1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00

[Reassociate] Guard add-like or conversion into an add with profitability check

This is slightly better compile-time wise,
since we avoid potentially-costly knownbits analysis that will
ultimately not allow us to actually do anything with said `add`.
This commit is contained in:
Roman Lebedev 2020-11-04 14:33:11 +03:00
parent 672cb989aa
commit a30754006b
2 changed files with 32 additions and 5 deletions

View File

@ -920,6 +920,28 @@ static Value *NegateValue(Value *V, Instruction *BI,
return NewNeg;
}
/// Return true if it may be profitable to convert this (X|Y) into (X+Y).
static bool ShouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
// Don't bother to convert this up unless either the LHS is an associable add
// or subtract or mul or if this is only used by one of the above.
// This is only a compile-time improvement, it is not needed for correctness!
auto isInteresting = [](Value *V) {
for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul})
if (isReassociableOp(V, Op))
return true;
return false;
};
if (any_of(Or->operands(), isInteresting))
return true;
Value *VB = Or->user_back();
if (Or->hasOneUse() && isInteresting(VB))
return true;
return false;
}
/// If we have (X|Y), and iff X and Y have no common bits set,
/// transform this into (X+Y) to allow arithmetics reassociation.
static BinaryOperator *ConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
@ -2137,6 +2159,7 @@ void ReassociatePass::OptimizeInst(Instruction *I) {
// If this is a bitwise or instruction of operands
// with no common bits set, convert it to X+Y.
if (I->getOpcode() == Instruction::Or &&
ShouldConvertOrWithNoCommonBitsToAdd(I) &&
haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
/*DT=*/nullptr)) {

View File

@ -6,23 +6,27 @@
define i32 @test1(i32 %a, i32 %b) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: [[C:%.*]] = or i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: ret i32 [[C]]
; CHECK-NEXT: [[C_PLUS_ONE:%.*]] = add i32 [[C]], 1
; CHECK-NEXT: ret i32 [[C_PLUS_ONE]]
;
%c = or i32 %a, %b
ret i32 %c
%c.plus.one = add i32 %c, 1
ret i32 %c.plus.one
}
; But if we *do* know that operands have no common bits set,
; we *can* convert the `or` into an `add`.
define i32 @test2(i32 %x) {
define i32 @test2(i32 %x, i32 %y) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: [[X_NUMLZ:%.*]] = tail call i32 @llvm.ctlz.i32(i32 [[X:%.*]], i1 true), [[RNG0:!range !.*]]
; CHECK-NEXT: [[RES:%.*]] = add nuw nsw i32 [[X_NUMLZ]], -32
; CHECK-NEXT: ret i32 [[RES]]
; CHECK-NEXT: [[RES_PLUS_ONE:%.*]] = add i32 [[RES]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[RES_PLUS_ONE]]
;
%x.numlz = tail call i32 @llvm.ctlz.i32(i32 %x, i1 true), !range !0
%res = or i32 %x.numlz, -32
ret i32 %res
%res.plus.one = add i32 %res, %y
ret i32 %res.plus.one
}
; And that allows reassociation in general.