1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 12:41:49 +01:00

[LibCallSimplifier] use instruction-level fast-math-flags to transform sqrt calls

This is a continuation of adding FMF to call instructions:
http://reviews.llvm.org/rL255555

The intent of the patch is to preserve the current behavior of the transform except
that we use the sqrt instruction's 'fast' attribute as a trigger rather than the
function-level attribute.

But this raises a bug noted by the new FIXME comment.

In order to do this transform:
sqrt((x * x) * y) ---> fabs(x) * sqrt(y)

...we need all of the sqrt, the first fmul, and the second fmul to be 'fast'. 
If any of those ops is strict, we should bail out.

Differential Revision: http://reviews.llvm.org/D15937

llvm-svn: 257400
This commit is contained in:
Sanjay Patel 2016-01-11 22:34:19 +00:00
parent 61d0be65b2
commit 9ac7e74796
4 changed files with 35 additions and 44 deletions

View File

@ -1397,7 +1397,8 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
if (!CI->hasUnsafeAlgebra())
return Ret;
Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
@ -1406,7 +1407,7 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
// We're looking for a repeated factor in a multiplication tree,
// so we can do this fold: sqrt(x * x) -> fabs(x);
// or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
// or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
Value *RepeatOp = nullptr;
@ -1421,6 +1422,7 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
// variations of this pattern because instcombine's visitFMUL and/or the
// reassociation pass should give us this form.
Value *OtherMul0, *OtherMul1;
// FIXME: This multiply must be unsafe to allow this transform.
if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
// Pattern: sqrt((x * y) * z)
if (OtherMul0 == OtherMul1) {
@ -1435,8 +1437,6 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
// Fast math flags for any created instructions should match the sqrt
// and multiply.
// FIXME: We're not checking the sqrt because it doesn't have
// fast-math-flags (see earlier comment).
IRBuilder<>::FastMathFlagGuard Guard(B);
B.SetFastMathFlags(I->getFastMathFlags());
// If we found a repeated factor, hoist it out of the square root and

View File

@ -555,18 +555,12 @@ define float @fact_div6(float %x) {
; A squared factor fed into a square root intrinsic should be hoisted out
; as a fabs() value.
; We have to rely on a function-level attribute to enable this optimization
; because intrinsics don't currently have access to IR-level fast-math
; flags. If that changes, we can relax the requirement on all of these
; tests to just specify 'fast' on the sqrt.
attributes #0 = { "unsafe-fp-math" = "true" }
declare double @llvm.sqrt.f64(double)
define double @sqrt_intrinsic_arg_squared(double %x) #0 {
define double @sqrt_intrinsic_arg_squared(double %x) {
%mul = fmul fast double %x, %x
%sqrt = call double @llvm.sqrt.f64(double %mul)
%sqrt = call fast double @llvm.sqrt.f64(double %mul)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_squared(
@ -577,10 +571,10 @@ define double @sqrt_intrinsic_arg_squared(double %x) #0 {
; Check all 6 combinations of a 3-way multiplication tree where
; one factor is repeated.
define double @sqrt_intrinsic_three_args1(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args1(double %x, double %y) {
%mul = fmul fast double %y, %x
%mul2 = fmul fast double %mul, %x
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args1(
@ -590,10 +584,10 @@ define double @sqrt_intrinsic_three_args1(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args2(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args2(double %x, double %y) {
%mul = fmul fast double %x, %y
%mul2 = fmul fast double %mul, %x
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args2(
@ -603,10 +597,10 @@ define double @sqrt_intrinsic_three_args2(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args3(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args3(double %x, double %y) {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %y
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args3(
@ -616,10 +610,10 @@ define double @sqrt_intrinsic_three_args3(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args4(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args4(double %x, double %y) {
%mul = fmul fast double %y, %x
%mul2 = fmul fast double %x, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args4(
@ -629,10 +623,10 @@ define double @sqrt_intrinsic_three_args4(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args5(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args5(double %x, double %y) {
%mul = fmul fast double %x, %y
%mul2 = fmul fast double %x, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args5(
@ -642,10 +636,10 @@ define double @sqrt_intrinsic_three_args5(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_three_args6(double %x, double %y) #0 {
define double @sqrt_intrinsic_three_args6(double %x, double %y) {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %y, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_three_args6(
@ -655,10 +649,10 @@ define double @sqrt_intrinsic_three_args6(double %x, double %y) #0 {
; CHECK-NEXT: ret double %1
}
define double @sqrt_intrinsic_arg_4th(double %x) #0 {
define double @sqrt_intrinsic_arg_4th(double %x) {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul2)
%sqrt = call fast double @llvm.sqrt.f64(double %mul2)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_4th(
@ -666,11 +660,11 @@ define double @sqrt_intrinsic_arg_4th(double %x) #0 {
; CHECK-NEXT: ret double %mul
}
define double @sqrt_intrinsic_arg_5th(double %x) #0 {
define double @sqrt_intrinsic_arg_5th(double %x) {
%mul = fmul fast double %x, %x
%mul2 = fmul fast double %mul, %x
%mul3 = fmul fast double %mul2, %mul
%sqrt = call double @llvm.sqrt.f64(double %mul3)
%sqrt = call fast double @llvm.sqrt.f64(double %mul3)
ret double %sqrt
; CHECK-LABEL: sqrt_intrinsic_arg_5th(
@ -686,9 +680,9 @@ declare float @sqrtf(float)
declare double @sqrt(double)
declare fp128 @sqrtl(fp128)
define float @sqrt_call_squared_f32(float %x) #0 {
define float @sqrt_call_squared_f32(float %x) {
%mul = fmul fast float %x, %x
%sqrt = call float @sqrtf(float %mul)
%sqrt = call fast float @sqrtf(float %mul)
ret float %sqrt
; CHECK-LABEL: sqrt_call_squared_f32(
@ -696,9 +690,9 @@ define float @sqrt_call_squared_f32(float %x) #0 {
; CHECK-NEXT: ret float %fabs
}
define double @sqrt_call_squared_f64(double %x) #0 {
define double @sqrt_call_squared_f64(double %x) {
%mul = fmul fast double %x, %x
%sqrt = call double @sqrt(double %mul)
%sqrt = call fast double @sqrt(double %mul)
ret double %sqrt
; CHECK-LABEL: sqrt_call_squared_f64(
@ -706,9 +700,9 @@ define double @sqrt_call_squared_f64(double %x) #0 {
; CHECK-NEXT: ret double %fabs
}
define fp128 @sqrt_call_squared_f128(fp128 %x) #0 {
define fp128 @sqrt_call_squared_f128(fp128 %x) {
%mul = fmul fast fp128 %x, %x
%sqrt = call fp128 @sqrtl(fp128 %mul)
%sqrt = call fast fp128 @sqrtl(fp128 %mul)
ret fp128 %sqrt
; CHECK-LABEL: sqrt_call_squared_f128(

View File

@ -4,7 +4,7 @@
; The inliner should not add an edge to an intrinsic and
; then assert that it did not add an edge to an intrinsic!
define float @foo(float %f1) #0 {
define float @foo(float %f1) {
%call = call float @bar(float %f1)
ret float %call
@ -13,18 +13,16 @@ define float @foo(float %f1) #0 {
; CHECK-NEXT: ret float
}
define float @bar(float %f1) #0 {
define float @bar(float %f1) {
%call = call float @sqr(float %f1)
%call1 = call float @sqrtf(float %call) #0
%call1 = call fast float @sqrtf(float %call)
ret float %call1
}
define float @sqr(float %f) #0 {
define float @sqr(float %f) {
%mul = fmul fast float %f, %f
ret float %mul
}
declare float @sqrtf(float) #0
attributes #0 = { "unsafe-fp-math"="true" }
declare float @sqrtf(float)

View File

@ -6,7 +6,7 @@
define float @bar(float %f) #0 {
%mul = fmul fast float %f, %f
%call1 = call float @sqrtf(float %mul) #0
%call1 = call fast float @sqrtf(float %mul)
ret float %call1
; CHECK-LABEL: @bar(
@ -14,6 +14,5 @@ define float @bar(float %f) #0 {
; CHECK-NEXT: ret float
}
declare float @sqrtf(float) #0
declare float @sqrtf(float)
attributes #0 = { readnone "unsafe-fp-math"="true" }