1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00

CodeGen: Allow small copyable blocks to "break" the CFG.

When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.

Differential Revision: https://reviews.llvm.org/D28583

llvm-svn: 293716
This commit is contained in:
Kyle Butt 2017-01-31 23:48:32 +00:00
parent 4c57348a28
commit 9386601a22
28 changed files with 598 additions and 194 deletions

View File

@ -500,6 +500,11 @@ BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
void BranchFolder::MBFIWrapper::view(bool isSimple) { MBFI.view(isSimple); }
uint64_t
BranchFolder::MBFIWrapper::getEntryFreq() const {
return MBFI.getEntryFreq();
}
/// CountTerminators - Count the number of terminators in the given
/// block and set I to the position of the first non-terminator, if there
/// is one, or MBB->end() otherwise.

View File

@ -123,6 +123,7 @@ namespace llvm {
raw_ostream &printBlockFreq(raw_ostream &OS,
const BlockFrequency Freq) const;
void view(bool isSimple = true);
uint64_t getEntryFreq() const;
private:
const MachineBlockFrequencyInfo &MBFI;

View File

@ -41,6 +41,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/TailDuplicator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
@ -50,6 +51,8 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <functional>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "block-placement"
@ -137,13 +140,23 @@ BranchFoldPlacement("branch-fold-placement",
cl::init(true), cl::Hidden);
// Heuristic for tail duplication.
static cl::opt<unsigned> TailDuplicatePlacementThreshold(
static cl::opt<unsigned> TailDupPlacementThreshold(
"tail-dup-placement-threshold",
cl::desc("Instruction cutoff for tail duplication during layout. "
"Tail merging during layout is forced to have a threshold "
"that won't conflict."), cl::init(2),
cl::Hidden);
// Heuristic for tail duplication.
static cl::opt<unsigned> TailDupPlacementPenalty(
"tail-dup-placement-penalty",
cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
"Copying can increase fallthrough, but it also increases icache "
"pressure. This parameter controls the penalty to account for that. "
"Percent as integer."),
cl::init(2),
cl::Hidden);
extern cl::opt<unsigned> StaticLikelyProb;
extern cl::opt<unsigned> ProfileLikelyProb;
@ -272,6 +285,12 @@ class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A typedef for a block filter set.
typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet;
/// Pair struct containing basic block and taildup profitiability
struct BlockAndTailDupResult {
MachineBasicBlock * BB;
bool ShouldTailDup;
};
/// \brief work lists of blocks that are ready to be laid out
SmallVector<MachineBasicBlock *, 16> BlockWorkList;
SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
@ -299,9 +318,12 @@ class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A handle to the target's lowering info.
const TargetLoweringBase *TLI;
/// \brief A handle to the post dominator tree.
/// \brief A handle to the dominator tree.
MachineDominatorTree *MDT;
/// \brief A handle to the post dominator tree.
MachinePostDominatorTree *MPDT;
/// \brief Duplicator used to duplicate tails during placement.
///
/// Placement decisions can open up new tail duplication opportunities, but
@ -374,9 +396,9 @@ class MachineBlockPlacement : public MachineFunctionPass {
BlockChain &SuccChain, BranchProbability SuccProb,
BranchProbability RealSuccProb, BlockChain &Chain,
const BlockFilterSet *BlockFilter);
MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
BlockChain &Chain,
const BlockFilterSet *BlockFilter);
BlockAndTailDupResult selectBestSuccessor(MachineBasicBlock *BB,
BlockChain &Chain,
const BlockFilterSet *BlockFilter);
MachineBasicBlock *
selectBestCandidateBlock(BlockChain &Chain,
SmallVectorImpl<MachineBasicBlock *> &WorkList);
@ -409,6 +431,18 @@ class MachineBlockPlacement : public MachineFunctionPass {
void buildCFGChains();
void optimizeBranches();
void alignBlocks();
bool shouldTailDuplicate(MachineBasicBlock *BB);
/// Check the edge frequencies to see if tail duplication will increase
/// fallthroughs.
bool isProfitableToTailDup(
MachineBasicBlock *BB, MachineBasicBlock *Succ,
BranchProbability AdjustedSumProb,
BlockChain &Chain, const BlockFilterSet *BlockFilter);
/// Returns true if a block can tail duplicate into all unplaced
/// predecessors. Filters based on loop.
bool canTailDuplicateUnplacedPreds(
MachineBasicBlock *BB, MachineBasicBlock *Succ,
BlockChain &Chain, const BlockFilterSet *BlockFilter);
public:
static char ID; // Pass identification, replacement for typeid
@ -422,6 +456,8 @@ public:
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineDominatorTree>();
if (TailDupPlacement)
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
@ -436,6 +472,7 @@ INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
"Branch Probability Basic Block Placement", false, false)
@ -567,6 +604,201 @@ getAdjustedProbability(BranchProbability OrigProb,
return SuccProb;
}
/// Check if a block should be tail duplicated.
/// \p BB Block to check.
bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
// Blocks with single successors don't create additional fallthrough
// opportunities. Don't duplicate them. TODO: When conditional exits are
// analyzable, allow them to be duplicated.
bool IsSimple = TailDup.isSimpleBB(BB);
if (BB->succ_size() == 1)
return false;
return TailDup.shouldTailDuplicate(IsSimple, *BB);
}
/// Compare 2 BlockFrequency's with a small penalty for \p A.
/// In order to be conservative, we apply a X% penalty to account for
/// increased icache pressure and static heuristics. For small frequencies
/// we use only the numerators to improve accuracy. For simplicity, we assume the
/// penalty is less than 100%
/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
uint64_t EntryFreq) {
BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
BlockFrequency Gain = A - B;
return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
}
/// Check the edge frequencies to see if tail duplication will increase
/// fallthroughs. It only makes sense to call this function when
/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
/// always locally profitable if we would have picked \p Succ without
/// considering duplication.
bool MachineBlockPlacement::isProfitableToTailDup(
MachineBasicBlock *BB, MachineBasicBlock *Succ,
BranchProbability QProb,
BlockChain &Chain, const BlockFilterSet *BlockFilter) {
// We need to do a probability calculation to make sure this is profitable.
// First: does succ have a successor that post-dominates? This affects the
// calculation. The 2 relevant cases are:
// BB BB
// | \Qout | \Qout
// P| C |P C
// = C' = C'
// | /Qin | /Qin
// | / | /
// Succ Succ
// / \ | \ V
// U/ =V |U \
// / \ = D
// D E | /
// | /
// |/
// PDom
// '=' : Branch taken for that CFG edge
// In the second case, Placing Succ while duplicating it into C prevents the
// fallthrough of Succ into either D or PDom, because they now have C as an
// unplaced predecessor
// Start by figuring out which case we fall into
MachineBasicBlock *PDom = nullptr;
SmallVector<MachineBasicBlock *, 4> SuccSuccs;
// Only scan the relevant successors
auto AdjustedSuccSumProb =
collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
auto BBFreq = MBFI->getBlockFreq(BB);
auto SuccFreq = MBFI->getBlockFreq(Succ);
BlockFrequency P = BBFreq * PProb;
BlockFrequency Qout = BBFreq * QProb;
uint64_t EntryFreq = MBFI->getEntryFreq();
// If there are no more successors, it is profitable to copy, as it strictly
// increases fallthrough.
if (SuccSuccs.size() == 0)
return greaterWithBias(P, Qout, EntryFreq);
auto BestSuccSucc = BranchProbability::getZero();
// Find the PDom or the best Succ if no PDom exists.
for (MachineBasicBlock *SuccSucc : SuccSuccs) {
auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
if (Prob > BestSuccSucc)
BestSuccSucc = Prob;
if (PDom == nullptr)
if (MPDT->dominates(SuccSucc, Succ)) {
PDom = SuccSucc;
break;
}
}
// For the comparisons, we need to know Succ's best incoming edge that isn't
// from BB.
auto SuccBestPred = BlockFrequency(0);
for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
if (SuccPred == Succ || SuccPred == BB
|| BlockToChain[SuccPred] == &Chain
|| (BlockFilter && !BlockFilter->count(SuccPred)))
continue;
auto Freq = MBFI->getBlockFreq(SuccPred)
* MBPI->getEdgeProbability(SuccPred, Succ);
if (Freq > SuccBestPred)
SuccBestPred = Freq;
}
// Qin is Succ's best unplaced incoming edge that isn't BB
BlockFrequency Qin = SuccBestPred;
// If it doesn't have a post-dominating successor, here is the calculation:
// BB BB
// | \Qout | \
// P| C | =
// = C' | C
// | /Qin | |
// | / | C' (+Succ)
// Succ Succ /|
// / \ | \/ |
// U/ =V = /= =
// / \ | / \|
// D E D E
// '=' : Branch taken for that CFG edge
// Cost in the first case is: P + V
// For this calculation, we always assume P > Qout. If Qout > P
// The result of this function will be ignored at the caller.
// Cost in the second case is: Qout + Qin * V + P * U + P * V
// TODO(iteratee): If we lay out D after Succ, the P * U term
// goes away. This logic is coming in D28522.
if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
BranchProbability UProb = BestSuccSucc;
BranchProbability VProb = AdjustedSuccSumProb - UProb;
BlockFrequency V = SuccFreq * VProb;
BlockFrequency QinV = Qin * VProb;
BlockFrequency BaseCost = P + V;
BlockFrequency DupCost = Qout + QinV + P * AdjustedSuccSumProb;
return greaterWithBias(BaseCost, DupCost, EntryFreq);
}
BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
BranchProbability VProb = AdjustedSuccSumProb - UProb;
BlockFrequency U = SuccFreq * UProb;
BlockFrequency V = SuccFreq * VProb;
// If there is a post-dominating successor, here is the calculation:
// BB BB BB BB
// | \Qout | \ | \Qout | \
// |P C | = |P C | =
// = C' |P C = C' |P C
// | /Qin | | | /Qin | |
// | / | C' (+Succ) | / | C' (+Succ)
// Succ Succ /| Succ Succ /|
// | \ V | \/ | | \ V | \/ |
// |U \ |U /\ | |U = |U /\ |
// = D = = =| | D | = =|
// | / |/ D | / |/ D
// | / | / | = | /
// |/ | / |/ | =
// Dom Dom Dom Dom
// '=' : Branch taken for that CFG edge
// The cost for taken branches in the first case is P + U
// The cost in the second case (assuming independence), given the layout:
// BB, Succ, (C+Succ), D, Dom
// is Qout + P * V + Qin * U
// compare P + U vs Qout + P + Qin * U.
//
// The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
//
// For the 3rd case, the cost is P + 2 * V
// For the 4th case, the cost is Qout + Qin * U + P * V + V
// We choose 4 over 3 when (P + V) > Qout + Qin * U + P * V
if (UProb > AdjustedSuccSumProb / 2
&& !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom],
UProb, UProb, Chain, BlockFilter)) {
// Cases 3 & 4
return greaterWithBias((P + V), (Qout + Qin * UProb + P * VProb),
EntryFreq);
}
// Cases 1 & 2
return greaterWithBias(
(P + U), (Qout + Qin * UProb + P * AdjustedSuccSumProb), EntryFreq);
}
/// When the option TailDupPlacement is on, this method checks if the
/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
/// into all of its unplaced, unfiltered predecessors, that are not BB.
bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
const BlockFilterSet *BlockFilter) {
if (!shouldTailDuplicate(Succ))
return false;
for (MachineBasicBlock *Pred : Succ->predecessors()) {
// Make sure all unplaced and unfiltered predecessors can be
// tail-duplicated into.
if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
|| BlockToChain[Pred] == &Chain)
continue;
if (!TailDup.canTailDuplicate(Succ, Pred))
return false;
}
return true;
}
/// When the option OutlineOptionalBranches is on, this method
/// checks if the fallthrough candidate block \p Succ (of block
/// \p BB) also has other unscheduled predecessor blocks which
@ -615,11 +847,11 @@ static BranchProbability getLayoutSuccessorProbThreshold(
if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
/* See case 1 below for the cost analysis. For BB->Succ to
* be taken with smaller cost, the following needs to hold:
* Prob(BB->Succ) > 2* Prob(BB->Pred)
* So the threshold T
* T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
* We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified
* branch bias, we have
* Prob(BB->Succ) > 2 * Prob(BB->Pred)
* So the threshold T in the calculation below
* (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
* So T / (1 - T) = 2, Yielding T = 2/3
* Also adding user specified branch bias, we have
* T = (2/3)*(ProfileLikelyProb/50)
* = (2*ProfileLikelyProb)/150)
*/
@ -631,6 +863,12 @@ static BranchProbability getLayoutSuccessorProbThreshold(
/// Checks to see if the layout candidate block \p Succ has a better layout
/// predecessor than \c BB. If yes, returns true.
/// \p SuccProb: The probability adjusted for only remaining blocks.
/// Only used for logging
/// \p RealSuccProb: The un-adjusted probability.
/// \p Chain: The chain that BB belongs to and Succ is being considered for.
/// \p BlockFilter: if non-null, the set of blocks that make up the loop being
/// considered
bool MachineBlockPlacement::hasBetterLayoutPredecessor(
MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
BranchProbability SuccProb, BranchProbability RealSuccProb,
@ -762,13 +1000,15 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
for (MachineBasicBlock *Pred : Succ->predecessors()) {
if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
(BlockFilter && !BlockFilter->count(Pred)) ||
BlockToChain[Pred] == &Chain)
BlockToChain[Pred] == &Chain ||
// This check is redundant except for look ahead. This function is
// called for lookahead by isProfitableToTailDup when BB hasn't been
// placed yet.
(Pred == BB))
continue;
// Do backward checking.
// For all cases above, we need a backward checking to filter out edges that
// are not 'strongly' biased. With profile data available, the check is
// mostly redundant for case 2 (when threshold prob is set at 50%) unless S
// has more than two successors.
// are not 'strongly' biased.
// BB Pred
// \ /
// Succ
@ -804,14 +1044,15 @@ bool MachineBlockPlacement::hasBetterLayoutPredecessor(
/// breaking CFG structure, but cave and break such structures in the case of
/// very hot successor edges.
///
/// \returns The best successor block found, or null if none are viable.
MachineBasicBlock *
/// \returns The best successor block found, or null if none are viable, along
/// with a boolean indicating if tail duplication is necessary.
MachineBlockPlacement::BlockAndTailDupResult
MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
BlockChain &Chain,
const BlockFilterSet *BlockFilter) {
const BranchProbability HotProb(StaticLikelyProb, 100);
MachineBasicBlock *BestSucc = nullptr;
BlockAndTailDupResult BestSucc = { nullptr, false };
auto BestProb = BranchProbability::getZero();
SmallVector<MachineBasicBlock *, 4> Successors;
@ -819,6 +1060,12 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
collectViableSuccessors(BB, Chain, BlockFilter, Successors);
DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
// For blocks with CFG violations, we may be able to lay them out anyway with
// tail-duplication. We keep this vector so we can perform the probability
// calculations the minimum number of times.
SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
DupCandidates;
for (MachineBasicBlock *Succ : Successors) {
auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
BranchProbability SuccProb =
@ -826,15 +1073,21 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
// This heuristic is off by default.
if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
HotProb))
return Succ;
HotProb)) {
BestSucc.BB = Succ;
return BestSucc;
}
BlockChain &SuccChain = *BlockToChain[Succ];
// Skip the edge \c BB->Succ if block \c Succ has a better layout
// predecessor that yields lower global cost.
if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
Chain, BlockFilter))
Chain, BlockFilter)) {
// If tail duplication would make Succ profitable, place it.
if (TailDupPlacement && shouldTailDuplicate(Succ))
DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
continue;
}
DEBUG(
dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: "
@ -842,17 +1095,52 @@ MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
<< (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
<< "\n");
if (BestSucc && BestProb >= SuccProb) {
if (BestSucc.BB && BestProb >= SuccProb) {
DEBUG(dbgs() << " Not the best candidate, continuing\n");
continue;
}
DEBUG(dbgs() << " Setting it as best candidate\n");
BestSucc = Succ;
BestSucc.BB = Succ;
BestProb = SuccProb;
}
if (BestSucc)
DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc) << "\n");
// Handle the tail duplication candidates in order of decreasing probability.
// Stop at the first one that is profitable. Also stop if they are less
// profitable than BestSucc. Position is important because we preserve it and
// prefer first best match. Here we aren't comparing in order, so we capture
// the position instead.
if (DupCandidates.size() != 0) {
auto cmp =
[](const std::tuple<BranchProbability, MachineBasicBlock *> &a,
const std::tuple<BranchProbability, MachineBasicBlock *> &b) {
return std::get<0>(a) > std::get<0>(b);
};
std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp);
}
for(auto &Tup : DupCandidates) {
BranchProbability DupProb;
MachineBasicBlock *Succ;
std::tie(DupProb, Succ) = Tup;
if (DupProb < BestProb)
break;
if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
// If tail duplication gives us fallthrough when we otherwise wouldn't
// have it, that is a strict gain.
&& (BestSucc.BB == nullptr
|| isProfitableToTailDup(BB, Succ, BestProb, Chain,
BlockFilter))) {
DEBUG(
dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: "
<< DupProb
<< " (Tail Duplicate)\n");
BestSucc.BB = Succ;
BestSucc.ShouldTailDup = true;
break;
}
}
if (BestSucc.BB)
DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
return BestSucc;
}
@ -1001,7 +1289,11 @@ void MachineBlockPlacement::buildChain(
// Look for the best viable successor if there is one to place immediately
// after this block.
MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
MachineBasicBlock* BestSucc = Result.BB;
bool ShouldTailDup = Result.ShouldTailDup;
if (TailDupPlacement)
ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
// If an immediate successor isn't available, look for the best viable
// block among those we've identified as not violating the loop's CFG at
@ -1022,7 +1314,7 @@ void MachineBlockPlacement::buildChain(
// Placement may have changed tail duplication opportunities.
// Check for that now.
if (TailDupPlacement && BestSucc) {
if (TailDupPlacement && BestSucc && ShouldTailDup) {
// If the chosen successor was duplicated into all its predecessors,
// don't bother laying it out, just go round the loop again with BB as
// the chain end.
@ -1914,13 +2206,8 @@ bool MachineBlockPlacement::maybeTailDuplicateBlock(
DuplicatedToLPred = false;
DEBUG(dbgs() << "Redoing tail duplication for Succ#"
<< BB->getNumber() << "\n");
bool IsSimple = TailDup.isSimpleBB(BB);
// Blocks with single successors don't create additional fallthrough
// opportunities. Don't duplicate them. TODO: When conditional exits are
// analyzable, allow them to be duplicated.
if (!IsSimple && BB->succ_size() == 1)
return false;
if (!TailDup.shouldTailDuplicate(IsSimple, *BB))
if (!shouldTailDuplicate(BB))
return false;
// This has to be a callback because none of it can be done after
// BB is deleted.
@ -1973,6 +2260,7 @@ bool MachineBlockPlacement::maybeTailDuplicateBlock(
llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
bool IsSimple = TailDup.isSimpleBB(BB);
TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
&DuplicatedPreds, &RemovalCallbackRef);
@ -2013,13 +2301,15 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TLI = MF.getSubtarget().getTargetLowering();
MDT = &getAnalysis<MachineDominatorTree>();
MPDT = nullptr;
// Initialize PreferredLoopExit to nullptr here since it may never be set if
// there are no MachineLoops.
PreferredLoopExit = nullptr;
if (TailDupPlacement) {
unsigned TailDupSize = TailDuplicatePlacementThreshold;
MPDT = &getAnalysis<MachinePostDominatorTree>();
unsigned TailDupSize = TailDupPlacementThreshold;
if (MF.getFunction()->optForSize())
TailDupSize = 1;
TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
@ -2038,7 +2328,7 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
BranchFoldPlacement;
// No tail merging opportunities if the block number is less than four.
if (MF.size() > 3 && EnableTailMerge) {
unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1;
unsigned TailMergeSize = TailDupPlacementThreshold + 1;
BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
*MBPI, TailMergeSize);
@ -2049,6 +2339,8 @@ bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
BlockToChain.clear();
// Must redo the dominator tree if blocks were changed.
MDT->runOnMachineFunction(MF);
if (MPDT)
MPDT->runOnMachineFunction(MF);
ChainAllocator.DestroyAll();
buildCFGChains();
}

View File

@ -9,10 +9,10 @@ define i32 @val_compare_and_swap(i32* %p, i32 %cmp, i32 %new) #0 {
; CHECK-NEXT: b.ne [[FAILBB:.?LBB[0-9_]+]]
; CHECK-NEXT: stxr [[SCRATCH_REG:w[0-9]+]], w2, [x[[ADDR]]]
; CHECK-NEXT: cbnz [[SCRATCH_REG]], [[TRYBB]]
; CHECK-NEXT: b [[EXITBB:.?LBB[0-9_]+]]
; CHECK-NEXT: ret
; CHECK-NEXT: [[FAILBB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[EXITBB]]:
; CHECK-NEXT: ret
%pair = cmpxchg i32* %p, i32 %cmp, i32 %new acquire acquire
%val = extractvalue { i32, i1 } %pair, 0
ret i32 %val
@ -27,10 +27,12 @@ define i32 @val_compare_and_swap_from_load(i32* %p, i32 %cmp, i32* %pnew) #0 {
; CHECK-NEXT: b.ne [[FAILBB:.?LBB[0-9_]+]]
; CHECK-NEXT: stxr [[SCRATCH_REG:w[0-9]+]], [[NEW]], [x0]
; CHECK-NEXT: cbnz [[SCRATCH_REG]], [[TRYBB]]
; CHECK-NEXT: b [[EXITBB:.?LBB[0-9_]+]]
; CHECK-NEXT: mov x0, x[[ADDR]]
; CHECK-NEXT: ret
; CHECK-NEXT: [[FAILBB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[EXITBB]]:
; CHECK-NEXT: mov x0, x[[ADDR]]
; CHECK-NEXT: ret
%new = load i32, i32* %pnew
%pair = cmpxchg i32* %p, i32 %cmp, i32 %new acquire acquire
%val = extractvalue { i32, i1 } %pair, 0
@ -41,15 +43,15 @@ define i32 @val_compare_and_swap_rel(i32* %p, i32 %cmp, i32 %new) #0 {
; CHECK-LABEL: val_compare_and_swap_rel:
; CHECK-NEXT: mov x[[ADDR:[0-9]+]], x0
; CHECK-NEXT: [[TRYBB:.?LBB[0-9_]+]]:
; CHECK-NEXT: ldaxr [[RESULT:w[0-9]+]], [x[[ADDR]]
; CHECK-NEXT: ldaxr [[RESULT:w[0-9]+]], [x[[ADDR]]]
; CHECK-NEXT: cmp [[RESULT]], w1
; CHECK-NEXT: b.ne [[FAILBB:.?LBB[0-9_]+]]
; CHECK-NEXT: stlxr [[SCRATCH_REG:w[0-9]+]], w2, [x[[ADDR]]
; CHECK-NEXT: stlxr [[SCRATCH_REG:w[0-9]+]], w2, [x[[ADDR]]]
; CHECK-NEXT: cbnz [[SCRATCH_REG]], [[TRYBB]]
; CHECK-NEXT: b [[EXITBB:.?LBB[0-9_]+]]
; CHECK-NEXT: ret
; CHECK-NEXT: [[FAILBB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[EXITBB]]:
; CHECK-NEXT: ret
%pair = cmpxchg i32* %p, i32 %cmp, i32 %new acq_rel monotonic
%val = extractvalue { i32, i1 } %pair, 0
ret i32 %val
@ -64,10 +66,10 @@ define i64 @val_compare_and_swap_64(i64* %p, i64 %cmp, i64 %new) #0 {
; CHECK-NEXT: b.ne [[FAILBB:.?LBB[0-9_]+]]
; CHECK-NEXT: stxr [[SCRATCH_REG:w[0-9]+]], x2, [x[[ADDR]]]
; CHECK-NEXT: cbnz [[SCRATCH_REG]], [[TRYBB]]
; CHECK-NEXT: b [[EXITBB:.?LBB[0-9_]+]]
; CHECK-NEXT: ret
; CHECK-NEXT: [[FAILBB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[EXITBB]]:
; CHECK-NEXT: ret
%pair = cmpxchg i64* %p, i64 %cmp, i64 %new monotonic monotonic
%val = extractvalue { i64, i1 } %pair, 0
ret i64 %val

View File

@ -346,19 +346,15 @@ entry:
; CHECK-NEXT: sub w1, w1, #1
; CHECK-NEXT: add [[SUM]], [[SUM]], [[VA_VAL]]
; CHECK-NEXT: cbnz w1, [[LOOP_LABEL]]
; DISABLE-NEXT: b [[IFEND_LABEL]]
;
; DISABLE: [[ELSE_LABEL]]: ; %if.else
; DISABLE: lsl w0, w1, #1
;
; CHECK: [[IFEND_LABEL]]:
; CHECK-NEXT: [[IFEND_LABEL]]:
; Epilogue code.
; CHECK: add sp, sp, #16
; CHECK-NEXT: ret
;
; ENABLE: [[ELSE_LABEL]]: ; %if.else
; ENABLE-NEXT: lsl w0, w1, #1
; ENABLE_NEXT: ret
; CHECK: [[ELSE_LABEL]]: ; %if.else
; CHECK-NEXT: lsl w0, w1, #1
; DISABLE-NEXT: add sp, sp, #16
; CHECK-NEXT: ret
define i32 @variadicFunc(i32 %cond, i32 %count, ...) #0 {
entry:
%ap = alloca i8*, align 8

View File

@ -1,69 +0,0 @@
; RUN: llc -O3 -o - -verify-machineinstrs %s | FileCheck %s
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64-unknown-linux-gnu"
%struct.s1 = type { %struct.s3*, %struct.s1* }
%struct.s2 = type opaque
%struct.s3 = type { i32 }
; Function Attrs: nounwind
define internal fastcc i32 @repeated_dup_worklist(%struct.s1** %pp1, %struct.s2* %p2, i32 %state, i1 %i1_1, i32 %i32_1) unnamed_addr #0 {
entry:
br label %while.cond.outer
; The loop gets laid out:
; %while.cond.outer
; %(null)
; %(null)
; %dup2
; and then %dup1 gets chosen as the next block.
; when dup2 is duplicated into dup1, %worklist could erroneously be placed on
; the worklist, because all of its current predecessors are now scheduled.
; However, after dup2 is tail-duplicated, %worklist can't be on the worklist
; because it now has unscheduled predecessors.q
; CHECK-LABEL: repeated_dup_worklist
; CHECK: // %entry
; CHECK: // %while.cond.outer
; first %(null) block
; CHECK: // in Loop:
; CHECK: ldr
; CHECK-NEXT: tbnz
; second %(null) block
; CHECK: // in Loop:
; CHECK: // %dup2
; CHECK: // %worklist
; CHECK: // %if.then96.i
while.cond.outer: ; preds = %dup1, %entry
%progress.0.ph = phi i32 [ 0, %entry ], [ %progress.1, %dup1 ]
%inc77 = add nsw i32 %progress.0.ph, 1
%cmp = icmp slt i32 %progress.0.ph, %i32_1
br i1 %cmp, label %dup2, label %dup1
dup2: ; preds = %if.then96.i, %worklist, %while.cond.outer
%progress.1.ph = phi i32 [ 0, %while.cond.outer ], [ %progress.1, %if.then96.i ], [ %progress.1, %worklist ]
%.pr = load %struct.s1*, %struct.s1** %pp1, align 8
br label %dup1
dup1: ; preds = %dup2, %while.cond.outer
%0 = phi %struct.s1* [ %.pr, %dup2 ], [ undef, %while.cond.outer ]
%progress.1 = phi i32 [ %progress.1.ph, %dup2 ], [ %inc77, %while.cond.outer ]
br i1 %i1_1, label %while.cond.outer, label %worklist
worklist: ; preds = %dup1
%snode94 = getelementptr inbounds %struct.s1, %struct.s1* %0, i64 0, i32 0
%1 = load %struct.s3*, %struct.s3** %snode94, align 8
%2 = getelementptr inbounds %struct.s3, %struct.s3* %1, i32 0, i32 0
%3 = load i32, i32* %2, align 4
%tobool95.i = icmp eq i32 %3, 0
br i1 %tobool95.i, label %if.then96.i, label %dup2
if.then96.i: ; preds = %worklist
call fastcc void @free_s3(%struct.s2* %p2, %struct.s3* %1) #1
br label %dup2
}
; Function Attrs: nounwind
declare fastcc void @free_s3(%struct.s2*, %struct.s3*) unnamed_addr #0
attributes #0 = { nounwind "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="cortex-a57" "target-features"="+crc,+crypto,+neon" "unsafe-fp-math"="false" "use-soft-float"="false" }
attributes #1 = { nounwind }

View File

@ -10,7 +10,7 @@ entry:
br i1 %cmp, label %if.then, label %if.end
; CHECK: sub [[CMP:w[0-9]+]], w0, #12
; CHECK: tbz [[CMP]], #31
; CHECK: tbnz [[CMP]], #31
if.then:
call void @t()
@ -28,7 +28,7 @@ entry:
br i1 %cmp, label %if.then, label %if.end
; CHECK: sub [[CMP:x[0-9]+]], x0, #12
; CHECK: tbz [[CMP]], #63
; CHECK: tbnz [[CMP]], #63
if.then:
call void @t()
@ -118,7 +118,7 @@ entry:
br i1 %cmp, label %if.then, label %if.end
; CHECK: sub [[CMP:w[0-9]+]], w0, #12
; CHECK: tbz [[CMP]], #31
; CHECK: tbnz [[CMP]], #31
if.then:
call void @t()
@ -178,7 +178,7 @@ define void @test9(i64 %val1) {
br i1 %tst, label %if.then, label %if.end
; CHECK-NOT: cmp
; CHECK: tbz x0, #63
; CHECK: tbnz x0, #63
if.then:
call void @t()
@ -194,7 +194,7 @@ define void @test10(i64 %val1) {
br i1 %tst, label %if.then, label %if.end
; CHECK-NOT: cmp
; CHECK: tbz x0, #63
; CHECK: tbnz x0, #63
if.then:
call void @t()
@ -209,7 +209,7 @@ define void @test11(i64 %val1, i64* %ptr) {
; CHECK: ldr [[CMP:x[0-9]+]], [x1]
; CHECK-NOT: cmp
; CHECK: tbz [[CMP]], #63
; CHECK: tbnz [[CMP]], #63
%val = load i64, i64* %ptr
%tst = icmp slt i64 %val, 0
@ -229,7 +229,7 @@ define void @test12(i64 %val1) {
br i1 %tst, label %if.then, label %if.end
; CHECK-NOT: cmp
; CHECK: tbz x0, #63
; CHECK: tbnz x0, #63
if.then:
call void @t()
@ -247,7 +247,7 @@ define void @test13(i64 %val1, i64 %val2) {
; CHECK: orr [[CMP:x[0-9]+]], x0, x1
; CHECK-NOT: cmp
; CHECK: tbz [[CMP]], #63
; CHECK: tbnz [[CMP]], #63
if.then:
call void @t()

View File

@ -335,6 +335,12 @@ loop:
; GCN-NEXT: ;;#ASMEND
; GCN-NEXT: [[BB3]]: ; %bb3
; GCN-NEXT: ;;#ASMSTART
; GCN-NEXT: v_nop_e64
; GCN-NEXT: ;;#ASMEND
; GCN-NEXT: ;;#ASMSTART
; GCN-NEXT: v_nop_e64
; GCN-NEXT: ;;#ASMEND
; GCN-NEXT: s_endpgm
define void @expand_requires_expand(i32 %cond0) #0 {
bb0:
@ -356,6 +362,12 @@ bb2:
br label %bb3
bb3:
; These NOPs prevent tail-duplication-based outlining
; from firing, which defeats the need to expand the branches and this test.
call void asm sideeffect
"v_nop_e64", ""() #0
call void asm sideeffect
"v_nop_e64", ""() #0
ret void
}
@ -385,6 +397,7 @@ bb3:
; GCN-NEXT: [[ENDIF]]: ; %endif
; GCN-NEXT: s_or_b64 exec, exec, [[MASK]]
; GCN-NEXT: s_sleep 5
; GCN-NEXT: s_endpgm
define void @uniform_inside_divergent(i32 addrspace(1)* %out, i32 %cond) #0 {
entry:
@ -402,6 +415,9 @@ if_uniform:
br label %endif
endif:
; layout can remove the split branch if it can copy the return block.
; This call makes the return block long enough that it doesn't get copied.
call void @llvm.amdgcn.s.sleep(i32 5);
ret void
}

View File

@ -252,10 +252,12 @@ ENDIF: ; preds = %IF, %main_body
; GCN: s_cmp_lt_i32 [[COND]], 1
; GCN: s_cbranch_scc1 [[EXIT:[A-Za-z0-9_]+]]
; GCN: v_cmp_gt_i32_e64 vcc, [[COND]], 0{{$}}
; GCN: s_cbranch_vccnz [[EXIT]]
; GCN: buffer_store
; GCN: s_cbranch_vccz [[BODY:[A-Za-z0-9_]+]]
; GCN: {{^}}[[EXIT]]:
; GCN: s_endpgm
; GCN: {{^}}[[BODY]]:
; GCN: buffer_store
; GCN: s_endpgm
define void @icmp_users_different_blocks(i32 %cond0, i32 %cond1, i32 addrspace(1)* %out) {
bb:
%tmp = tail call i32 @llvm.amdgcn.workitem.id.x() #0
@ -302,9 +304,10 @@ done:
; GCN: v_cmp_gt_u32_e32 vcc, 16, v{{[0-9]+}}
; GCN: s_and_saveexec_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], vcc
; GCN: s_xor_b64 [[MASK1:s\[[0-9]+:[0-9]+\]]], exec, [[MASK]]
; GCN: s_cbranch_execz [[ENDIF_LABEL:[0-9_A-Za-z]+]]
; GCN: s_cmp_lg_u32 {{s[0-9]+}}, 0
; GCN: s_cbranch_scc1 [[ENDIF_LABEL]]
; GCN: s_cbranch_scc0 [[IF_UNIFORM_LABEL:[A-Z0-9_a-z]+]]
; GCN: s_endpgm
; GCN: {{^}}[[IF_UNIFORM_LABEL]]:
; GCN: v_mov_b32_e32 [[ONE:v[0-9]+]], 1
; GCN: buffer_store_dword [[ONE]]
define void @uniform_inside_divergent(i32 addrspace(1)* %out, i32 %cond) {
@ -328,14 +331,13 @@ endif:
; GCN-LABEL: {{^}}divergent_inside_uniform:
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, 0
; GCN: s_cbranch_scc1 [[ENDIF_LABEL:[0-9_A-Za-z]+]]
; GCN: s_cbranch_scc0 [[IF_LABEL:[0-9_A-Za-z]+]]
; GCN: [[IF_LABEL]]:
; GCN: v_cmp_gt_u32_e32 vcc, 16, v{{[0-9]+}}
; GCN: s_and_saveexec_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], vcc
; GCN: s_xor_b64 [[MASK1:s\[[0-9]+:[0-9]+\]]], exec, [[MASK]]
; GCN: v_mov_b32_e32 [[ONE:v[0-9]+]], 1
; GCN: buffer_store_dword [[ONE]]
; GCN: [[ENDIF_LABEL]]:
; GCN: s_endpgm
define void @divergent_inside_uniform(i32 addrspace(1)* %out, i32 %cond) {
entry:
%u_cmp = icmp eq i32 %cond, 0
@ -363,11 +365,11 @@ endif:
; GCN: buffer_store_dword [[ONE]]
; GCN: s_or_b64 exec, exec, [[MASK]]
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, 0
; GCN: s_cbranch_scc1 [[EXIT:[A-Z0-9_]+]]
; GCN: s_cbranch_scc0 [[IF_UNIFORM:[A-Z0-9_]+]]
; GCN: s_endpgm
; GCN: [[IF_UNIFORM]]:
; GCN: v_mov_b32_e32 [[TWO:v[0-9]+]], 2
; GCN: buffer_store_dword [[TWO]]
; GCN: [[EXIT]]:
; GCN: s_endpgm
define void @divergent_if_uniform_if(i32 addrspace(1)* %out, i32 %cond) {
entry:
%tid = call i32 @llvm.amdgcn.workitem.id.x() #0

View File

@ -49,9 +49,9 @@ tailrecurse.switch: ; preds = %tailrecurse
; V8-NEXT: beq
; V8-NEXT: %tailrecurse.switch
; V8: cmp
; V8-NEXT: bne
; V8-NEXT: b
; The trailing space in the last line checks that the branch is unconditional
; V8-NEXT: beq
; V8-NEXT: %sw.epilog
; V8-NEXT: bx lr
switch i32 %and, label %sw.epilog [
i32 1, label %sw.bb
i32 3, label %sw.bb6

View File

@ -320,10 +320,10 @@ define i32 @test_cmpxchg_fail_order1(i32 *%addr, i32 %desired, i32 %new) {
; CHECK: strex [[SUCCESS:r[0-9]+]], r2, [r[[ADDR]]]
; CHECK: cmp [[SUCCESS]], #0
; CHECK: bne [[LOOP_BB]]
; CHECK: b [[END_BB:\.?LBB[0-9]+_[0-9]+]]
; CHECK: dmb ish
; CHECK: bx lr
; CHECK: [[FAIL_BB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[END_BB]]:
; CHECK: dmb ish
; CHECK: bx lr

View File

@ -1045,20 +1045,21 @@ define i8 @test_atomic_cmpxchg_i8(i8 zeroext %wanted, i8 zeroext %new) nounwind
; function there.
; CHECK-ARM-NEXT: cmp r[[OLD]], r0
; CHECK-THUMB-NEXT: cmp r[[OLD]], r[[WANTED]]
; CHECK-NEXT: bne .LBB{{[0-9]+}}_3
; CHECK-NEXT: bne .LBB{{[0-9]+}}_4
; CHECK-NEXT: BB#2:
; As above, r1 is a reasonable guess.
; CHECK: strexb [[STATUS:r[0-9]+]], r1, [r[[ADDR]]]
; CHECK-NEXT: cmp [[STATUS]], #0
; CHECK-NEXT: bne .LBB{{[0-9]+}}_1
; CHECK-NEXT: b .LBB{{[0-9]+}}_4
; CHECK-NEXT: .LBB{{[0-9]+}}_3:
; CHECK-NEXT: clrex
; CHECK-ARM: mov r0, r[[OLD]]
; CHECK: bx lr
; CHECK-NEXT: .LBB{{[0-9]+}}_4:
; CHECK-NEXT: clrex
; CHECK-NOT: dmb
; CHECK-NOT: mcr
; CHECK-ARM: mov r0, r[[OLD]]
; CHECK-ARM-NEXT: bx lr
ret i8 %old
}
@ -1078,20 +1079,21 @@ define i16 @test_atomic_cmpxchg_i16(i16 zeroext %wanted, i16 zeroext %new) nounw
; function there.
; CHECK-ARM-NEXT: cmp r[[OLD]], r0
; CHECK-THUMB-NEXT: cmp r[[OLD]], r[[WANTED]]
; CHECK-NEXT: bne .LBB{{[0-9]+}}_3
; CHECK-NEXT: bne .LBB{{[0-9]+}}_4
; CHECK-NEXT: BB#2:
; As above, r1 is a reasonable guess.
; CHECK: stlexh [[STATUS:r[0-9]+]], r1, [r[[ADDR]]]
; CHECK-NEXT: cmp [[STATUS]], #0
; CHECK-NEXT: bne .LBB{{[0-9]+}}_1
; CHECK-NEXT: b .LBB{{[0-9]+}}_4
; CHECK-NEXT: .LBB{{[0-9]+}}_3:
; CHECK-NEXT: clrex
; CHECK-ARM: mov r0, r[[OLD]]
; CHECK: bx lr
; CHECK-NEXT: .LBB{{[0-9]+}}_4:
; CHECK-NEXT: clrex
; CHECK-NOT: dmb
; CHECK-NOT: mcr
; CHECK-ARM: mov r0, r[[OLD]]
; CHECK-ARM-NEXT: bx lr
ret i16 %old
}
@ -1110,20 +1112,21 @@ define void @test_atomic_cmpxchg_i32(i32 %wanted, i32 %new) nounwind {
; r0 below is a reasonable guess but could change: it certainly comes into the
; function there.
; CHECK-NEXT: cmp r[[OLD]], r0
; CHECK-NEXT: bne .LBB{{[0-9]+}}_3
; CHECK-NEXT: bne .LBB{{[0-9]+}}_4
; CHECK-NEXT: BB#2:
; As above, r1 is a reasonable guess.
; CHECK: stlex [[STATUS:r[0-9]+]], r1, [r[[ADDR]]]
; CHECK-NEXT: cmp [[STATUS]], #0
; CHECK-NEXT: bne .LBB{{[0-9]+}}_1
; CHECK-NEXT: b .LBB{{[0-9]+}}_4
; CHECK-NEXT: .LBB{{[0-9]+}}_3:
; CHECK-NEXT: clrex
; CHECK: str{{(.w)?}} r[[OLD]],
; CHECK-NEXT: bx lr
; CHECK-NEXT: .LBB{{[0-9]+}}_4:
; CHECK-NEXT: clrex
; CHECK-NOT: dmb
; CHECK-NOT: mcr
; CHECK: str{{(.w)?}} r[[OLD]],
; CHECK-ARM-NEXT: bx lr
ret void
}
@ -1148,16 +1151,16 @@ define void @test_atomic_cmpxchg_i64(i64 %wanted, i64 %new) nounwind {
; CHECK-BE-DAG: eor{{(\.w)?}} [[MISMATCH_LO:r[0-9]+|lr]], [[OLD1]], r0
; CHECK-ARM-BE: orrs{{(\.w)?}} {{r[0-9]+}}, [[MISMATCH_HI]], [[MISMATCH_LO]]
; CHECK-THUMB-BE: orrs{{(\.w)?}} {{(r[0-9]+, )?}}[[MISMATCH_LO]], [[MISMATCH_HI]]
; CHECK-NEXT: bne .LBB{{[0-9]+}}_3
; CHECK-NEXT: bne .LBB{{[0-9]+}}_4
; CHECK-NEXT: BB#2:
; As above, r2, r3 is a reasonable guess.
; CHECK: strexd [[STATUS:r[0-9]+]], r2, r3, [r[[ADDR]]]
; CHECK-NEXT: cmp [[STATUS]], #0
; CHECK-NEXT: bne .LBB{{[0-9]+}}_1
; CHECK-NEXT: b .LBB{{[0-9]+}}_4
; CHECK-NEXT: .LBB{{[0-9]+}}_3:
; CHECK-NEXT: clrex
; CHECK: strd [[OLD1]], [[OLD2]], [r[[ADDR]]]
; CHECK-NEXT: pop
; CHECK-NEXT: .LBB{{[0-9]+}}_4:
; CHECK-NEXT: clrex
; CHECK-NOT: dmb
; CHECK-NOT: mcr

View File

@ -13,14 +13,16 @@ define void @test_cmpxchg_weak(i32 *%addr, i32 %desired, i32 %new) {
; CHECK-NEXT: dmb ish
; CHECK-NEXT: strex [[SUCCESS:r[0-9]+]], r2, [r0]
; CHECK-NEXT: cmp [[SUCCESS]], #0
; CHECK-NEXT: bne [[FAILBB:LBB[0-9]+_[0-9]+]]
; CHECK-NEXT: beq [[SUCCESSBB:LBB[0-9]+_[0-9]+]]
; CHECK-NEXT: BB#2:
; CHECK-NEXT: dmb ish
; CHECK-NEXT: str r3, [r0]
; CHECK-NEXT: bx lr
; CHECK-NEXT: [[LDFAILBB]]:
; CHECK-NEXT: clrex
; CHECK-NEXT: [[FAILBB]]:
; CHECK-NEXT: str r3, [r0]
; CHECK-NEXT: bx lr
; CHECK-NEXT: [[SUCCESSBB]]:
; CHECK-NEXT: dmb ish
; CHECK-NEXT: str r3, [r0]
; CHECK-NEXT: bx lr

View File

@ -7,7 +7,7 @@ define void @test() nounwind {
entry:
%0 = load i32, i32* @j, align 4
%cmp = icmp eq i32 %0, 0
br i1 %cmp, label %if.then, label %if.end
br i1 %cmp, label %if.then, label %if.end, !prof !1
; 16: bnez ${{[0-9]+}}, $[[LABEL:[0-9A-Ba-b_]+]]
; 16: lw ${{[0-9]+}}, %got(result)(${{[0-9]+}})
@ -21,4 +21,4 @@ if.end: ; preds = %if.then, %entry
ret void
}
!1 = !{!"branch_weights", i32 2, i32 1}

View File

@ -6,7 +6,7 @@ entry:
%x = alloca i32, align 4
%0 = load i32, i32* %x, align 4
%cmp = icmp eq i32 %0, 0
br i1 %cmp, label %if.then, label %if.end
br i1 %cmp, label %if.then, label %if.end, !prof !1
if.then:
store i32 10, i32* %x, align 4
@ -17,3 +17,4 @@ if.end:
}
; CHECK: bnezc
!1 = !{!"branch_weights", i32 2, i32 1}

View File

@ -17,7 +17,7 @@ entry:
%sum1 = add i32 %sumin, 1
%val1 = load i32, i32* %ptr
%p = icmp eq i32 %sumin, 0
br i1 %p, label %true, label %end
br i1 %p, label %true, label %end, !prof !1
true:
%sum2 = add i32 %sum1, 1
%ptr2 = getelementptr i32, i32* %ptr, i32 1
@ -53,3 +53,5 @@ end:
ret i32 %valmerge
}
declare void @llvm.prefetch(i8*, i32, i32, i32) nounwind
!1 = !{!"branch_weights", i32 2, i32 1}

View File

@ -0,0 +1,140 @@
; RUN: llc -O2 -o - %s | FileCheck %s
target datalayout = "e-m:e-i64:64-n32:64"
target triple = "powerpc64le-grtev4-linux-gnu"
; Intended layout:
; The code for tail-duplication during layout will produce the layout:
; test1
; test2
; body1 (with copy of test2)
; body2
; exit
;CHECK-LABEL: tail_dup_break_cfg:
;CHECK: mr [[TAGREG:[0-9]+]], 3
;CHECK: andi. {{[0-9]+}}, [[TAGREG]], 1
;CHECK-NEXT: bc 12, 1, [[BODY1LABEL:[._0-9A-Za-z]+]]
;CHECK-NEXT: # %test2
;CHECK-NEXT: rlwinm. {{[0-9]+}}, [[TAGREG]], 0, 30, 30
;CHECK-NEXT: beq 0, [[EXITLABEL:[._0-9A-Za-z]+]]
;CHECK-NEXT: b [[BODY2LABEL:[._0-9A-Za-z]+]]
;CHECK-NEXT: [[BODY1LABEL]]
;CHECK: rlwinm. {{[0-9]+}}, [[TAGREG]], 0, 30, 30
;CHECK-NEXT: beq 0, [[EXITLABEL]]
;CHECK-NEXT: [[BODY2LABEL]]
;CHECK: [[EXITLABEL:[._0-9A-Za-z]+]]: # %exit
;CHECK: blr
define void @tail_dup_break_cfg(i32 %tag) {
entry:
br label %test1
test1:
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %test2, label %body1, !prof !1 ; %test2 more likely
body1:
call void @a()
call void @a()
call void @a()
call void @a()
br label %test2
test2:
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp eq i32 %tagbit2, 0
br i1 %tagbit2eq0, label %exit, label %body2, !prof !1 ; %exit more likely
body2:
call void @b()
call void @b()
call void @b()
call void @b()
br label %exit
exit:
ret void
}
; The branch weights here hint that we shouldn't tail duplicate in this case.
;CHECK-LABEL: tail_dup_dont_break_cfg:
;CHECK: mr [[TAGREG:[0-9]+]], 3
;CHECK: andi. {{[0-9]+}}, [[TAGREG]], 1
;CHECK-NEXT: bc 4, 1, [[TEST2LABEL:[._0-9A-Za-z]+]]
;CHECK-NEXT: # %body1
;CHECK: [[TEST2LABEL]]: # %test2
;CHECK-NEXT: rlwinm. {{[0-9]+}}, [[TAGREG]], 0, 30, 30
;CHECK-NEXT: beq 0, [[EXITLABEL:[._0-9A-Za-z]+]]
;CHECK-NEXT: # %body2
;CHECK: [[EXITLABEL:[._0-9A-Za-z]+]]: # %exit
;CHECK: blr
define void @tail_dup_dont_break_cfg(i32 %tag) {
entry:
br label %test1
test1:
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %test2, label %body1, !prof !1 ; %test2 more likely
body1:
call void @a()
call void @a()
call void @a()
call void @a()
br label %test2
test2:
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp ne i32 %tagbit2, 0
br i1 %tagbit2eq0, label %body2, label %exit, !prof !1 ; %body2 more likely
body2:
call void @b()
call void @b()
call void @b()
call void @b()
br label %exit
exit:
ret void
}
declare void @a()
declare void @b()
declare void @c()
declare void @d()
; This function arranges for the successors of %succ to have already been laid
; out. When we consider whether to lay out succ after bb and to tail-duplicate
; it, v and ret have already been placed, so we tail-duplicate as it removes a
; branch and strictly increases fallthrough
; CHECK-LABEL: tail_dup_no_succ
; CHECK: # %entry
; CHECK: # %v
; CHECK: # %ret
; CHECK: # %bb
; CHECK: # %succ
; CHECK: # %c
; CHECK: bl c
; CHECK: rlwinm. {{[0-9]+}}, {{[0-9]+}}, 0, 29, 29
; CHECK: beq
; CHECK: b
define void @tail_dup_no_succ(i32 %tag) {
entry:
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %v, label %bb, !prof !2 ; %v very much more likely
bb:
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp eq i32 %tagbit2, 0
br i1 %tagbit2eq0, label %succ, label %c, !prof !3 ; %succ more likely
c:
call void @c()
call void @c()
br label %succ
succ:
%tagbit3 = and i32 %tag, 4
%tagbit3eq0 = icmp eq i32 %tagbit3, 0
br i1 %tagbit3eq0, label %ret, label %v, !prof !1 ; %u more likely
v:
call void @d()
call void @d()
br label %ret
ret:
ret void
}
!1 = !{!"branch_weights", i32 5, i32 3}
!2 = !{!"branch_weights", i32 95, i32 5}
!3 = !{!"branch_weights", i32 7, i32 3}

View File

@ -66,14 +66,15 @@ return: ; preds = %if.end, %if.then
; CHECK: ba .LBB1_1
; CHECK: nop
; CHECK:.LBB1_1: ! %entry
; CHECK: ba .LBB1_3
; CHECK: mov %g0, %i0
; CHECK: cmp %i0, 0
; CHECK: bne .LBB1_4
; CHECK: ba .LBB1_5
; CHECK:.LBB1_2: ! Block address taken
; CHECK: mov 1, %i0
; CHECK:.LBB1_3: ! %entry
; CHECK: cmp %i0, 0
; CHECK: be .LBB1_5
; CHECK: nop
; CHECK:.LBB1_4:
; CHECK: ba .LBB1_6
}
declare i8* @llvm.frameaddress(i32) #2

View File

@ -473,8 +473,8 @@ entry:
%xor = xor i32 %val, 1
%add = add i32 %xor, 1000000
call void @foo()
%cmp = icmp ne i32 %add, 0
br i1 %cmp, label %exit, label %store
%cmp = icmp eq i32 %add, 0
br i1 %cmp, label %store, label %exit, !prof !1
store:
store i32 %add, i32 *%ptr
@ -888,3 +888,5 @@ store:
exit:
ret i64 %res
}
!1 = !{!"branch_weights", i32 2, i32 1}

View File

@ -1,11 +1,12 @@
; RUN: llc %s -o - -enable-shrink-wrap=true -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -mtriple=thumb-macho \
; RUN: llc %s -o - -enable-shrink-wrap=true -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -tail-dup-placement=0 -mtriple=thumb-macho \
; RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=ENABLE --check-prefix=ENABLE-V4T
; RUN: llc %s -o - -enable-shrink-wrap=true -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -mtriple=thumbv5-macho \
; RUN: llc %s -o - -enable-shrink-wrap=true -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -tail-dup-placement=0 -mtriple=thumbv5-macho \
; RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=ENABLE --check-prefix=ENABLE-V5T
; RUN: llc %s -o - -enable-shrink-wrap=false -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -mtriple=thumb-macho \
; RUN: llc %s -o - -enable-shrink-wrap=false -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -tail-dup-placement=0 -mtriple=thumb-macho \
; RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=DISABLE --check-prefix=DISABLE-V4T
; RUN: llc %s -o - -enable-shrink-wrap=false -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -mtriple=thumbv5-macho \
; RUN: llc %s -o - -enable-shrink-wrap=false -ifcvt-fn-start=1 -ifcvt-fn-stop=0 -tail-dup-placement=0 -mtriple=thumbv5-macho \
; RUN: | FileCheck %s --check-prefix=CHECK --check-prefix=DISABLE --check-prefix=DISABLE-V5T
;
; Note: Lots of tests use inline asm instead of regular calls.
; This allows to have a better control on what the allocation will do.
@ -15,6 +16,8 @@
; edges.
; Also disable the late if-converter as it makes harder to reason on
; the diffs.
; Disable tail-duplication during placement, as v4t vs v5t get different
; results due to branches not being analyzable under v5
; Initial motivating example: Simple diamond with a call just on one side.
; CHECK-LABEL: foo:

View File

@ -26,7 +26,7 @@ t:
call void @x()
call void @x()
call void @x()
; CHECK: cbnz
; CHECK: cbz
%q = icmp eq i32 %y, 0
br i1 %q, label %t2, label %f

View File

@ -4,7 +4,7 @@ declare void @x()
define void @f0(i32 %x) optsize {
; CHECK-LABEL: f0:
; CHECK: cbnz
; CHECK: cbz
%p = icmp eq i32 %x, 0
br i1 %p, label %t, label %f

View File

@ -12,10 +12,11 @@
define weak arm_aapcs_vfpcc i32 @_ZNKSs7compareERKSs(%"struct.std::basic_string<char,std::char_traits<char>,std::allocator<char> >"* %this, %"struct.std::basic_string<char,std::char_traits<char>,std::allocator<char> >"* %__str) {
; CHECK-LABEL: _ZNKSs7compareERKSs:
; CHECK: cbnz r0,
; CHECK: cbz r0,
; CHECK-NEXT: %bb1
; CHECK-NEXT: pop.w
; CHECK-NEXT: %bb
; CHECK-NEXT: sub{{(.w)?}} r0, r{{[0-9]+}}, r{{[0-9]+}}
; CHECK-NEXT: %bb1
; CHECK-NEXT: pop.w
entry:
%0 = tail call arm_aapcs_vfpcc i32 @_ZNKSs4sizeEv(%"struct.std::basic_string<char,std::char_traits<char>,std::allocator<char> >"* %this) ; <i32> [#uses=3]

View File

@ -8,8 +8,9 @@ target triple = "wasm32-unknown-unknown"
; Basic phi triangle.
; CHECK-LABEL: test0:
; CHECK: div_s $[[NUM0:[0-9]+]]=, $0, $pop[[NUM1:[0-9]+]]{{$}}
; CHECK: return $[[NUM0]]{{$}}
; CHECK: return $0
; CHECK: div_s $push[[NUM0:[0-9]+]]=, $0, $pop[[NUM1:[0-9]+]]{{$}}
; CHECK: return $pop[[NUM0]]{{$}}
define i32 @test0(i32 %p) {
entry:
%t = icmp slt i32 %p, 0

View File

@ -69,13 +69,14 @@ define float @test5(float %p) #0 {
; ALL-NEXT: vxorps %xmm1, %xmm1, %xmm1
; ALL-NEXT: vucomiss %xmm1, %xmm0
; ALL-NEXT: jne LBB3_1
; ALL-NEXT: jnp LBB3_2
; ALL-NEXT: jp LBB3_1
; ALL-NEXT: ## BB#2: ## %return
; ALL-NEXT: retq
; ALL-NEXT: LBB3_1: ## %if.end
; ALL-NEXT: seta %al
; ALL-NEXT: movzbl %al, %eax
; ALL-NEXT: leaq {{.*}}(%rip), %rcx
; ALL-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; ALL-NEXT: LBB3_2: ## %return
; ALL-NEXT: retq
entry:
%cmp = fcmp oeq float %p, 0.000000e+00

View File

@ -43,7 +43,7 @@ define void @test2b(i32 %x, i32 %n) nounwind {
; CHECK-LABEL: test2b:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: btl %esi, %edi
; CHECK-NEXT: jb .LBB1_2
; CHECK-NEXT: jae .LBB1_1
;
entry:
%tmp29 = lshr i32 %x, %n
@ -83,7 +83,7 @@ define void @atest2b(i32 %x, i32 %n) nounwind {
; CHECK-LABEL: atest2b:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: btl %esi, %edi
; CHECK-NEXT: jb .LBB3_2
; CHECK-NEXT: jae .LBB3_1
;
entry:
%tmp29 = ashr i32 %x, %n
@ -103,7 +103,7 @@ define void @test3(i32 %x, i32 %n) nounwind {
; CHECK-LABEL: test3:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: btl %esi, %edi
; CHECK-NEXT: jb .LBB4_2
; CHECK-NEXT: jae .LBB4_1
;
entry:
%tmp29 = shl i32 1, %n
@ -123,7 +123,7 @@ define void @test3b(i32 %x, i32 %n) nounwind {
; CHECK-LABEL: test3b:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: btl %esi, %edi
; CHECK-NEXT: jb .LBB5_2
; CHECK-NEXT: jae .LBB5_1
;
entry:
%tmp29 = shl i32 1, %n

View File

@ -36,8 +36,8 @@ define double @rdar_7859988(double %x, double %y) nounwind readnone optsize ssp
entry:
%mul = fmul double %x, %y
%cmp = fcmp une double %mul, 0.000000e+00
br i1 %cmp, label %bb2, label %bb1
%cmp = fcmp oeq double %mul, 0.000000e+00
br i1 %cmp, label %bb1, label %bb2
bb1:
%add = fadd double %mul, -1.000000e+00

View File

@ -6,7 +6,7 @@ entry:
; CHECK: jns
%tmp1 = add i32 %X, 1 ; <i32> [#uses=1]
%tmp = icmp slt i32 %tmp1, 0 ; <i1> [#uses=1]
br i1 %tmp, label %cond_true, label %cond_next
br i1 %tmp, label %cond_true, label %cond_next, !prof !1
cond_true: ; preds = %entry
%tmp2 = tail call i32 (...) @bar( ) ; <i32> [#uses=0]
@ -303,3 +303,5 @@ if.then:
if.end:
ret i32 undef
}
!1 = !{!"branch_weights", i32 2, i32 1}