1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00

Add FunctionPassManager_New.

llvm-svn: 31515
This commit is contained in:
Devang Patel 2006-11-07 21:49:50 +00:00
parent 5264310433
commit 9a2c6538dd
2 changed files with 91 additions and 0 deletions

View File

@ -108,6 +108,41 @@ private:
std::vector<Pass *> PassVector;
};
/// FunctionPassManager_New manages FunctionPasses and BasicBlockPassManagers.
/// It batches all function passes and basic block pass managers together and
/// sequence them to process one function at a time before processing next
/// function.
class FunctionPassManager_New:public Pass {
public:
FunctionPassManager_New(ModuleProvider *P) { /* TODO */ }
FunctionPassManager_New() {
activeBBPassManager = NULL;
}
~FunctionPassManager_New() { /* TODO */ };
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void add(Pass *P) { /* TODO*/ }
/// Add pass into the pass manager queue.
bool addPass(Pass *P);
/// Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
bool runOnModule(Module &M);
private:
// Collection of pass that are not yet scheduled
std::vector<Pass *> PassVector;
// Active Pass Managers
BasicBlockPassManager_New *activeBBPassManager;
};
} // End llvm namespace
#endif

View File

@ -54,3 +54,59 @@ BasicBlockPassManager_New::runOnFunction(Function &F) {
return Changed;
}
// FunctionPassManager_New implementation
///////////////////////////////////////////////////////////////////////////////
// FunctionPassManager
/// Add pass P into the pass manager queue. If P is a BasicBlockPass then
/// either use it into active basic block pass manager or create new basic
/// block pass manager to handle pass P.
bool
FunctionPassManager_New::addPass (Pass *P) {
// If P is a BasicBlockPass then use BasicBlockPassManager_New.
if (BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P)) {
if (!activeBBPassManager
|| !activeBBPassManager->addPass(BP)) {
activeBBPassManager = new BasicBlockPassManager_New();
PassVector.push_back(activeBBPassManager);
assert (!activeBBPassManager->addPass(BP) &&
"Unable to add Pass");
}
return true;
}
FunctionPass *FP = dynamic_cast<FunctionPass *>(P);
if (!FP)
return false;
// TODO: Check if it suitable to manage P using this FunctionPassManager
// or we need another instance of BasicBlockPassManager
PassVector.push_back(FP);
activeBBPassManager = NULL;
return true;
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool
FunctionPassManager_New::runOnModule(Module &M) {
bool Changed = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
for (std::vector<Pass *>::iterator itr = PassVector.begin(),
e = PassVector.end(); itr != e; ++itr) {
Pass *P = *itr;
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
Changed |= FP->runOnFunction(*I);
}
return Changed;
}