ArraySize &&
ArraySize != ConstantInt::get(CI->getOperand(1)->getType(), 1))
return CI;
// CI is a non-array malloc or we can't figure out that it is an array malloc.
return NULL;
} }
/// getMallocType - Returns the PointerType resulting from the malloc call. /// getMallocType - Returns the PointerType resulting from the malloc call.
@ -183,85 +238,14 @@ const Type* llvm::getMallocAllocatedType(const CallInst* CI) {
return PT ? PT->getElementType() : NULL; return PT ? PT->getElementType() : NULL;
} }
/// isSafeToGetMallocArraySize - Returns true if the array size of a malloc can /// getMallocArraySize - Returns the array size of a malloc call. If the
/// be determined. It can be determined in these 3 cases of malloc codegen: /// argument passed to malloc is a multiple of the size of the malloced type,
/// 1. non-array malloc: The malloc's size argument is a constant and equals the /// size of the type being malloced. /// then return that multiple. For non-array mallocs, the multiple is
/// 2. array malloc: This is a malloc call with one bitcast use AND the malloc /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// call's size argument is a constant multiple of the size of the malloced
/// type.
/// 3. array malloc: This is a malloc call with one bitcast use AND the malloc
/// call's size argument is the result of a multiplication by the size of the
/// malloced type.
/// Otherwise returns false.
static bool isSafeToGetMallocArraySize(const CallInst *CI,
LLVMContext &Context,
const TargetData* TD) {
if (!CI)
return false;
// Type must be known to determine array size.
const Type* T = getMallocAllocatedType(CI);
if (!T) return false;
Value* MallocArg = CI->getOperand(1);
Constant *ElementSize = ConstantExpr::getSizeOf(T);
ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize,
MallocArg->getType());
// First, check if it is a non-array malloc.
if (isa<ConstantExpr>(MallocArg) && (MallocArg == ElementSize))
return true;
// Second, check if it can be determined that this is an array malloc.
return isArrayMallocHelper(CI, Context, TD);
}
/// isConstantOne - Return true only if val is constant int 1.
static bool isConstantOne(Value *val) {
return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
}
/// getMallocArraySize - Returns the array size of a malloc call. For array
/// mallocs, the size is computated in 1 of 3 ways:
/// 1. If the element type is of size 1, then array size is the argument to
/// malloc.
/// 2. Else if the malloc's argument is a constant, the array size is that
/// argument divided by the element type's size.
/// 3. Else the malloc argument must be a multiplication and the array size is
/// the first operand of the multiplication.
/// For non-array mallocs, the computed size is constant 1.
/// This function returns NULL for all mallocs whose array size cannot be
/// determined. /// determined.
Value* llvm::getMallocArraySize(CallInst* CI, LLVMContext &Context, Value* llvm::getMallocArraySize(CallInst* CI, LLVMContext &Context,
const TargetData* TD) { const TargetData* TD) {
if (!isSafeToGetMallocArraySize(CI, Context, TD)) return isArrayMallocHelper(CI, Context, TD);
return NULL;
// Match CreateMalloc's use of constant 1 array-size for non-array mallocs.
if (!isArrayMalloc(CI, Context, TD))
return ConstantInt::get(CI->getOperand(1)->getType(), 1);
Value* MallocArg = CI->getOperand(1);
assert(getMallocAllocatedType(CI) && "getMallocArraySize and no type");
Constant *ElementSize = ConstantExpr::getSizeOf(getMallocAllocatedType(CI));
ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize,
MallocArg->getType());
Constant* CO = dyn_cast<Constant>(MallocArg);
BinaryOperator* BO = dyn_cast<BinaryOperator>(MallocArg);
assert((isConstantOne(ElementSize) || CO || BO) &&
"getMallocArraySize and malformed malloc IR");
if (isConstantOne(ElementSize))
return MallocArg;
if (CO)
return CO->getOperand(0);
// TODO: Detect case where MallocArg mul has been transformed to shl.
assert(BO && "getMallocArraySize not constant but not multiplication either");
return BO->getOperand(0);
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//

View File

@ -823,6 +823,7 @@ static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
CallInst *CI, CallInst *CI,
BitCastInst *BCI, BitCastInst *BCI,
Value* NElems,
LLVMContext &Context, LLVMContext &Context,
TargetData* TD) { TargetData* TD) {
DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV
@ -830,9 +831,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
const Type *IntPtrTy = TD->getIntPtrType(Context); const Type *IntPtrTy = TD->getIntPtrType(Context);
Value* ArraySize = getMallocArraySize(CI, Context, TD); ConstantInt *NElements = cast<ConstantInt>(NElems);
assert(ArraySize && "not a malloc whose array size can be determined");
ConstantInt *NElements = cast<ConstantInt>(ArraySize);
if (NElements->getZExtValue() != 1) { if (NElements->getZExtValue() != 1) {
// If we have an array allocation, transform it to a single element // If we have an array allocation, transform it to a single element
// allocation to make the code below simpler. // allocation to make the code below simpler.
@ -1275,15 +1274,14 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
/// it up into multiple allocations of arrays of the fields. /// it up into multiple allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV,
CallInst *CI, BitCastInst* BCI, CallInst *CI, BitCastInst* BCI,
Value* NElems,
LLVMContext &Context, LLVMContext &Context,
TargetData *TD){ TargetData *TD) {
DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC CALL = " << *CI DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC CALL = " << *CI
<< " BITCAST = " << *BCI << '\n'); << " BITCAST = " << *BCI << '\n');
const Type* MAT = getMallocAllocatedType(CI); const Type* MAT = getMallocAllocatedType(CI);
const StructType *STy = cast<StructType>(MAT); const StructType *STy = cast<StructType>(MAT);
Value* ArraySize = getMallocArraySize(CI, Context, TD);
assert(ArraySize && "not a malloc whose array size can be determined");
// There is guaranteed to be at least one use of the malloc (storing // There is guaranteed to be at least one use of the malloc (storing
// it into GV). If there are other uses, change them to be uses of // it into GV). If there are other uses, change them to be uses of
@ -1309,7 +1307,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV,
FieldGlobals.push_back(NGV); FieldGlobals.push_back(NGV);
Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context), Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
FieldTy, ArraySize, FieldTy, NElems,
BCI->getName() + ".f" + Twine(FieldNo)); BCI->getName() + ".f" + Twine(FieldNo));
FieldMallocs.push_back(NMI); FieldMallocs.push_back(NMI);
new StoreInst(NMI, NGV, BCI); new StoreInst(NMI, NGV, BCI);
@ -1510,7 +1508,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// something. // something.
if (TD && if (TD &&
NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, Context, TD); GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, NElems, Context, TD);
return true; return true;
} }
@ -1520,7 +1518,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// If this is an allocation of a fixed size array of structs, analyze as a // If this is an allocation of a fixed size array of structs, analyze as a
// variable size array. malloc [100 x struct],1 -> malloc struct, 100 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
if (!isArrayMalloc(CI, Context, TD)) if (NElems == ConstantInt::get(CI->getOperand(1)->getType(), 1))
if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
AllocTy = AT->getElementType(); AllocTy = AT->getElementType();
@ -1547,7 +1545,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
CI = extractMallocCallFromBitCast(NewMI); CI = extractMallocCallFromBitCast(NewMI);
} }
GVI = PerformHeapAllocSRoA(GV, CI, BCI, Context, TD); GVI = PerformHeapAllocSRoA(GV, CI, BCI, NElems, Context, TD);
return true; return true;
} }
} }

View File

@ -0,0 +1,41 @@
; RUN: opt < %s -globalopt -S | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin10"
%struct.foo = type { i32, i32 }
@X = internal global %struct.foo* null
; CHECK: @X.f0
; CHECK: @X.f1
define void @bar(i32 %Size) nounwind noinline {
entry:
%mallocsize = mul i32 ptrtoint (%struct.foo* getelementptr (%struct.foo* null, i32 1) to i32), %Size, ; <i32> [#uses=1]
; CHECK: mul i32 %Size
%malloccall = tail call i8* @malloc(i32 %mallocsize) ; <i8*> [#uses=1]
%.sub = bitcast i8* %malloccall to %struct.foo* ; <%struct.foo*> [#uses=1]
store %struct.foo* %.sub, %struct.foo** @X, align 4
ret void
}
declare noalias i8* @malloc(i32)
define i32 @baz() nounwind readonly noinline {
bb1.thread:
%0 = load %struct.foo** @X, align 4
br label %bb1
bb1: ; preds = %bb1, %bb1.thread
%i.0.reg2mem.0 = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ]
%sum.0.reg2mem.0 = phi i32 [ 0, %bb1.thread ], [ %3, %bb1 ]
%1 = getelementptr %struct.foo* %0, i32 %i.0.reg2mem.0, i32 0
%2 = load i32* %1, align 4
%3 = add i32 %2, %sum.0.reg2mem.0
%indvar.next = add i32 %i.0.reg2mem.0, 1
%exitcond = icmp eq i32 %indvar.next, 1200
br i1 %exitcond, label %bb2, label %bb1
bb2: ; preds = %bb1
ret i32 %3
}

View File

@ -0,0 +1,41 @@
; RUN: opt < %s -globalopt -S | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin7"
%struct.foo = type { i32, i32 }
@X = internal global %struct.foo* null
; CHECK: @X.f0
; CHECK: @X.f1
define void @bar(i32 %Size) nounwind noinline {
entry:
%mallocsize = shl i32 ptrtoint (%struct.foo* getelementptr (%struct.foo* null, i32 1) to i32), 9, ; <i32> [#uses=1]
%malloccall = tail call i8* @malloc(i32 %mallocsize) ; <i8*> [#uses=1]
; CHECK: @malloc(i32 mul (i32 512
%.sub = bitcast i8* %malloccall to %struct.foo* ; <%struct.foo*> [#uses=1]
store %struct.foo* %.sub, %struct.foo** @X, align 4
ret void
}
declare noalias i8* @malloc(i32)
define i32 @baz() nounwind readonly noinline {
bb1.thread:
%0 = load %struct.foo** @X, align 4
br label %bb1
bb1: ; preds = %bb1, %bb1.thread
%i.0.reg2mem.0 = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ]
%sum.0.reg2mem.0 = phi i32 [ 0, %bb1.thread ], [ %3, %bb1 ]
%1 = getelementptr %struct.foo* %0, i32 %i.0.reg2mem.0, i32 0
%2 = load i32* %1, align 4
%3 = add i32 %2, %sum.0.reg2mem.0
%indvar.next = add i32 %i.0.reg2mem.0, 1
%exitcond = icmp eq i32 %indvar.next, 1200
br i1 %exitcond, label %bb2, label %bb1
bb2: ; preds = %bb1
ret i32 %3
}