1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

[BDCE] clear poison generators after turning a value into zero (PR33695, PR34037)

nsw, nuw, and exact carry implicit assumptions about their operands, so we need
to clear those after trivializing a value. We decided there was no danger for
llvm.assume or metadata, so there's just a comment about that.

This fixes miscompiles as shown in:
https://bugs.llvm.org/show_bug.cgi?id=33695
https://bugs.llvm.org/show_bug.cgi?id=34037

Differential Revision: https://reviews.llvm.org/D36592

llvm-svn: 310779
This commit is contained in:
Sanjay Patel 2017-08-12 16:41:08 +00:00
parent cf9dd4dfe6
commit 9a31ece394
2 changed files with 81 additions and 5 deletions

View File

@ -15,6 +15,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/BDCE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DemandedBits.h"
@ -35,6 +36,49 @@ using namespace llvm;
STATISTIC(NumRemoved, "Number of instructions removed (unused)");
STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
/// If an instruction is trivialized (dead), then the chain of users of that
/// instruction may need to be cleared of assumptions that can no longer be
/// guaranteed correct.
static void clearAssumptionsOfUsers(Instruction *I, DemandedBits &DB) {
// Any value we're trivializing should be an integer value, and moreover,
// any conversion between an integer value and a non-integer value should
// demand all of the bits. This will cause us to stop looking down the
// use/def chain, so we should only see integer-typed instructions here.
auto isExternallyVisible = [](Instruction *I, DemandedBits &DB) {
assert(I->getType()->isIntegerTy() && "Trivializing a non-integer value?");
return DB.getDemandedBits(I).isAllOnesValue();
};
// Initialize the worklist with eligible direct users.
SmallVector<Instruction *, 16> WorkList;
for (User *JU : I->users()) {
auto *J = dyn_cast<Instruction>(JU);
if (J && !isExternallyVisible(J, DB))
WorkList.push_back(J);
}
// DFS through subsequent users while tracking visits to avoid cycles.
SmallPtrSet<Instruction *, 16> Visited;
while (!WorkList.empty()) {
Instruction *J = WorkList.pop_back_val();
// NSW, NUW, and exact are based on operands that might have changed.
J->dropPoisonGeneratingFlags();
// We do not have to worry about llvm.assume or range metadata:
// 1. llvm.assume demands its operand, so trivializing can't change it.
// 2. range metadata only applies to memory accesses which demand all bits.
Visited.insert(J);
for (User *KU : J->users()) {
auto *K = dyn_cast<Instruction>(KU);
if (K && !Visited.count(K) && !isExternallyVisible(K, DB))
WorkList.push_back(K);
}
}
}
static bool bitTrackingDCE(Function &F, DemandedBits &DB) {
SmallVector<Instruction*, 128> Worklist;
bool Changed = false;
@ -51,6 +95,9 @@ static bool bitTrackingDCE(Function &F, DemandedBits &DB) {
// replacing all uses with something else. Then, if they don't need to
// remain live (because they have side effects, etc.) we can remove them.
DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
clearAssumptionsOfUsers(&I, DB);
// FIXME: In theory we could substitute undef here instead of zero.
// This should be reconsidered once we settle on the semantics of
// undef, poison, etc.

View File

@ -1,6 +1,6 @@
; RUN: opt -bdce %s -S | FileCheck %s
; FIXME: The 'nuw' on the subtract allows us to deduce that %setbit is not demanded.
; The 'nuw' on the subtract allows us to deduce that %setbit is not demanded.
; But if we change that value to '0', then the 'nuw' is no longer valid. If we don't
; remove the 'nuw', another pass (-instcombine) may make a transform based on an
; that incorrect assumption and we can miscompile:
@ -11,7 +11,7 @@ define i1 @PR33695(i1 %b, i8 %x) {
; CHECK-NEXT: [[SETBIT:%.*]] = or i8 %x, 64
; CHECK-NEXT: [[LITTLE_NUMBER:%.*]] = zext i1 %b to i8
; CHECK-NEXT: [[BIG_NUMBER:%.*]] = shl i8 0, 1
; CHECK-NEXT: [[SUB:%.*]] = sub nuw i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
; CHECK-NEXT: ret i1 [[TRUNC]]
;
@ -23,7 +23,7 @@ define i1 @PR33695(i1 %b, i8 %x) {
ret i1 %trunc
}
; FIXME: Similar to above, but now with more no-wrap.
; Similar to above, but now with more no-wrap.
; https://bugs.llvm.org/show_bug.cgi?id=34037
define i64 @PR34037(i64 %m, i32 %r, i64 %j, i1 %b, i32 %k, i64 %p) {
@ -34,9 +34,9 @@ define i64 @PR34037(i64 %m, i32 %r, i64 %j, i1 %b, i32 %k, i64 %p) {
; CHECK-NEXT: [[OR:%.*]] = or i64 %j, 0
; CHECK-NEXT: [[SHL:%.*]] = shl i64 0, 29
; CHECK-NEXT: [[CONV1:%.*]] = select i1 %b, i64 7, i64 0
; CHECK-NEXT: [[SUB:%.*]] = sub nuw nsw i64 [[SHL]], [[CONV1]]
; CHECK-NEXT: [[SUB:%.*]] = sub i64 [[SHL]], [[CONV1]]
; CHECK-NEXT: [[CONV2:%.*]] = zext i32 %k to i64
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i64 [[SUB]], [[CONV2]]
; CHECK-NEXT: [[MUL:%.*]] = mul i64 [[SUB]], [[CONV2]]
; CHECK-NEXT: [[CONV4:%.*]] = and i64 %p, 65535
; CHECK-NEXT: [[AND5:%.*]] = and i64 [[MUL]], [[CONV4]]
; CHECK-NEXT: ret i64 [[AND5]]
@ -55,3 +55,32 @@ define i64 @PR34037(i64 %m, i32 %r, i64 %j, i1 %b, i32 %k, i64 %p) {
ret i64 %and5
}
; This is a manufactured example based on the 1st test to prove that the
; assumption-killing algorithm stops at the call. Ie, it does not remove
; nsw/nuw from the 'add' because a call demands all bits of its argument.
declare i1 @foo(i1)
define i1 @poison_on_call_user_is_ok(i1 %b, i8 %x) {
; CHECK-LABEL: @poison_on_call_user_is_ok(
; CHECK-NEXT: [[SETBIT:%.*]] = or i8 %x, 64
; CHECK-NEXT: [[LITTLE_NUMBER:%.*]] = zext i1 %b to i8
; CHECK-NEXT: [[BIG_NUMBER:%.*]] = shl i8 0, 1
; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
; CHECK-NEXT: [[CALL_RESULT:%.*]] = call i1 @foo(i1 [[TRUNC]])
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i1 [[CALL_RESULT]], true
; CHECK-NEXT: [[MUL:%.*]] = mul i1 [[TRUNC]], [[ADD]]
; CHECK-NEXT: ret i1 [[MUL]]
;
%setbit = or i8 %x, 64
%little_number = zext i1 %b to i8
%big_number = shl i8 %setbit, 1
%sub = sub nuw i8 %big_number, %little_number
%trunc = trunc i8 %sub to i1
%call_result = call i1 @foo(i1 %trunc)
%add = add nsw nuw i1 %call_result, 1
%mul = mul i1 %trunc, %add
ret i1 %mul
}