mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
[SampleFDO][NFC] Refactor SampleProfile.cpp
Refactor SampleProfile.cpp to use the core code in CodeGen. The main changes are: (1) Move SampleProfileLoaderBaseImpl class to a header file. (2) Split SampleCoverageTracker to a head file and a cpp file. (3) Move the common codes (common options and callsiteIsHot()) to the common cpp file. Differential Revision: https://reviews.llvm.org/D96455
This commit is contained in:
parent
36c97d7503
commit
a3be335242
862
include/llvm/ProfileData/SampleProfileLoaderBaseImpl.h
Normal file
862
include/llvm/ProfileData/SampleProfileLoaderBaseImpl.h
Normal file
@ -0,0 +1,862 @@
|
||||
////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// \file
|
||||
/// This file provides the interface for the sampled PGO profile loader base
|
||||
/// implementation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERIMPL_H
|
||||
#define LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERIMPL_H
|
||||
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||||
#include "llvm/Analysis/PostDominators.h"
|
||||
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/CFG.h"
|
||||
#include "llvm/IR/DebugInfoMetadata.h"
|
||||
#include "llvm/IR/DebugLoc.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Instruction.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/ProfileData/SampleProf.h"
|
||||
#include "llvm/ProfileData/SampleProfReader.h"
|
||||
#include "llvm/ProfileData/SampleProfileLoaderBaseUtil.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/GenericDomTree.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
|
||||
namespace llvm {
|
||||
using namespace llvm;
|
||||
using namespace sampleprof;
|
||||
using ProfileCount = Function::ProfileCount;
|
||||
namespace sampleprofutil {
|
||||
bool callsiteIsHot(const SampleCoverageTracker *CT,
|
||||
const FunctionSamples *CallsiteFS, ProfileSummaryInfo *PSI,
|
||||
bool ProfAccForSymsInList);
|
||||
} // namespace sampleprofutil
|
||||
using namespace sampleprofutil;
|
||||
|
||||
#define DEBUG_TYPE "sample-profile-impl"
|
||||
|
||||
using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
|
||||
using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
|
||||
using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
|
||||
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
|
||||
using BlockEdgeMap =
|
||||
DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
|
||||
|
||||
extern cl::opt<unsigned> SampleProfileMaxPropagateIterations;
|
||||
extern cl::opt<unsigned> SampleProfileRecordCoverage;
|
||||
extern cl::opt<unsigned> SampleProfileSampleCoverage;
|
||||
extern cl::opt<bool> NoWarnSampleUnused;
|
||||
|
||||
class SampleProfileLoaderBaseImpl {
|
||||
public:
|
||||
SampleProfileLoaderBaseImpl(std::string Name) : Filename(Name) {}
|
||||
void dump() { Reader->dump(); }
|
||||
|
||||
protected:
|
||||
friend class SampleCoverageTracker;
|
||||
|
||||
unsigned getFunctionLoc(Function &F);
|
||||
virtual ErrorOr<uint64_t> getInstWeight(const Instruction &Inst);
|
||||
ErrorOr<uint64_t> getInstWeightImpl(const Instruction &Inst);
|
||||
ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
|
||||
mutable DenseMap<const DILocation *, const FunctionSamples *>
|
||||
DILocation2SampleMap;
|
||||
virtual const FunctionSamples *
|
||||
findFunctionSamples(const Instruction &I) const;
|
||||
void printEdgeWeight(raw_ostream &OS, Edge E);
|
||||
void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
|
||||
void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
|
||||
bool computeBlockWeights(Function &F);
|
||||
void findEquivalenceClasses(Function &F);
|
||||
template <bool IsPostDom>
|
||||
void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
|
||||
DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
|
||||
|
||||
void propagateWeights(Function &F);
|
||||
uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
|
||||
void buildEdges(Function &F);
|
||||
bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
|
||||
void clearFunctionData();
|
||||
void computeDominanceAndLoopInfo(Function &F);
|
||||
bool
|
||||
computeAndPropagateWeights(Function &F,
|
||||
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
||||
void emitCoverageRemarks(Function &F);
|
||||
|
||||
/// Map basic blocks to their computed weights.
|
||||
///
|
||||
/// The weight of a basic block is defined to be the maximum
|
||||
/// of all the instruction weights in that block.
|
||||
BlockWeightMap BlockWeights;
|
||||
|
||||
/// Map edges to their computed weights.
|
||||
///
|
||||
/// Edge weights are computed by propagating basic block weights in
|
||||
/// SampleProfile::propagateWeights.
|
||||
EdgeWeightMap EdgeWeights;
|
||||
|
||||
/// Set of visited blocks during propagation.
|
||||
SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
|
||||
|
||||
/// Set of visited edges during propagation.
|
||||
SmallSet<Edge, 32> VisitedEdges;
|
||||
|
||||
/// Equivalence classes for block weights.
|
||||
///
|
||||
/// Two blocks BB1 and BB2 are in the same equivalence class if they
|
||||
/// dominate and post-dominate each other, and they are in the same loop
|
||||
/// nest. When this happens, the two blocks are guaranteed to execute
|
||||
/// the same number of times.
|
||||
EquivalenceClassMap EquivalenceClass;
|
||||
|
||||
/// Dominance, post-dominance and loop information.
|
||||
std::unique_ptr<DominatorTree> DT;
|
||||
std::unique_ptr<PostDominatorTree> PDT;
|
||||
std::unique_ptr<LoopInfo> LI;
|
||||
|
||||
/// Predecessors for each basic block in the CFG.
|
||||
BlockEdgeMap Predecessors;
|
||||
|
||||
/// Successors for each basic block in the CFG.
|
||||
BlockEdgeMap Successors;
|
||||
|
||||
/// Profile coverage tracker.
|
||||
SampleCoverageTracker CoverageTracker;
|
||||
|
||||
/// Profile reader object.
|
||||
std::unique_ptr<SampleProfileReader> Reader;
|
||||
|
||||
/// Samples collected for the body of this function.
|
||||
FunctionSamples *Samples = nullptr;
|
||||
|
||||
/// Name of the profile file to load.
|
||||
std::string Filename;
|
||||
|
||||
/// Profile Summary Info computed from sample profile.
|
||||
ProfileSummaryInfo *PSI = nullptr;
|
||||
|
||||
/// Optimization Remark Emitter used to emit diagnostic remarks.
|
||||
OptimizationRemarkEmitter *ORE = nullptr;
|
||||
};
|
||||
|
||||
/// Clear all the per-function data used to load samples and propagate weights.
|
||||
void SampleProfileLoaderBaseImpl::clearFunctionData() {
|
||||
BlockWeights.clear();
|
||||
EdgeWeights.clear();
|
||||
VisitedBlocks.clear();
|
||||
VisitedEdges.clear();
|
||||
EquivalenceClass.clear();
|
||||
DT = nullptr;
|
||||
PDT = nullptr;
|
||||
LI = nullptr;
|
||||
Predecessors.clear();
|
||||
Successors.clear();
|
||||
CoverageTracker.clear();
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/// Print the weight of edge \p E on stream \p OS.
|
||||
///
|
||||
/// \param OS Stream to emit the output to.
|
||||
/// \param E Edge to print.
|
||||
void SampleProfileLoaderBaseImpl::printEdgeWeight(raw_ostream &OS, Edge E) {
|
||||
OS << "weight[" << E.first->getName() << "->" << E.second->getName()
|
||||
<< "]: " << EdgeWeights[E] << "\n";
|
||||
}
|
||||
|
||||
/// Print the equivalence class of block \p BB on stream \p OS.
|
||||
///
|
||||
/// \param OS Stream to emit the output to.
|
||||
/// \param BB Block to print.
|
||||
void SampleProfileLoaderBaseImpl::printBlockEquivalence(raw_ostream &OS,
|
||||
const BasicBlock *BB) {
|
||||
const BasicBlock *Equiv = EquivalenceClass[BB];
|
||||
OS << "equivalence[" << BB->getName()
|
||||
<< "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
|
||||
}
|
||||
|
||||
/// Print the weight of block \p BB on stream \p OS.
|
||||
///
|
||||
/// \param OS Stream to emit the output to.
|
||||
/// \param BB Block to print.
|
||||
void SampleProfileLoaderBaseImpl::printBlockWeight(raw_ostream &OS,
|
||||
const BasicBlock *BB) const {
|
||||
const auto &I = BlockWeights.find(BB);
|
||||
uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
|
||||
OS << "weight[" << BB->getName() << "]: " << W << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
/// Get the weight for an instruction.
|
||||
///
|
||||
/// The "weight" of an instruction \p Inst is the number of samples
|
||||
/// collected on that instruction at runtime. To retrieve it, we
|
||||
/// need to compute the line number of \p Inst relative to the start of its
|
||||
/// function. We use HeaderLineno to compute the offset. We then
|
||||
/// look up the samples collected for \p Inst using BodySamples.
|
||||
///
|
||||
/// \param Inst Instruction to query.
|
||||
///
|
||||
/// \returns the weight of \p Inst.
|
||||
ErrorOr<uint64_t>
|
||||
SampleProfileLoaderBaseImpl::getInstWeight(const Instruction &Inst) {
|
||||
return getInstWeightImpl(Inst);
|
||||
}
|
||||
|
||||
ErrorOr<uint64_t>
|
||||
SampleProfileLoaderBaseImpl::getInstWeightImpl(const Instruction &Inst) {
|
||||
const FunctionSamples *FS = findFunctionSamples(Inst);
|
||||
if (!FS)
|
||||
return std::error_code();
|
||||
|
||||
const DebugLoc &DLoc = Inst.getDebugLoc();
|
||||
if (!DLoc)
|
||||
return std::error_code();
|
||||
|
||||
const DILocation *DIL = DLoc;
|
||||
uint32_t LineOffset = FunctionSamples::getOffset(DIL);
|
||||
uint32_t Discriminator = DIL->getBaseDiscriminator();
|
||||
ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
|
||||
if (R) {
|
||||
bool FirstMark =
|
||||
CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
|
||||
if (FirstMark) {
|
||||
ORE->emit([&]() {
|
||||
OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
|
||||
Remark << "Applied " << ore::NV("NumSamples", *R);
|
||||
Remark << " samples from profile (offset: ";
|
||||
Remark << ore::NV("LineOffset", LineOffset);
|
||||
if (Discriminator) {
|
||||
Remark << ".";
|
||||
Remark << ore::NV("Discriminator", Discriminator);
|
||||
}
|
||||
Remark << ")";
|
||||
return Remark;
|
||||
});
|
||||
}
|
||||
LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
|
||||
<< DIL->getBaseDiscriminator() << ":" << Inst
|
||||
<< " (line offset: " << LineOffset << "."
|
||||
<< DIL->getBaseDiscriminator() << " - weight: " << R.get()
|
||||
<< ")\n");
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
/// Compute the weight of a basic block.
|
||||
///
|
||||
/// The weight of basic block \p BB is the maximum weight of all the
|
||||
/// instructions in BB.
|
||||
///
|
||||
/// \param BB The basic block to query.
|
||||
///
|
||||
/// \returns the weight for \p BB.
|
||||
ErrorOr<uint64_t>
|
||||
SampleProfileLoaderBaseImpl::getBlockWeight(const BasicBlock *BB) {
|
||||
uint64_t Max = 0;
|
||||
bool HasWeight = false;
|
||||
for (auto &I : BB->getInstList()) {
|
||||
const ErrorOr<uint64_t> &R = getInstWeight(I);
|
||||
if (R) {
|
||||
Max = std::max(Max, R.get());
|
||||
HasWeight = true;
|
||||
}
|
||||
}
|
||||
return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
|
||||
}
|
||||
|
||||
/// Compute and store the weights of every basic block.
|
||||
///
|
||||
/// This populates the BlockWeights map by computing
|
||||
/// the weights of every basic block in the CFG.
|
||||
///
|
||||
/// \param F The function to query.
|
||||
bool SampleProfileLoaderBaseImpl::computeBlockWeights(Function &F) {
|
||||
bool Changed = false;
|
||||
LLVM_DEBUG(dbgs() << "Block weights\n");
|
||||
for (const auto &BB : F) {
|
||||
ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
|
||||
if (Weight) {
|
||||
BlockWeights[&BB] = Weight.get();
|
||||
VisitedBlocks.insert(&BB);
|
||||
Changed = true;
|
||||
}
|
||||
LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// Get the FunctionSamples for an instruction.
|
||||
///
|
||||
/// The FunctionSamples of an instruction \p Inst is the inlined instance
|
||||
/// in which that instruction is coming from. We traverse the inline stack
|
||||
/// of that instruction, and match it with the tree nodes in the profile.
|
||||
///
|
||||
/// \param Inst Instruction to query.
|
||||
///
|
||||
/// \returns the FunctionSamples pointer to the inlined instance.
|
||||
const FunctionSamples *SampleProfileLoaderBaseImpl::findFunctionSamples(
|
||||
const Instruction &Inst) const {
|
||||
const DILocation *DIL = Inst.getDebugLoc();
|
||||
if (!DIL)
|
||||
return Samples;
|
||||
|
||||
auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
|
||||
if (it.second) {
|
||||
it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
|
||||
}
|
||||
return it.first->second;
|
||||
}
|
||||
|
||||
/// Find equivalence classes for the given block.
|
||||
///
|
||||
/// This finds all the blocks that are guaranteed to execute the same
|
||||
/// number of times as \p BB1. To do this, it traverses all the
|
||||
/// descendants of \p BB1 in the dominator or post-dominator tree.
|
||||
///
|
||||
/// A block BB2 will be in the same equivalence class as \p BB1 if
|
||||
/// the following holds:
|
||||
///
|
||||
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
|
||||
/// is a descendant of \p BB1 in the dominator tree, then BB2 should
|
||||
/// dominate BB1 in the post-dominator tree.
|
||||
///
|
||||
/// 2- Both BB2 and \p BB1 must be in the same loop.
|
||||
///
|
||||
/// For every block BB2 that meets those two requirements, we set BB2's
|
||||
/// equivalence class to \p BB1.
|
||||
///
|
||||
/// \param BB1 Block to check.
|
||||
/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
|
||||
/// \param DomTree Opposite dominator tree. If \p Descendants is filled
|
||||
/// with blocks from \p BB1's dominator tree, then
|
||||
/// this is the post-dominator tree, and vice versa.
|
||||
template <bool IsPostDom>
|
||||
void SampleProfileLoaderBaseImpl::findEquivalencesFor(
|
||||
BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
|
||||
DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
|
||||
const BasicBlock *EC = EquivalenceClass[BB1];
|
||||
uint64_t Weight = BlockWeights[EC];
|
||||
for (const auto *BB2 : Descendants) {
|
||||
bool IsDomParent = DomTree->dominates(BB2, BB1);
|
||||
bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
|
||||
if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
|
||||
EquivalenceClass[BB2] = EC;
|
||||
// If BB2 is visited, then the entire EC should be marked as visited.
|
||||
if (VisitedBlocks.count(BB2)) {
|
||||
VisitedBlocks.insert(EC);
|
||||
}
|
||||
|
||||
// If BB2 is heavier than BB1, make BB2 have the same weight
|
||||
// as BB1.
|
||||
//
|
||||
// Note that we don't worry about the opposite situation here
|
||||
// (when BB2 is lighter than BB1). We will deal with this
|
||||
// during the propagation phase. Right now, we just want to
|
||||
// make sure that BB1 has the largest weight of all the
|
||||
// members of its equivalence set.
|
||||
Weight = std::max(Weight, BlockWeights[BB2]);
|
||||
}
|
||||
}
|
||||
if (EC == &EC->getParent()->getEntryBlock()) {
|
||||
BlockWeights[EC] = Samples->getHeadSamples() + 1;
|
||||
} else {
|
||||
BlockWeights[EC] = Weight;
|
||||
}
|
||||
}
|
||||
|
||||
/// Find equivalence classes.
|
||||
///
|
||||
/// Since samples may be missing from blocks, we can fill in the gaps by setting
|
||||
/// the weights of all the blocks in the same equivalence class to the same
|
||||
/// weight. To compute the concept of equivalence, we use dominance and loop
|
||||
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
|
||||
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
|
||||
///
|
||||
/// \param F The function to query.
|
||||
void SampleProfileLoaderBaseImpl::findEquivalenceClasses(Function &F) {
|
||||
SmallVector<BasicBlock *, 8> DominatedBBs;
|
||||
LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
|
||||
// Find equivalence sets based on dominance and post-dominance information.
|
||||
for (auto &BB : F) {
|
||||
BasicBlock *BB1 = &BB;
|
||||
|
||||
// Compute BB1's equivalence class once.
|
||||
if (EquivalenceClass.count(BB1)) {
|
||||
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
|
||||
continue;
|
||||
}
|
||||
|
||||
// By default, blocks are in their own equivalence class.
|
||||
EquivalenceClass[BB1] = BB1;
|
||||
|
||||
// Traverse all the blocks dominated by BB1. We are looking for
|
||||
// every basic block BB2 such that:
|
||||
//
|
||||
// 1- BB1 dominates BB2.
|
||||
// 2- BB2 post-dominates BB1.
|
||||
// 3- BB1 and BB2 are in the same loop nest.
|
||||
//
|
||||
// If all those conditions hold, it means that BB2 is executed
|
||||
// as many times as BB1, so they are placed in the same equivalence
|
||||
// class by making BB2's equivalence class be BB1.
|
||||
DominatedBBs.clear();
|
||||
DT->getDescendants(BB1, DominatedBBs);
|
||||
findEquivalencesFor(BB1, DominatedBBs, PDT.get());
|
||||
|
||||
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
|
||||
}
|
||||
|
||||
// Assign weights to equivalence classes.
|
||||
//
|
||||
// All the basic blocks in the same equivalence class will execute
|
||||
// the same number of times. Since we know that the head block in
|
||||
// each equivalence class has the largest weight, assign that weight
|
||||
// to all the blocks in that equivalence class.
|
||||
LLVM_DEBUG(
|
||||
dbgs() << "\nAssign the same weight to all blocks in the same class\n");
|
||||
for (auto &BI : F) {
|
||||
const BasicBlock *BB = &BI;
|
||||
const BasicBlock *EquivBB = EquivalenceClass[BB];
|
||||
if (BB != EquivBB)
|
||||
BlockWeights[BB] = BlockWeights[EquivBB];
|
||||
LLVM_DEBUG(printBlockWeight(dbgs(), BB));
|
||||
}
|
||||
}
|
||||
|
||||
/// Visit the given edge to decide if it has a valid weight.
|
||||
///
|
||||
/// If \p E has not been visited before, we copy to \p UnknownEdge
|
||||
/// and increment the count of unknown edges.
|
||||
///
|
||||
/// \param E Edge to visit.
|
||||
/// \param NumUnknownEdges Current number of unknown edges.
|
||||
/// \param UnknownEdge Set if E has not been visited before.
|
||||
///
|
||||
/// \returns E's weight, if known. Otherwise, return 0.
|
||||
uint64_t SampleProfileLoaderBaseImpl::visitEdge(Edge E,
|
||||
unsigned *NumUnknownEdges,
|
||||
Edge *UnknownEdge) {
|
||||
if (!VisitedEdges.count(E)) {
|
||||
(*NumUnknownEdges)++;
|
||||
*UnknownEdge = E;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return EdgeWeights[E];
|
||||
}
|
||||
|
||||
/// Propagate weights through incoming/outgoing edges.
|
||||
///
|
||||
/// If the weight of a basic block is known, and there is only one edge
|
||||
/// with an unknown weight, we can calculate the weight of that edge.
|
||||
///
|
||||
/// Similarly, if all the edges have a known count, we can calculate the
|
||||
/// count of the basic block, if needed.
|
||||
///
|
||||
/// \param F Function to process.
|
||||
/// \param UpdateBlockCount Whether we should update basic block counts that
|
||||
/// has already been annotated.
|
||||
///
|
||||
/// \returns True if new weights were assigned to edges or blocks.
|
||||
bool SampleProfileLoaderBaseImpl::propagateThroughEdges(Function &F,
|
||||
bool UpdateBlockCount) {
|
||||
bool Changed = false;
|
||||
LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
|
||||
for (const auto &BI : F) {
|
||||
const BasicBlock *BB = &BI;
|
||||
const BasicBlock *EC = EquivalenceClass[BB];
|
||||
|
||||
// Visit all the predecessor and successor edges to determine
|
||||
// which ones have a weight assigned already. Note that it doesn't
|
||||
// matter that we only keep track of a single unknown edge. The
|
||||
// only case we are interested in handling is when only a single
|
||||
// edge is unknown (see setEdgeOrBlockWeight).
|
||||
for (unsigned i = 0; i < 2; i++) {
|
||||
uint64_t TotalWeight = 0;
|
||||
unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
|
||||
Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
|
||||
|
||||
if (i == 0) {
|
||||
// First, visit all predecessor edges.
|
||||
NumTotalEdges = Predecessors[BB].size();
|
||||
for (auto *Pred : Predecessors[BB]) {
|
||||
Edge E = std::make_pair(Pred, BB);
|
||||
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
|
||||
if (E.first == E.second)
|
||||
SelfReferentialEdge = E;
|
||||
}
|
||||
if (NumTotalEdges == 1) {
|
||||
SingleEdge = std::make_pair(Predecessors[BB][0], BB);
|
||||
}
|
||||
} else {
|
||||
// On the second round, visit all successor edges.
|
||||
NumTotalEdges = Successors[BB].size();
|
||||
for (auto *Succ : Successors[BB]) {
|
||||
Edge E = std::make_pair(BB, Succ);
|
||||
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
|
||||
}
|
||||
if (NumTotalEdges == 1) {
|
||||
SingleEdge = std::make_pair(BB, Successors[BB][0]);
|
||||
}
|
||||
}
|
||||
|
||||
// After visiting all the edges, there are three cases that we
|
||||
// can handle immediately:
|
||||
//
|
||||
// - All the edge weights are known (i.e., NumUnknownEdges == 0).
|
||||
// In this case, we simply check that the sum of all the edges
|
||||
// is the same as BB's weight. If not, we change BB's weight
|
||||
// to match. Additionally, if BB had not been visited before,
|
||||
// we mark it visited.
|
||||
//
|
||||
// - Only one edge is unknown and BB has already been visited.
|
||||
// In this case, we can compute the weight of the edge by
|
||||
// subtracting the total block weight from all the known
|
||||
// edge weights. If the edges weight more than BB, then the
|
||||
// edge of the last remaining edge is set to zero.
|
||||
//
|
||||
// - There exists a self-referential edge and the weight of BB is
|
||||
// known. In this case, this edge can be based on BB's weight.
|
||||
// We add up all the other known edges and set the weight on
|
||||
// the self-referential edge as we did in the previous case.
|
||||
//
|
||||
// In any other case, we must continue iterating. Eventually,
|
||||
// all edges will get a weight, or iteration will stop when
|
||||
// it reaches SampleProfileMaxPropagateIterations.
|
||||
if (NumUnknownEdges <= 1) {
|
||||
uint64_t &BBWeight = BlockWeights[EC];
|
||||
if (NumUnknownEdges == 0) {
|
||||
if (!VisitedBlocks.count(EC)) {
|
||||
// If we already know the weight of all edges, the weight of the
|
||||
// basic block can be computed. It should be no larger than the sum
|
||||
// of all edge weights.
|
||||
if (TotalWeight > BBWeight) {
|
||||
BBWeight = TotalWeight;
|
||||
Changed = true;
|
||||
LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
|
||||
<< " known. Set weight for block: ";
|
||||
printBlockWeight(dbgs(), BB););
|
||||
}
|
||||
} else if (NumTotalEdges == 1 &&
|
||||
EdgeWeights[SingleEdge] < BlockWeights[EC]) {
|
||||
// If there is only one edge for the visited basic block, use the
|
||||
// block weight to adjust edge weight if edge weight is smaller.
|
||||
EdgeWeights[SingleEdge] = BlockWeights[EC];
|
||||
Changed = true;
|
||||
}
|
||||
} else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
|
||||
// If there is a single unknown edge and the block has been
|
||||
// visited, then we can compute E's weight.
|
||||
if (BBWeight >= TotalWeight)
|
||||
EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
|
||||
else
|
||||
EdgeWeights[UnknownEdge] = 0;
|
||||
const BasicBlock *OtherEC;
|
||||
if (i == 0)
|
||||
OtherEC = EquivalenceClass[UnknownEdge.first];
|
||||
else
|
||||
OtherEC = EquivalenceClass[UnknownEdge.second];
|
||||
// Edge weights should never exceed the BB weights it connects.
|
||||
if (VisitedBlocks.count(OtherEC) &&
|
||||
EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
|
||||
EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
|
||||
VisitedEdges.insert(UnknownEdge);
|
||||
Changed = true;
|
||||
LLVM_DEBUG(dbgs() << "Set weight for edge: ";
|
||||
printEdgeWeight(dbgs(), UnknownEdge));
|
||||
}
|
||||
} else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
|
||||
// If a block Weights 0, all its in/out edges should weight 0.
|
||||
if (i == 0) {
|
||||
for (auto *Pred : Predecessors[BB]) {
|
||||
Edge E = std::make_pair(Pred, BB);
|
||||
EdgeWeights[E] = 0;
|
||||
VisitedEdges.insert(E);
|
||||
}
|
||||
} else {
|
||||
for (auto *Succ : Successors[BB]) {
|
||||
Edge E = std::make_pair(BB, Succ);
|
||||
EdgeWeights[E] = 0;
|
||||
VisitedEdges.insert(E);
|
||||
}
|
||||
}
|
||||
} else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
|
||||
uint64_t &BBWeight = BlockWeights[BB];
|
||||
// We have a self-referential edge and the weight of BB is known.
|
||||
if (BBWeight >= TotalWeight)
|
||||
EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
|
||||
else
|
||||
EdgeWeights[SelfReferentialEdge] = 0;
|
||||
VisitedEdges.insert(SelfReferentialEdge);
|
||||
Changed = true;
|
||||
LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
|
||||
printEdgeWeight(dbgs(), SelfReferentialEdge));
|
||||
}
|
||||
if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
|
||||
BlockWeights[EC] = TotalWeight;
|
||||
VisitedBlocks.insert(EC);
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// Build in/out edge lists for each basic block in the CFG.
|
||||
///
|
||||
/// We are interested in unique edges. If a block B1 has multiple
|
||||
/// edges to another block B2, we only add a single B1->B2 edge.
|
||||
void SampleProfileLoaderBaseImpl::buildEdges(Function &F) {
|
||||
for (auto &BI : F) {
|
||||
BasicBlock *B1 = &BI;
|
||||
|
||||
// Add predecessors for B1.
|
||||
SmallPtrSet<BasicBlock *, 16> Visited;
|
||||
if (!Predecessors[B1].empty())
|
||||
llvm_unreachable("Found a stale predecessors list in a basic block.");
|
||||
for (BasicBlock *B2 : predecessors(B1))
|
||||
if (Visited.insert(B2).second)
|
||||
Predecessors[B1].push_back(B2);
|
||||
|
||||
// Add successors for B1.
|
||||
Visited.clear();
|
||||
if (!Successors[B1].empty())
|
||||
llvm_unreachable("Found a stale successors list in a basic block.");
|
||||
for (BasicBlock *B2 : successors(B1))
|
||||
if (Visited.insert(B2).second)
|
||||
Successors[B1].push_back(B2);
|
||||
}
|
||||
}
|
||||
|
||||
/// Propagate weights into edges
|
||||
///
|
||||
/// The following rules are applied to every block BB in the CFG:
|
||||
///
|
||||
/// - If BB has a single predecessor/successor, then the weight
|
||||
/// of that edge is the weight of the block.
|
||||
///
|
||||
/// - If all incoming or outgoing edges are known except one, and the
|
||||
/// weight of the block is already known, the weight of the unknown
|
||||
/// edge will be the weight of the block minus the sum of all the known
|
||||
/// edges. If the sum of all the known edges is larger than BB's weight,
|
||||
/// we set the unknown edge weight to zero.
|
||||
///
|
||||
/// - If there is a self-referential edge, and the weight of the block is
|
||||
/// known, the weight for that edge is set to the weight of the block
|
||||
/// minus the weight of the other incoming edges to that block (if
|
||||
/// known).
|
||||
void SampleProfileLoaderBaseImpl::propagateWeights(Function &F) {
|
||||
bool Changed = true;
|
||||
unsigned I = 0;
|
||||
|
||||
// If BB weight is larger than its corresponding loop's header BB weight,
|
||||
// use the BB weight to replace the loop header BB weight.
|
||||
for (auto &BI : F) {
|
||||
BasicBlock *BB = &BI;
|
||||
Loop *L = LI->getLoopFor(BB);
|
||||
if (!L) {
|
||||
continue;
|
||||
}
|
||||
BasicBlock *Header = L->getHeader();
|
||||
if (Header && BlockWeights[BB] > BlockWeights[Header]) {
|
||||
BlockWeights[Header] = BlockWeights[BB];
|
||||
}
|
||||
}
|
||||
|
||||
// Before propagation starts, build, for each block, a list of
|
||||
// unique predecessors and successors. This is necessary to handle
|
||||
// identical edges in multiway branches. Since we visit all blocks and all
|
||||
// edges of the CFG, it is cleaner to build these lists once at the start
|
||||
// of the pass.
|
||||
buildEdges(F);
|
||||
|
||||
// Propagate until we converge or we go past the iteration limit.
|
||||
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
||||
Changed = propagateThroughEdges(F, false);
|
||||
}
|
||||
|
||||
// The first propagation propagates BB counts from annotated BBs to unknown
|
||||
// BBs. The 2nd propagation pass resets edges weights, and use all BB weights
|
||||
// to propagate edge weights.
|
||||
VisitedEdges.clear();
|
||||
Changed = true;
|
||||
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
||||
Changed = propagateThroughEdges(F, false);
|
||||
}
|
||||
|
||||
// The 3rd propagation pass allows adjust annotated BB weights that are
|
||||
// obviously wrong.
|
||||
Changed = true;
|
||||
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
||||
Changed = propagateThroughEdges(F, true);
|
||||
}
|
||||
}
|
||||
|
||||
/// Generate branch weight metadata for all branches in \p F.
|
||||
///
|
||||
/// Branch weights are computed out of instruction samples using a
|
||||
/// propagation heuristic. Propagation proceeds in 3 phases:
|
||||
///
|
||||
/// 1- Assignment of block weights. All the basic blocks in the function
|
||||
/// are initial assigned the same weight as their most frequently
|
||||
/// executed instruction.
|
||||
///
|
||||
/// 2- Creation of equivalence classes. Since samples may be missing from
|
||||
/// blocks, we can fill in the gaps by setting the weights of all the
|
||||
/// blocks in the same equivalence class to the same weight. To compute
|
||||
/// the concept of equivalence, we use dominance and loop information.
|
||||
/// Two blocks B1 and B2 are in the same equivalence class if B1
|
||||
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
|
||||
///
|
||||
/// 3- Propagation of block weights into edges. This uses a simple
|
||||
/// propagation heuristic. The following rules are applied to every
|
||||
/// block BB in the CFG:
|
||||
///
|
||||
/// - If BB has a single predecessor/successor, then the weight
|
||||
/// of that edge is the weight of the block.
|
||||
///
|
||||
/// - If all the edges are known except one, and the weight of the
|
||||
/// block is already known, the weight of the unknown edge will
|
||||
/// be the weight of the block minus the sum of all the known
|
||||
/// edges. If the sum of all the known edges is larger than BB's weight,
|
||||
/// we set the unknown edge weight to zero.
|
||||
///
|
||||
/// - If there is a self-referential edge, and the weight of the block is
|
||||
/// known, the weight for that edge is set to the weight of the block
|
||||
/// minus the weight of the other incoming edges to that block (if
|
||||
/// known).
|
||||
///
|
||||
/// Since this propagation is not guaranteed to finalize for every CFG, we
|
||||
/// only allow it to proceed for a limited number of iterations (controlled
|
||||
/// by -sample-profile-max-propagate-iterations).
|
||||
///
|
||||
/// FIXME: Try to replace this propagation heuristic with a scheme
|
||||
/// that is guaranteed to finalize. A work-list approach similar to
|
||||
/// the standard value propagation algorithm used by SSA-CCP might
|
||||
/// work here.
|
||||
///
|
||||
/// \param F The function to query.
|
||||
///
|
||||
/// \returns true if \p F was modified. Returns false, otherwise.
|
||||
bool SampleProfileLoaderBaseImpl::computeAndPropagateWeights(
|
||||
Function &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
||||
bool Changed = (InlinedGUIDs.size() != 0);
|
||||
|
||||
// Compute basic block weights.
|
||||
Changed |= computeBlockWeights(F);
|
||||
|
||||
if (Changed) {
|
||||
// Add an entry count to the function using the samples gathered at the
|
||||
// function entry.
|
||||
// Sets the GUIDs that are inlined in the profiled binary. This is used
|
||||
// for ThinLink to make correct liveness analysis, and also make the IR
|
||||
// match the profiled binary before annotation.
|
||||
F.setEntryCount(
|
||||
ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
|
||||
&InlinedGUIDs);
|
||||
|
||||
// Compute dominance and loop info needed for propagation.
|
||||
computeDominanceAndLoopInfo(F);
|
||||
|
||||
// Find equivalence classes.
|
||||
findEquivalenceClasses(F);
|
||||
|
||||
// Propagate weights to all edges.
|
||||
propagateWeights(F);
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
void SampleProfileLoaderBaseImpl::emitCoverageRemarks(Function &F) {
|
||||
// If coverage checking was requested, compute it now.
|
||||
if (SampleProfileRecordCoverage) {
|
||||
unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
|
||||
unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
|
||||
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
|
||||
if (Coverage < SampleProfileRecordCoverage) {
|
||||
F.getContext().diagnose(DiagnosticInfoSampleProfile(
|
||||
F.getSubprogram()->getFilename(), getFunctionLoc(F),
|
||||
Twine(Used) + " of " + Twine(Total) + " available profile records (" +
|
||||
Twine(Coverage) + "%) were applied",
|
||||
DS_Warning));
|
||||
}
|
||||
}
|
||||
|
||||
if (SampleProfileSampleCoverage) {
|
||||
uint64_t Used = CoverageTracker.getTotalUsedSamples();
|
||||
uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
|
||||
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
|
||||
if (Coverage < SampleProfileSampleCoverage) {
|
||||
F.getContext().diagnose(DiagnosticInfoSampleProfile(
|
||||
F.getSubprogram()->getFilename(), getFunctionLoc(F),
|
||||
Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
|
||||
Twine(Coverage) + "%) were applied",
|
||||
DS_Warning));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the line number for the function header.
|
||||
///
|
||||
/// This looks up function \p F in the current compilation unit and
|
||||
/// retrieves the line number where the function is defined. This is
|
||||
/// line 0 for all the samples read from the profile file. Every line
|
||||
/// number is relative to this line.
|
||||
///
|
||||
/// \param F Function object to query.
|
||||
///
|
||||
/// \returns the line number where \p F is defined. If it returns 0,
|
||||
/// it means that there is no debug information available for \p F.
|
||||
unsigned SampleProfileLoaderBaseImpl::getFunctionLoc(Function &F) {
|
||||
if (DISubprogram *S = F.getSubprogram())
|
||||
return S->getLine();
|
||||
|
||||
if (NoWarnSampleUnused)
|
||||
return 0;
|
||||
|
||||
// If the start of \p F is missing, emit a diagnostic to inform the user
|
||||
// about the missed opportunity.
|
||||
F.getContext().diagnose(DiagnosticInfoSampleProfile(
|
||||
"No debug information found in function " + F.getName() +
|
||||
": Function profile not used",
|
||||
DS_Warning));
|
||||
return 0;
|
||||
}
|
||||
|
||||
void SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo(Function &F) {
|
||||
DT.reset(new DominatorTree);
|
||||
DT->recalculate(F);
|
||||
|
||||
PDT.reset(new PostDominatorTree(F));
|
||||
|
||||
LI.reset(new LoopInfo);
|
||||
LI->analyze(*DT);
|
||||
}
|
||||
|
||||
#undef DEBUG_TYPE
|
||||
|
||||
} // namespace llvm
|
||||
#endif // LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERIMPL_H
|
97
include/llvm/ProfileData/SampleProfileLoaderBaseUtil.h
Normal file
97
include/llvm/ProfileData/SampleProfileLoaderBaseUtil.h
Normal file
@ -0,0 +1,97 @@
|
||||
////===- SampleProfileLoadBaseUtil.h - Profile loader util func --*- C++-*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// \file
|
||||
/// This file provides the utility functions for the sampled PGO loader base
|
||||
/// implementation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERUTIL_H
|
||||
#define LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERUTIL_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/CFG.h"
|
||||
#include "llvm/IR/DebugLoc.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/ProfileData/SampleProf.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
|
||||
namespace llvm {
|
||||
using namespace sampleprof;
|
||||
|
||||
extern cl::opt<unsigned> SampleProfileMaxPropagateIterations;
|
||||
extern cl::opt<unsigned> SampleProfileRecordCoverage;
|
||||
extern cl::opt<unsigned> SampleProfileSampleCoverage;
|
||||
extern cl::opt<bool> NoWarnSampleUnused;
|
||||
|
||||
namespace sampleprofutil {
|
||||
|
||||
class SampleCoverageTracker {
|
||||
public:
|
||||
bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
|
||||
uint32_t Discriminator, uint64_t Samples);
|
||||
unsigned computeCoverage(unsigned Used, unsigned Total) const;
|
||||
unsigned countUsedRecords(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const;
|
||||
unsigned countBodyRecords(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const;
|
||||
uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
|
||||
uint64_t countBodySamples(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const;
|
||||
|
||||
void clear() {
|
||||
SampleCoverage.clear();
|
||||
TotalUsedSamples = 0;
|
||||
}
|
||||
void setProfAccForSymsInList(bool V) { ProfAccForSymsInList = V; }
|
||||
|
||||
private:
|
||||
using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
|
||||
using FunctionSamplesCoverageMap =
|
||||
DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
|
||||
|
||||
/// Coverage map for sampling records.
|
||||
///
|
||||
/// This map keeps a record of sampling records that have been matched to
|
||||
/// an IR instruction. This is used to detect some form of staleness in
|
||||
/// profiles (see flag -sample-profile-check-coverage).
|
||||
///
|
||||
/// Each entry in the map corresponds to a FunctionSamples instance. This is
|
||||
/// another map that counts how many times the sample record at the
|
||||
/// given location has been used.
|
||||
FunctionSamplesCoverageMap SampleCoverage;
|
||||
|
||||
/// Number of samples used from the profile.
|
||||
///
|
||||
/// When a sampling record is used for the first time, the samples from
|
||||
/// that record are added to this accumulator. Coverage is later computed
|
||||
/// based on the total number of samples available in this function and
|
||||
/// its callsites.
|
||||
///
|
||||
/// Note that this accumulator tracks samples used from a single function
|
||||
/// and all the inlined callsites. Strictly, we should have a map of counters
|
||||
/// keyed by FunctionSamples pointers, but these stats are cleared after
|
||||
/// every function, so we just need to keep a single counter.
|
||||
uint64_t TotalUsedSamples = 0;
|
||||
|
||||
// For symbol in profile symbol list, whether to regard their profiles
|
||||
// to be accurate. This is passed from the SampleLoader instance.
|
||||
bool ProfAccForSymsInList = false;
|
||||
};
|
||||
|
||||
/// Return true if the given callsite is hot wrt to hot cutoff threshold.
|
||||
bool callsiteIsHot(const FunctionSamples *CallsiteFS, ProfileSummaryInfo *PSI,
|
||||
bool ProfAccForSymsInList);
|
||||
|
||||
} // end of namespace sampleprofutil
|
||||
} // end of namespace llvm
|
||||
|
||||
#endif // LLVM_TRANSFORMS_IPO_SAMPLEPROFILELOADERUTIL_H
|
@ -5,6 +5,7 @@ add_llvm_component_library(LLVMProfileData
|
||||
InstrProfWriter.cpp
|
||||
ProfileSummaryBuilder.cpp
|
||||
SampleProf.cpp
|
||||
SampleProfileLoaderBaseUtil.cpp
|
||||
SampleProfReader.cpp
|
||||
SampleProfWriter.cpp
|
||||
|
||||
|
192
lib/ProfileData/SampleProfileLoaderBaseUtil.cpp
Normal file
192
lib/ProfileData/SampleProfileLoaderBaseUtil.cpp
Normal file
@ -0,0 +1,192 @@
|
||||
//===- SampleProfileLoaderBaseUtil.cpp - Profile loader Util func ---------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the SampleProfileLoader base utility functions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/ProfileData/SampleProfileLoaderBaseUtil.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
cl::opt<unsigned> SampleProfileMaxPropagateIterations(
|
||||
"sample-profile-max-propagate-iterations", cl::init(100),
|
||||
cl::desc("Maximum number of iterations to go through when propagating "
|
||||
"sample block/edge weights through the CFG."));
|
||||
|
||||
cl::opt<unsigned> SampleProfileRecordCoverage(
|
||||
"sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
|
||||
cl::desc("Emit a warning if less than N% of records in the input profile "
|
||||
"are matched to the IR."));
|
||||
|
||||
cl::opt<unsigned> SampleProfileSampleCoverage(
|
||||
"sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
|
||||
cl::desc("Emit a warning if less than N% of samples in the input profile "
|
||||
"are matched to the IR."));
|
||||
|
||||
cl::opt<bool> NoWarnSampleUnused(
|
||||
"no-warn-sample-unused", cl::init(false), cl::Hidden,
|
||||
cl::desc("Use this option to turn off/on warnings about function with "
|
||||
"samples but without debug information to use those samples. "));
|
||||
|
||||
namespace sampleprofutil {
|
||||
|
||||
/// Return true if the given callsite is hot wrt to hot cutoff threshold.
|
||||
///
|
||||
/// Functions that were inlined in the original binary will be represented
|
||||
/// in the inline stack in the sample profile. If the profile shows that
|
||||
/// the original inline decision was "good" (i.e., the callsite is executed
|
||||
/// frequently), then we will recreate the inline decision and apply the
|
||||
/// profile from the inlined callsite.
|
||||
///
|
||||
/// To decide whether an inlined callsite is hot, we compare the callsite
|
||||
/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
|
||||
/// regarded as hot if the count is above the cutoff value.
|
||||
///
|
||||
/// When ProfileAccurateForSymsInList is enabled and profile symbol list
|
||||
/// is present, functions in the profile symbol list but without profile will
|
||||
/// be regarded as cold and much less inlining will happen in CGSCC inlining
|
||||
/// pass, so we tend to lower the hot criteria here to allow more early
|
||||
/// inlining to happen for warm callsites and it is helpful for performance.
|
||||
bool callsiteIsHot(const FunctionSamples *CallsiteFS, ProfileSummaryInfo *PSI,
|
||||
bool ProfAccForSymsInList) {
|
||||
if (!CallsiteFS)
|
||||
return false; // The callsite was not inlined in the original binary.
|
||||
|
||||
assert(PSI && "PSI is expected to be non null");
|
||||
uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
|
||||
if (ProfAccForSymsInList)
|
||||
return !PSI->isColdCount(CallsiteTotalSamples);
|
||||
else
|
||||
return PSI->isHotCount(CallsiteTotalSamples);
|
||||
}
|
||||
|
||||
#if 0
|
||||
void clearCoverageTracker(SampleCoverageTracker *CT) { CT->clear(); }
|
||||
|
||||
bool markSamplesUsed(SampleCoverageTracker *CT, const FunctionSamples *FS,
|
||||
uint32_t LineOffset, uint32_t Discriminator,
|
||||
uint64_t Samples) {
|
||||
return CT->markSamplesUsed(FS, LineOffset, Discriminator, Samples);
|
||||
}
|
||||
unsigned computeCoverage(const SampleCoverageTracker *CT, unsigned Used,
|
||||
unsigned Total) {
|
||||
return CT->computeCoverage(Used, Total);
|
||||
}
|
||||
unsigned countUsedRecords(const SampleCoverageTracker *CT,
|
||||
const FunctionSamples *FS, ProfileSummaryInfo *PSI) {
|
||||
return CT->countUsedRecords(FS, PSI);
|
||||
}
|
||||
unsigned countBodyRecords(const SampleCoverageTracker *CT,
|
||||
const FunctionSamples *FS, ProfileSummaryInfo *PSI) {
|
||||
return CT->countBodyRecords(FS, PSI);
|
||||
}
|
||||
uint64_t getTotalUsedSamples(const SampleCoverageTracker *CT) {
|
||||
return CT->getTotalUsedSamples();
|
||||
}
|
||||
uint64_t countBodySamples(const SampleCoverageTracker *CT,
|
||||
const FunctionSamples *FS, ProfileSummaryInfo *PSI) {
|
||||
return CT->countBodySamples(FS, PSI);
|
||||
}
|
||||
#endif
|
||||
|
||||
/// Mark as used the sample record for the given function samples at
|
||||
/// (LineOffset, Discriminator).
|
||||
///
|
||||
/// \returns true if this is the first time we mark the given record.
|
||||
bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
|
||||
uint32_t LineOffset,
|
||||
uint32_t Discriminator,
|
||||
uint64_t Samples) {
|
||||
LineLocation Loc(LineOffset, Discriminator);
|
||||
unsigned &Count = SampleCoverage[FS][Loc];
|
||||
bool FirstTime = (++Count == 1);
|
||||
if (FirstTime)
|
||||
TotalUsedSamples += Samples;
|
||||
return FirstTime;
|
||||
}
|
||||
|
||||
/// Return the number of sample records that were applied from this profile.
|
||||
///
|
||||
/// This count does not include records from cold inlined callsites.
|
||||
unsigned
|
||||
SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const {
|
||||
auto I = SampleCoverage.find(FS);
|
||||
|
||||
// The size of the coverage map for FS represents the number of records
|
||||
// that were marked used at least once.
|
||||
unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
|
||||
|
||||
// If there are inlined callsites in this function, count the samples found
|
||||
// in the respective bodies. However, do not bother counting callees with 0
|
||||
// total samples, these are callees that were never invoked at runtime.
|
||||
for (const auto &I : FS->getCallsiteSamples())
|
||||
for (const auto &J : I.second) {
|
||||
const FunctionSamples *CalleeSamples = &J.second;
|
||||
if (callsiteIsHot(CalleeSamples, PSI, ProfAccForSymsInList))
|
||||
Count += countUsedRecords(CalleeSamples, PSI);
|
||||
}
|
||||
|
||||
return Count;
|
||||
}
|
||||
|
||||
/// Return the number of sample records in the body of this profile.
|
||||
///
|
||||
/// This count does not include records from cold inlined callsites.
|
||||
unsigned
|
||||
SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const {
|
||||
unsigned Count = FS->getBodySamples().size();
|
||||
|
||||
// Only count records in hot callsites.
|
||||
for (const auto &I : FS->getCallsiteSamples())
|
||||
for (const auto &J : I.second) {
|
||||
const FunctionSamples *CalleeSamples = &J.second;
|
||||
if (callsiteIsHot(CalleeSamples, PSI, ProfAccForSymsInList))
|
||||
Count += countBodyRecords(CalleeSamples, PSI);
|
||||
}
|
||||
|
||||
return Count;
|
||||
}
|
||||
|
||||
/// Return the number of samples collected in the body of this profile.
|
||||
///
|
||||
/// This count does not include samples from cold inlined callsites.
|
||||
uint64_t
|
||||
SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
|
||||
ProfileSummaryInfo *PSI) const {
|
||||
uint64_t Total = 0;
|
||||
for (const auto &I : FS->getBodySamples())
|
||||
Total += I.second.getSamples();
|
||||
|
||||
// Only count samples in hot callsites.
|
||||
for (const auto &I : FS->getCallsiteSamples())
|
||||
for (const auto &J : I.second) {
|
||||
const FunctionSamples *CalleeSamples = &J.second;
|
||||
if (callsiteIsHot(CalleeSamples, PSI, ProfAccForSymsInList))
|
||||
Total += countBodySamples(CalleeSamples, PSI);
|
||||
}
|
||||
|
||||
return Total;
|
||||
}
|
||||
|
||||
/// Return the fraction of sample records used in this profile.
|
||||
///
|
||||
/// The returned value is an unsigned integer in the range 0-100 indicating
|
||||
/// the percentage of sample records that were used while applying this
|
||||
/// profile to the associated function.
|
||||
unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
|
||||
unsigned Total) const {
|
||||
assert(Used <= Total &&
|
||||
"number of used records cannot exceed the total number of records");
|
||||
return Total > 0 ? Used * 100 / Total : 100;
|
||||
}
|
||||
|
||||
} // end of namespace sampleprofutil
|
||||
} // end of namespace llvm
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user