1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00

Lots of bug fixes, add BottomUpClosure, which has bugs, but is a start.

llvm-svn: 2945
This commit is contained in:
Chris Lattner 2002-07-18 00:12:30 +00:00
parent 5eaf38b681
commit 9c49e62315
4 changed files with 482 additions and 71 deletions

View File

@ -0,0 +1,188 @@
//===- BottomUpClosure.cpp - Compute the bottom up interprocedure closure -===//
//
// This file implements the BUDataStructures class, which represents the
// Bottom-Up Interprocedural closure of the data structure graph over the
// program. This is useful for applications like pool allocation, but **not**
// applications like pointer analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "Support/StatisticReporter.h"
using std::map;
AnalysisID BUDataStructures::ID(AnalysisID::create<BUDataStructures>());
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void BUDataStructures::releaseMemory() {
for (map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool BUDataStructures::run(Module &M) {
// Simply calculate the graphs for each function...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
calculateGraph(*I);
return false;
}
// ResolveArguments - Resolve the formal and actual arguments for a function
// call.
//
static void ResolveArguments(std::vector<DSNodeHandle> &Call, Function &F,
map<Value*, DSNodeHandle> &ValueMap) {
// Resolve all of the function arguments...
Function::aiterator AI = F.abegin();
for (unsigned i = 2, e = Call.size(); i != e; ++i) {
// Advance the argument iterator to the first pointer argument...
while (!isa<PointerType>(AI->getType())) ++AI;
// Add the link from the argument scalar to the provided value
DSNode *NN = ValueMap[AI];
NN->addEdgeTo(Call[i]);
++AI;
}
}
// MergeGlobalNodes - Merge global value nodes in the inlined graph with the
// global value nodes in the current graph if there are duplicates.
//
static void MergeGlobalNodes(map<Value*, DSNodeHandle> &ValMap,
map<Value*, DSNodeHandle> &OldValMap) {
// Loop over all of the nodes inlined, if any of them are global variable
// nodes, we must make sure they get properly added or merged with the ValMap.
//
for (map<Value*, DSNodeHandle>::iterator I = OldValMap.begin(),
E = OldValMap.end(); I != E; ++I)
if (isa<GlobalValue>(I->first)) {
DSNodeHandle &NH = ValMap[I->first]; // Look up global in ValMap.
if (NH == 0) { // No entry for the global yet?
NH = I->second; // Add the one just inlined...
} else {
NH->mergeWith(I->second); // Merge the two globals together.
}
}
}
DSGraph &BUDataStructures::calculateGraph(Function &F) {
// Make sure this graph has not already been calculated, or that we don't get
// into an infinite loop with mutually recursive functions.
//
DSGraph *&Graph = DSInfo[&F];
if (Graph) return *Graph;
// Copy the local version into DSInfo...
Graph = new DSGraph(getAnalysis<LocalDataStructures>().getDSGraph(F));
// Start resolving calls...
std::vector<std::vector<DSNodeHandle> > &FCs = Graph->getFunctionCalls();
DEBUG(cerr << "Inlining: " << F.getName() << "\n");
bool Inlined;
do {
Inlined = false;
for (unsigned i = 0; i != FCs.size(); ++i) {
// Copy the call, because inlining graphs may invalidate the FCs vector.
std::vector<DSNodeHandle> Call = FCs[i];
// If the function list is not incomplete...
if ((Call[1]->NodeType & DSNode::Incomplete) == 0) {
// Start inlining all of the functions we can... some may not be
// inlinable if they are external...
//
std::vector<GlobalValue*> Globals(Call[1]->getGlobals());
// Loop over the functions, inlining whatever we can...
for (unsigned g = 0; g != Globals.size(); ++g) {
// Must be a function type, so this cast MUST succeed.
Function &FI = cast<Function>(*Globals[g]);
if (&FI == &F) {
// Self recursion... simply link up the formal arguments with the
// actual arguments...
DEBUG(cerr << "Self Inlining: " << F.getName() << "\n");
if (Call[0]) // Handle the return value if present...
Graph->RetNode->mergeWith(Call[0]);
// Resolve the arguments in the call to the actual values...
ResolveArguments(Call, F, Graph->getValueMap());
// Erase the entry in the globals vector
Globals.erase(Globals.begin()+g--);
} else if (!FI.isExternal()) {
DEBUG(std::cerr << "In " << F.getName() << " inlining: "
<< FI.getName() << "\n");
// Get the data structure graph for the called function, closing it
// if possible (which is only impossible in the case of mutual
// recursion...
//
DSGraph &GI = calculateGraph(FI); // Graph to inline
DEBUG(cerr << "Got graph for " << FI.getName() << " in: "
<< F.getName() << "\n");
// Clone the called function's graph into the current graph, keeping
// track of where scalars in the old graph _used_ to point...
map<Value*, DSNodeHandle> OldValMap;
// The clone call may invalidate any of the vectors in the data
// structure graph.
DSNode *RetVal = Graph->cloneInto(GI, OldValMap);
ResolveArguments(Call, FI, OldValMap);
// Merge global value nodes in the inlined graph with the global
// value nodes in the current graph if there are duplicates.
//
MergeGlobalNodes(Graph->getValueMap(), OldValMap);
// Erase the entry in the globals vector
Globals.erase(Globals.begin()+g--);
}
}
if (Globals.empty()) { // Inlined all of the function calls?
// Erase the call if it is resolvable...
FCs.erase(FCs.begin()+i--); // Don't skip a the next call...
Inlined = true;
} else if (Globals.size() != Call[1]->getGlobals().size()) {
// Was able to inline SOME, but not all of the functions. Construct a
// new global node here.
//
assert(0 && "Unimpl!");
Inlined = true;
}
}
}
// Recompute the Incomplete markers. If there are any function calls left
// now that are complete, we must loop!
if (Inlined) {
Graph->maskIncompleteMarkers();
Graph->markIncompleteNodes();
Graph->removeDeadNodes();
}
} while (Inlined && !FCs.empty());
return *Graph;
}

View File

@ -4,11 +4,12 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include <algorithm>
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
#include "llvm/Analysis/DataStructure.h"
AnalysisID LocalDataStructures::ID(AnalysisID::create<LocalDataStructures>());
@ -28,6 +29,11 @@ DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
}
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
// Search backwards, because we depopulate the list from the back for
// efficiency (because it's a vector).
@ -41,9 +47,15 @@ void DSNode::removeReferrer(DSNodeHandle *H) {
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
assert(GV->getType()->getElementType() == Ty);
Globals.push_back(GV);
NodeType |= GlobalNode;
// Keep the list sorted.
std::vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
}
@ -89,14 +101,33 @@ void DSNode::mergeWith(DSNode *N) {
N->NodeType = 0; // N is now a dead node.
// Merge the globals list...
Globals.insert(Globals.end(), N->Globals.begin(), N->Globals.end());
N->Globals.clear();
if (!N->Globals.empty()) {
// Save the current globals off to the side...
std::vector<GlobalValue*> OldGlobals(Globals);
// Resize the globals vector to be big enough to hold both of them...
Globals.resize(Globals.size()+N->Globals.size());
// Merge the two sorted globals lists together...
std::merge(OldGlobals.begin(), OldGlobals.end(),
N->Globals.begin(), N->Globals.end(), Globals.begin());
// Erase duplicate entries from the globals list...
Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end());
// Delete the globals from the old node...
N->Globals.clear();
}
}
//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
RetNode = cloneInto(G, ValueMap, false);
}
DSGraph::~DSGraph() {
FunctionCalls.clear();
ValueMap.clear();
@ -112,6 +143,182 @@ DSGraph::~DSGraph() {
std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
}
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ValueMap for the old function is
// filled into the OldValMap member. If StripLocals is set to true, Scalar and
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNode *DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
bool StripLocals) {
std::map<const DSNode*, DSNode*> NodeMap;
NodeMap[0] = 0; // Null pointer maps to null
unsigned FN = Nodes.size(); // FirstNode...
// Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i], *New = new DSNode(*Old);
Nodes.push_back(New);
NodeMap[Old] = New;
}
// Rewrite the links in the nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j)
Nodes[i]->setLink(j, NodeMap[Nodes[i]->getLink(j)]);
// If we are inlining this graph into the called function graph, remove local
// markers.
if (StripLocals)
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
// Copy the value map...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
E = G.ValueMap.end(); I != E; ++I)
OldValMap[I->first] = NodeMap[I->second];
// Copy the function calls list...
unsigned FC = FunctionCalls.size(); // FirstCall
FunctionCalls.reserve(FC+G.FunctionCalls.size());
for (unsigned i = 0, e = G.FunctionCalls.size(); i != e; ++i) {
FunctionCalls.push_back(std::vector<DSNodeHandle>());
FunctionCalls[FC+i].reserve(G.FunctionCalls[i].size());
for (unsigned j = 0, e = G.FunctionCalls[i].size(); j != e; ++j)
FunctionCalls[FC+i].push_back(NodeMap[G.FunctionCalls[i][j]]);
}
// Return the returned node pointer...
return NodeMap[G.RetNode];
}
// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed. Because a node makes all
// of the nodes it can reach imcomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
// Stop recursion if no node, or if node already marked...
if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
// Actually mark the node
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
}
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet. This marks
// nodes that are reachable through three sources of "unknownness":
//
// Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes() {
// Mark any incoming arguments as incomplete...
for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I)
if (isa<PointerType>(I->getType()))
markIncompleteNode(ValueMap[I]->getLink(0));
// Mark stuff passed into functions calls as being incomplete...
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
std::vector<DSNodeHandle> &Args = FunctionCalls[i];
if (Args[0]) // If the call returns a pointer...
// Then the return value is certainly incomplete!
markIncompleteNode(Args[0]);
// The call does not make the function argument incomplete...
// All arguments to the function call are incomplete though!
for (unsigned i = 2, e = Args.size(); i != e; ++i)
markIncompleteNode(Args[i]);
}
// Mark all of the nodes pointed to by global nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
}
}
// isNodeDead - This method checks to see if a node is dead, and if it isn't, it
// checks to see if there are simple transformations that it can do to make it
// dead.
//
bool DSGraph::isNodeDead(DSNode *N) {
// Is it a trivially dead shadow node...
if (N->getReferrers().empty() && N->NodeType == 0)
return true;
// Is it a function node or some other trivially unused global?
if ((N->NodeType & ~DSNode::GlobalNode) == 0 &&
N->getNumLinks() == 0 &&
N->getReferrers().size() == N->getGlobals().size()) {
// Remove the globals from the valuemap, so that the referrer count will go
// down to zero.
while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back();
ValueMap.erase(GV);
}
assert(N->getReferrers().empty() && "Referrers should all be gone now!");
return true;
}
return false;
}
// removeDeadNodes - After the graph has been constructed, this method removes
// all unreachable nodes that are created because they got merged with other
// nodes in the graph. These nodes will all be trivially unreachable, so we
// don't have to perform any non-trivial analysis here.
//
void DSGraph::removeDeadNodes() {
for (unsigned i = 0; i != Nodes.size(); ++i)
if (isNodeDead(Nodes[i])) { // This node is dead!
delete Nodes[i]; // Free memory...
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
}
// Remove identical function calls
unsigned NumFns = FunctionCalls.size();
std::sort(FunctionCalls.begin(), FunctionCalls.end());
FunctionCalls.erase(std::unique(FunctionCalls.begin(), FunctionCalls.end()),
FunctionCalls.end());
DEBUG(if (NumFns != FunctionCalls.size())
std::cerr << "Merged " << (NumFns-FunctionCalls.size())
<< " call nodes in " << Func.getName() << "\n";);
}
// maskNodeTypes - Apply a mask to all of the node types in the graph. This
// is useful for clearing out markers like Scalar or Incomplete.
//
void DSGraph::maskNodeTypes(unsigned char Mask) {
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= Mask;
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
@ -132,11 +339,8 @@ void LocalDataStructures::releaseMemory() {
bool LocalDataStructures::run(Module &M) {
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
std::map<Function*, DSGraph*>::iterator DI = DSInfo.find(I);
if (DI == DSInfo.end() || DI->second == 0)
DSInfo.insert(std::make_pair(&*I, new DSGraph(*I)));
}
if (!I->isExternal())
DSInfo.insert(std::make_pair(&*I, new DSGraph(*I)));
return false;
}

View File

@ -5,15 +5,16 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/DataStructure.h" // FIXME:
using std::map;
using std::vector;
@ -38,8 +39,15 @@ namespace {
map<Value*, DSNodeHandle> &vm,
vector<vector<DSNodeHandle> > &fc)
: G(g), Nodes(nodes), RetNode(retNode), ValueMap(vm), FunctionCalls(fc) {
// Create scalar nodes for all pointer arguments...
for (Function::aiterator I = G.getFunction().abegin(),
E = G.getFunction().aend(); I != E; ++I)
if (isa<PointerType>(I->getType()))
getValueNode(*I);
visit(G.getFunction()); // Single pass over the function
removeDeadNodes();
G.removeDeadNodes();
}
private:
@ -84,6 +92,11 @@ namespace {
//
DSNode *getValueNode(Value &V);
// getGlobalNode - Just like getValueNode, except the global node itself is
// returned, not a scalar node pointing to a global.
//
DSNode *getGlobalNode(GlobalValue &V);
// getLink - This method is used to either return the specified link in the
// specified node if one exists. If a link does not already exist (it's
// null), then we create a new node, link it, then return it.
@ -94,12 +107,6 @@ namespace {
// must be factored out of gep, load and store while they are all MAI's.
//
DSNode *getSubscriptedNode(MemAccessInst &MAI, DSNode *Ptr);
// removeDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged
// with other nodes in the graph.
//
void removeDeadNodes();
};
}
@ -109,6 +116,7 @@ namespace {
DSGraph::DSGraph(Function &F) : Func(F), RetNode(0) {
// Use the graph builder to construct the local version of the graph
GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
markIncompleteNodes();
}
@ -127,6 +135,26 @@ DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) {
}
// getGlobalNode - Just like getValueNode, except the global node itself is
// returned, not a scalar node pointing to a global.
//
DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
DSNodeHandle &NH = ValueMap[&V];
if (NH) return NH; // Already have a node? Just return it...
// Create a new global node for this global variable...
DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType());
G->addGlobal(&V);
// If this node has outgoing edges, make sure to recycle the same node for
// each use. For functions and other global variables, this is unneccesary,
// so avoid excessive merging by cloning these nodes on demand.
//
NH = G;
return G;
}
// getValueNode - Return a DSNode that corresponds the the specified LLVM value.
// This either returns the already existing node, or creates a new one and adds
// it to the graph, if none exists.
@ -134,27 +162,17 @@ DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) {
DSNode *GraphBuilder::getValueNode(Value &V) {
assert(isa<PointerType>(V.getType()) && "Should only use pointer scalars!");
if (!isa<GlobalValue>(V)) {
DSNodeHandle &N = ValueMap[&V];
if (N) return N; // Already have a node? Just return it...
DSNodeHandle &NH = ValueMap[&V];
if (NH) return NH; // Already have a node? Just return it...
}
// Otherwise we need to create a new scalar node...
DSNode *N = createNode(DSNode::ScalarNode, V.getType());
// If this is a global value, create the global pointed to.
if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) {
DSNodeHandle &GVH = ValueMap[GV];
DSNode *G = getLink(N, 0);
if (GVH == 0) {
// Traverse the global graph, adding nodes for them all, and marking them
// all globals. Be careful to mark functions global as well as the
// potential graph of global variables.
//
G->addGlobal(GV);
GVH = G;
} else {
GVH->mergeWith(G);
}
DSNode *G = getGlobalNode(*GV);
N->addEdgeTo(G);
} else {
ValueMap[&V] = N;
}
@ -162,6 +180,7 @@ DSNode *GraphBuilder::getValueNode(Value &V) {
return N;
}
// getLink - This method is used to either return the specified link in the
// specified node if one exists. If a link does not already exist (it's
// null), then we create a new node, link it, then return it.
@ -214,25 +233,6 @@ DSNode *GraphBuilder::getSubscriptedNode(MemAccessInst &MAI, DSNode *Ptr) {
return Ptr;
}
// removeDeadNodes - After the graph has been constructed, this method removes
// all unreachable nodes that are created because they got merged with other
// nodes in the graph. These nodes will all be trivially unreachable, so we
// don't have to perform any non-trivial analysis here.
//
void GraphBuilder::removeDeadNodes() {
for (unsigned i = 0; i != Nodes.size(); )
if (Nodes[i]->NodeType || !Nodes[i]->getReferrers().empty())
++i; // This node is alive!
else { // This node is dead!
delete Nodes[i]; // Free memory...
Nodes.erase(Nodes.begin()+i); // Remove from node list...
}
}
//===----------------------------------------------------------------------===//
// Specific instruction type handler implementations...
//
@ -259,13 +259,13 @@ void GraphBuilder::visitPHINode(PHINode &PN) {
}
void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
DSNode *Ptr = getSubscriptedNode(GEP, getValueNode(*GEP.getOperand(0)));
DSNode *Ptr = getSubscriptedNode(GEP, getValueNode(*GEP.getOperand(0)));
getValueNode(GEP)->addEdgeTo(Ptr);
}
void GraphBuilder::visitLoadInst(LoadInst &LI) {
if (!isa<PointerType>(LI.getType())) return; // Only pointer PHIs
DSNode *Ptr = getSubscriptedNode(LI, getValueNode(*LI.getOperand(0)));
DSNode *Ptr = getSubscriptedNode(LI, getValueNode(*LI.getOperand(0)));
getValueNode(LI)->addEdgeTo(getLink(Ptr, 0));
}
@ -285,17 +285,25 @@ void GraphBuilder::visitReturnInst(ReturnInst &RI) {
}
void GraphBuilder::visitCallInst(CallInst &CI) {
// Add a new function call entry...
FunctionCalls.push_back(vector<DSNodeHandle>());
vector<DSNodeHandle> &Args = FunctionCalls.back();
// Set up the return value...
if (isa<PointerType>(CI.getType()))
Args.push_back(getValueNode(CI));
Args.push_back(getLink(getValueNode(CI), 0));
else
Args.push_back(0);
unsigned Start = 0;
// Special case for direct call, avoid creating spurious scalar node...
if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0))) {
Args.push_back(getGlobalNode(*GV));
Start = 1;
}
// Pass the arguments in...
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i)
if (isa<PointerType>(CI.getOperand(i)->getType()))
Args.push_back(getValueNode(*CI.getOperand(i)));
Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0));
}

View File

@ -9,10 +9,11 @@
#include "llvm/Assembly/Writer.h"
#include <fstream>
#include <sstream>
using std::string;
void DSNode::dump() const { print(std::cerr, 0); }
std::string DSNode::getCaption(const DSGraph *G) const {
string DSNode::getCaption(const DSGraph *G) const {
std::stringstream OS;
Module *M = G ? G->getFunction().getParent() : 0;
WriteTypeSymbolic(OS, getType(), M);
@ -24,6 +25,7 @@ std::string DSNode::getCaption(const DSGraph *G) const {
if (NodeType & GlobalNode) OS << "G";
if (NodeType & SubElement) OS << "E";
if (NodeType & CastNode ) OS << "C";
if (NodeType & Incomplete) OS << "I";
for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
OS << "\n";
@ -43,7 +45,7 @@ std::string DSNode::getCaption(const DSGraph *G) const {
return OS.str();
}
static std::string getValueName(Value *V, Function &F) {
static string getValueName(Value *V, Function &F) {
std::stringstream OS;
WriteAsOperand(OS, V, true, true, F.getParent());
return OS.str();
@ -51,7 +53,7 @@ static std::string getValueName(Value *V, Function &F) {
static void replaceIn(std::string &S, char From, const std::string &To) {
static void replaceIn(string &S, char From, const string &To) {
for (unsigned i = 0; i < S.size(); )
if (S[i] == From) {
S.replace(S.begin()+i, S.begin()+i+1,
@ -144,23 +146,32 @@ void DSGraph::print(std::ostream &O) const {
O << "}\n";
}
// print - Print out the analysis results...
void LocalDataStructures::print(std::ostream &O, Module *M) const {
template <typename Collection>
static void printCollection(const Collection &C, std::ostream &O, Module *M,
const string &Prefix) {
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) {
std::string Filename = "ds." + I->getName() + ".dot";
string Filename = Prefix + "." + I->getName() + ".dot";
O << "Writing '" << Filename << "'...";
std::ofstream F(Filename.c_str());
if (F.good()) {
DSGraph &Graph = getDSGraph(*I);
DSGraph &Graph = C.getDSGraph(*I);
Graph.print(F);
O << " [" << Graph.getGraphSize() << "]\n";
O << " [" << Graph.getGraphSize() << "+"
<< Graph.getFunctionCalls().size() << "]\n";
} else {
O << " error opening file for writing!\n";
}
}
}
// print - Print out the analysis results...
void LocalDataStructures::print(std::ostream &O, Module *M) const {
printCollection(*this, O, M, "ds");
}
void BUDataStructures::print(std::ostream &O, Module *M) const {
printCollection(*this, O, M, "bu");
}