1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

R600: Use LDS and vectors for private memory

llvm-svn: 211110
This commit is contained in:
Tom Stellard 2014-06-17 16:53:14 +00:00
parent 4bdc400436
commit a529beed9c
25 changed files with 787 additions and 72 deletions

View File

@ -17,6 +17,7 @@
namespace llvm {
class AMDGPUInstrPrinter;
class AMDGPUSubtarget;
class AMDGPUTargetMachine;
class FunctionPass;
class MCAsmInfo;
@ -47,6 +48,7 @@ void initializeSILowerI1CopiesPass(PassRegistry &);
extern char &SILowerI1CopiesID;
// Passes common to R600 and SI
FunctionPass *createAMDGPUPromoteAlloca(const AMDGPUSubtarget &ST);
Pass *createAMDGPUStructurizeCFGPass();
FunctionPass *createAMDGPUISelDag(TargetMachine &tm);

View File

@ -86,28 +86,40 @@ def FeatureWavefrontSize16 : SubtargetFeatureWavefrontSize<16>;
def FeatureWavefrontSize32 : SubtargetFeatureWavefrontSize<32>;
def FeatureWavefrontSize64 : SubtargetFeatureWavefrontSize<64>;
class SubtargetFeatureLocalMemorySize <int Value> : SubtargetFeature<
"localmemorysize"#Value,
"LocalMemorySize",
!cast<string>(Value),
"The size of local memory in bytes">;
class SubtargetFeatureGeneration <string Value,
list<SubtargetFeature> Implies> :
SubtargetFeature <Value, "Gen", "AMDGPUSubtarget::"#Value,
Value#" GPU generation", Implies>;
def FeatureLocalMemorySize0 : SubtargetFeatureLocalMemorySize<0>;
def FeatureLocalMemorySize32768 : SubtargetFeatureLocalMemorySize<32768>;
def FeatureLocalMemorySize65536 : SubtargetFeatureLocalMemorySize<65536>;
def FeatureR600 : SubtargetFeatureGeneration<"R600",
[FeatureR600ALUInst, FeatureFetchLimit8]>;
[FeatureR600ALUInst, FeatureFetchLimit8, FeatureLocalMemorySize0]>;
def FeatureR700 : SubtargetFeatureGeneration<"R700",
[FeatureFetchLimit16]>;
[FeatureFetchLimit16, FeatureLocalMemorySize0]>;
def FeatureEvergreen : SubtargetFeatureGeneration<"EVERGREEN",
[FeatureFetchLimit16]>;
[FeatureFetchLimit16, FeatureLocalMemorySize32768]>;
def FeatureNorthernIslands : SubtargetFeatureGeneration<"NORTHERN_ISLANDS",
[FeatureFetchLimit16, FeatureWavefrontSize64]>;
[FeatureFetchLimit16, FeatureWavefrontSize64,
FeatureLocalMemorySize32768]
>;
def FeatureSouthernIslands : SubtargetFeatureGeneration<"SOUTHERN_ISLANDS",
[Feature64BitPtr, FeatureFP64]>;
[Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize32768]>;
def FeatureSeaIslands : SubtargetFeatureGeneration<"SEA_ISLANDS",
[Feature64BitPtr, FeatureFP64]>;
[Feature64BitPtr, FeatureFP64, FeatureLocalMemorySize65536]>;
//===----------------------------------------------------------------------===//
def AMDGPUInstrInfo : InstrInfo {

View File

@ -258,6 +258,7 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, MVT::i64, Args);
}
case ISD::SCALAR_TO_VECTOR:
case AMDGPUISD::BUILD_VERTICAL_VECTOR:
case ISD::BUILD_VECTOR: {
unsigned RegClassID;
const AMDGPURegisterInfo *TRI =
@ -308,7 +309,12 @@ SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
// can't be bundled by our scheduler.
switch(NumVectorElts) {
case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break;
case 4:
if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
RegClassID = AMDGPU::R600_Reg128VerticalRegClassID;
else
RegClassID = AMDGPU::R600_Reg128RegClassID;
break;
default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
}
}

View File

@ -1911,6 +1911,7 @@ const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
NODE_NAME_CASE(CVT_F32_UBYTE1)
NODE_NAME_CASE(CVT_F32_UBYTE2)
NODE_NAME_CASE(CVT_F32_UBYTE3)
NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
}

View File

@ -203,6 +203,15 @@ enum {
CVT_F32_UBYTE1,
CVT_F32_UBYTE2,
CVT_F32_UBYTE3,
/// This node is for VLIW targets and it is used to represent a vector
/// that is stored in consecutive registers with the same channel.
/// For example:
/// |X |Y|Z|W|
/// T0|v.x| | | |
/// T1|v.y| | | |
/// T2|v.z| | | |
/// T3|v.w| | | |
BUILD_VERTICAL_VECTOR,
FIRST_MEM_OPCODE_NUMBER = ISD::FIRST_TARGET_MEMORY_OPCODE,
STORE_MSKOR,
LOAD_CONSTANT,

View File

@ -0,0 +1,365 @@
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates allocas by either converting them into vectors or
// by migrating them to local address space.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "amdgpu-promote-alloca"
using namespace llvm;
namespace {
class AMDGPUPromoteAlloca : public FunctionPass,
public InstVisitor<AMDGPUPromoteAlloca> {
static char ID;
Module *Mod;
const AMDGPUSubtarget &ST;
int LocalMemAvailable;
public:
AMDGPUPromoteAlloca(const AMDGPUSubtarget &st) : FunctionPass(ID), ST(st),
LocalMemAvailable(0) { }
virtual bool doInitialization(Module &M);
virtual bool runOnFunction(Function &F);
virtual const char *getPassName() const {
return "AMDGPU Promote Alloca";
}
void visitAlloca(AllocaInst &I);
};
} // End anonymous namespace
char AMDGPUPromoteAlloca::ID = 0;
bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
Mod = &M;
return false;
}
bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
const FunctionType *FTy = F.getFunctionType();
LocalMemAvailable = ST.getLocalMemorySize();
// If the function has any arguments in the local address space, then it's
// possible these arguments require the entire local memory space, so
// we cannot use local memory in the pass.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
const Type *ParamTy = FTy->getParamType(i);
if (ParamTy->isPointerTy() &&
ParamTy->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
LocalMemAvailable = 0;
DEBUG(dbgs() << "Function has local memory argument. Promoting to "
"local memory disabled.\n");
break;
}
}
if (LocalMemAvailable > 0) {
// Check how much local memory is being used by global objects
for (Module::global_iterator I = Mod->global_begin(),
E = Mod->global_end(); I != E; ++I) {
GlobalVariable *GV = I;
PointerType *GVTy = GV->getType();
if (GVTy->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
continue;
for (Value::use_iterator U = GV->use_begin(),
UE = GV->use_end(); U != UE; ++U) {
Instruction *Use = dyn_cast<Instruction>(*U);
if (!Use)
continue;
if (Use->getParent()->getParent() == &F)
LocalMemAvailable -=
Mod->getDataLayout()->getTypeAllocSize(GVTy->getElementType());
}
}
}
LocalMemAvailable = std::max(0, LocalMemAvailable);
DEBUG(dbgs() << LocalMemAvailable << "bytes free in local memory.\n");
visit(F);
return false;
}
static VectorType *arrayTypeToVecType(const Type *ArrayTy) {
return VectorType::get(ArrayTy->getArrayElementType(),
ArrayTy->getArrayNumElements());
}
static Value* calculateVectorIndex(Value *Ptr,
std::map<GetElementPtrInst*, Value*> GEPIdx) {
if (isa<AllocaInst>(Ptr))
return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext()));
GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
return GEPIdx[GEP];
}
static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
// FIXME we only support simple cases
if (GEP->getNumOperands() != 3)
return NULL;
ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (!I0 || !I0->isZero())
return NULL;
return GEP->getOperand(2);
}
static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
Type *AllocaTy = Alloca->getAllocatedType();
DEBUG(dbgs() << "Alloca Candidate for vectorization \n");
// FIXME: There is no reason why we can't support larger arrays, we
// are just being conservative for now.
if (!AllocaTy->isArrayTy() ||
AllocaTy->getArrayElementType()->isVectorTy() ||
AllocaTy->getArrayNumElements() > 4) {
DEBUG(dbgs() << " Cannot convert type to vector");
return false;
}
std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
std::vector<Value*> WorkList;
for (User *AllocaUser : Alloca->users()) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
if (!GEP) {
WorkList.push_back(AllocaUser);
continue;
}
Value *Index = GEPToVectorIndex(GEP);
// If we can't compute a vector index from this GEP, then we can't
// promote this alloca to vector.
if (!Index) {
DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << "\n");
return false;
}
GEPVectorIdx[GEP] = Index;
for (User *GEPUser : AllocaUser->users()) {
WorkList.push_back(GEPUser);
}
}
VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
DEBUG(dbgs() << " Converting alloca to vector "; AllocaTy->dump();
dbgs() << " -> "; VectorTy->dump(); dbgs() << "\n");
for (std::vector<Value*>::iterator I = WorkList.begin(),
E = WorkList.end(); I != E; ++I) {
Instruction *Inst = cast<Instruction>(*I);
IRBuilder<> Builder(Inst);
switch (Inst->getOpcode()) {
case Instruction::Load: {
Value *Ptr = Inst->getOperand(0);
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
Value *VecValue = Builder.CreateLoad(BitCast);
Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
Inst->replaceAllUsesWith(ExtractElement);
Inst->eraseFromParent();
break;
}
case Instruction::Store: {
Value *Ptr = Inst->getOperand(1);
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0));
Value *VecValue = Builder.CreateLoad(BitCast);
Value *NewVecValue = Builder.CreateInsertElement(VecValue,
Inst->getOperand(0),
Index);
Builder.CreateStore(NewVecValue, BitCast);
Inst->eraseFromParent();
break;
}
case Instruction::BitCast:
break;
default:
Inst->dump();
llvm_unreachable("Do not know how to replace this instruction "
"with vector op");
}
}
return true;
}
static void collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) {
for (User *User : Val->users()) {
if(std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end())
continue;
if (isa<CallInst>(User)) {
WorkList.push_back(User);
continue;
}
if (!User->getType()->isPointerTy())
continue;
WorkList.push_back(User);
collectUsesWithPtrTypes(User, WorkList);
}
}
void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) {
IRBuilder<> Builder(&I);
// First try to replace the alloca with a vector
Type *AllocaTy = I.getAllocatedType();
DEBUG(dbgs() << "Trying to promote " << I);
if (tryPromoteAllocaToVector(&I))
return;
DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
// FIXME: This is the maximum work group size. We should try to get
// value from the reqd_work_group_size function attribute if it is
// available.
unsigned WorkGroupSize = 256;
int AllocaSize = WorkGroupSize *
Mod->getDataLayout()->getTypeAllocSize(AllocaTy);
if (AllocaSize > LocalMemAvailable) {
DEBUG(dbgs() << " Not enough local memory to promote alloca.\n");
return;
}
DEBUG(dbgs() << "Promoting alloca to local memory\n");
LocalMemAvailable -= AllocaSize;
GlobalVariable *GV = new GlobalVariable(
*Mod, ArrayType::get(I.getAllocatedType(), 256), false,
GlobalValue::ExternalLinkage, 0, I.getName(), 0,
GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS);
FunctionType *FTy = FunctionType::get(
Type::getInt32Ty(Mod->getContext()), false);
AttributeSet AttrSet;
AttrSet.addAttribute(Mod->getContext(), 0, Attribute::ReadNone);
Value *ReadLocalSizeY = Mod->getOrInsertFunction(
"llvm.r600.read.local.size.y", FTy, AttrSet);
Value *ReadLocalSizeZ = Mod->getOrInsertFunction(
"llvm.r600.read.local.size.z", FTy, AttrSet);
Value *ReadTIDIGX = Mod->getOrInsertFunction(
"llvm.r600.read.tidig.x", FTy, AttrSet);
Value *ReadTIDIGY = Mod->getOrInsertFunction(
"llvm.r600.read.tidig.y", FTy, AttrSet);
Value *ReadTIDIGZ = Mod->getOrInsertFunction(
"llvm.r600.read.tidig.z", FTy, AttrSet);
Value *TCntY = Builder.CreateCall(ReadLocalSizeY);
Value *TCntZ = Builder.CreateCall(ReadLocalSizeZ);
Value *TIdX = Builder.CreateCall(ReadTIDIGX);
Value *TIdY = Builder.CreateCall(ReadTIDIGY);
Value *TIdZ = Builder.CreateCall(ReadTIDIGZ);
Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ);
Tmp0 = Builder.CreateMul(Tmp0, TIdX);
Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ);
Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
TID = Builder.CreateAdd(TID, TIdZ);
std::vector<Value*> Indices;
Indices.push_back(Constant::getNullValue(Type::getInt32Ty(Mod->getContext())));
Indices.push_back(TID);
Value *Offset = Builder.CreateGEP(GV, Indices);
I.mutateType(Offset->getType());
I.replaceAllUsesWith(Offset);
I.eraseFromParent();
std::vector<Value*> WorkList;
collectUsesWithPtrTypes(Offset, WorkList);
for (std::vector<Value*>::iterator i = WorkList.begin(),
e = WorkList.end(); i != e; ++i) {
Value *V = *i;
CallInst *Call = dyn_cast<CallInst>(V);
if (!Call) {
Type *EltTy = V->getType()->getPointerElementType();
PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
V->mutateType(NewTy);
continue;
}
IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call);
if (!Intr) {
std::vector<Type*> ArgTypes;
for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands();
ArgIdx != ArgEnd; ++ArgIdx) {
ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType());
}
Function *F = Call->getCalledFunction();
FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes,
F->isVarArg());
Constant *C = Mod->getOrInsertFunction(StringRef(F->getName().str() + ".local"), NewType,
F->getAttributes());
Function *NewF = cast<Function>(C);
Call->setCalledFunction(NewF);
continue;
}
Builder.SetInsertPoint(Intr);
switch (Intr->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// These intrinsics are for address space 0 only
Intr->eraseFromParent();
continue;
case Intrinsic::memcpy: {
MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
MemCpy->getLength(), MemCpy->getAlignment(),
MemCpy->isVolatile());
Intr->eraseFromParent();
continue;
}
case Intrinsic::memset: {
MemSetInst *MemSet = cast<MemSetInst>(Intr);
Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
MemSet->getLength(), MemSet->getAlignment(),
MemSet->isVolatile());
Intr->eraseFromParent();
continue;
}
default:
Intr->dump();
llvm_unreachable("Don't know how to promote alloca intrinsic use.");
}
}
}
FunctionPass *llvm::createAMDGPUPromoteAlloca(const AMDGPUSubtarget &ST) {
return new AMDGPUPromoteAlloca(ST);
}

View File

@ -41,6 +41,7 @@ AMDGPUSubtarget::AMDGPUSubtarget(StringRef TT, StringRef CPU, StringRef FS) :
EnableIfCvt = true;
WavefrontSize = 0;
CFALUBug = false;
LocalMemorySize = 0;
ParseSubtargetFeatures(GPU, FS);
DevName = GPU;
@ -109,6 +110,10 @@ AMDGPUSubtarget::hasCFAluBug() const {
assert(getGeneration() <= NORTHERN_ISLANDS);
return CFALUBug;
}
int
AMDGPUSubtarget::getLocalMemorySize() const {
return LocalMemorySize;
}
bool
AMDGPUSubtarget::isTargetELF() const {
return false;

View File

@ -56,6 +56,7 @@ private:
bool EnableIfCvt;
unsigned WavefrontSize;
bool CFALUBug;
int LocalMemorySize;
InstrItineraryData InstrItins;
@ -109,6 +110,7 @@ public:
unsigned getWavefrontSize() const;
unsigned getStackEntrySize() const;
bool hasCFAluBug() const;
int getLocalMemorySize() const;
bool enableMachineScheduler() const override {
return getGeneration() <= NORTHERN_ISLANDS;

View File

@ -109,6 +109,7 @@ public:
return nullptr;
}
virtual void addCodeGenPrepare();
bool addPreISel() override;
bool addInstSelector() override;
bool addPreRegAlloc() override;
@ -134,6 +135,13 @@ void AMDGPUTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
PM.add(createAMDGPUTargetTransformInfoPass(this));
}
void AMDGPUPassConfig::addCodeGenPrepare() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
addPass(createAMDGPUPromoteAlloca(ST));
addPass(createSROAPass());
TargetPassConfig::addCodeGenPrepare();
}
bool
AMDGPUPassConfig::addPreISel() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();

View File

@ -25,6 +25,7 @@ add_llvm_target(R600CodeGen
AMDGPUTargetTransformInfo.cpp
AMDGPUISelLowering.cpp
AMDGPUInstrInfo.cpp
AMDGPUPromoteAlloca.cpp
AMDGPURegisterInfo.cpp
R600ClauseMergePass.cpp
R600ControlFlowFinalizer.cpp

View File

@ -136,6 +136,16 @@ R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setTargetDAGCombine(ISD::FP_ROUND);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
@ -540,6 +550,8 @@ SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::FCOS:
case ISD::FSIN: return LowerTrig(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
@ -812,6 +824,56 @@ void R600TargetLowering::ReplaceNodeResults(SDNode *N,
}
}
SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
SDValue Vector) const {
SDLoc DL(Vector);
EVT VecVT = Vector.getValueType();
EVT EltVT = VecVT.getVectorElementType();
SmallVector<SDValue, 8> Args;
for (unsigned i = 0, e = VecVT.getVectorNumElements();
i != e; ++i) {
Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
Vector, DAG.getConstant(i, getVectorIdxTy())));
}
return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
}
SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Vector = Op.getOperand(0);
SDValue Index = Op.getOperand(1);
if (isa<ConstantSDNode>(Index) ||
Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
return Op;
Vector = vectorToVerticalVector(DAG, Vector);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
Vector, Index);
}
SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Vector = Op.getOperand(0);
SDValue Value = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
if (isa<ConstantSDNode>(Index) ||
Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
return Op;
Vector = vectorToVerticalVector(DAG, Vector);
SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
Vector, Value, Index);
return vectorToVerticalVector(DAG, Insert);
}
SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
// On hw >= R700, COS/SIN input must be between -1. and 1.
// Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)

View File

@ -51,7 +51,10 @@ private:
void lowerImplicitParameter(MachineInstr *MI, MachineBasicBlock &BB,
MachineRegisterInfo & MRI, unsigned dword_offset) const;
SDValue OptimizeSwizzle(SDValue BuildVector, SDValue Swz[], SelectionDAG &DAG) const;
SDValue vectorToVerticalVector(SelectionDAG &DAG, SDValue Vector) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const;

View File

@ -51,11 +51,15 @@ R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned VectorComponents = 0;
if (AMDGPU::R600_Reg128RegClass.contains(DestReg) &&
AMDGPU::R600_Reg128RegClass.contains(SrcReg)) {
if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) ||
AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) &&
(AMDGPU::R600_Reg128RegClass.contains(SrcReg) ||
AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) {
VectorComponents = 4;
} else if(AMDGPU::R600_Reg64RegClass.contains(DestReg) &&
AMDGPU::R600_Reg64RegClass.contains(SrcReg)) {
} else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) ||
AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) &&
(AMDGPU::R600_Reg64RegClass.contains(SrcReg) ||
AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) {
VectorComponents = 2;
}
@ -1053,6 +1057,29 @@ unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
return 2;
}
bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
switch(MI->getOpcode()) {
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
case AMDGPU::R600_EXTRACT_ELT_V2:
case AMDGPU::R600_EXTRACT_ELT_V4:
buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(),
RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
MI->getOperand(2).getReg(),
RI.getHWRegChan(MI->getOperand(1).getReg()));
break;
case AMDGPU::R600_INSERT_ELT_V2:
case AMDGPU::R600_INSERT_ELT_V4:
buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value
RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
MI->getOperand(3).getReg(), // Offset
RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel
break;
}
MI->eraseFromParent();
return true;
}
void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
const AMDGPUFrameLowering *TFL =
@ -1090,7 +1117,22 @@ MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
}
MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const {
unsigned AddrReg;
switch (AddrChan) {
default: llvm_unreachable("Invalid Channel");
case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
}
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X, OffsetReg);
setImmOperand(MOVA, AMDGPU::OpName::write, 0);
@ -1107,7 +1149,22 @@ MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
}
MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const {
unsigned AddrReg;
switch (AddrChan) {
default: llvm_unreachable("Invalid Channel");
case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
}
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X,
OffsetReg);

View File

@ -36,6 +36,18 @@ namespace llvm {
std::vector<std::pair<int, unsigned> >
ExtractSrcs(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PV, unsigned &ConstCount) const;
MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const;
MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const;
public:
enum BankSwizzle {
ALU_VEC_012_SCL_210 = 0,
@ -195,6 +207,8 @@ namespace llvm {
int getInstrLatency(const InstrItineraryData *ItinData,
SDNode *Node) const override { return 1;}
virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
/// \brief Reserve the registers that may be accesed using indirect addressing.
void reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const;

View File

@ -1581,6 +1581,60 @@ let isTerminator=1 in {
defm CONTINUEC : BranchInstr2<"CONTINUEC">;
}
//===----------------------------------------------------------------------===//
// Indirect addressing pseudo instructions
//===----------------------------------------------------------------------===//
let isPseudo = 1 in {
class ExtractVertical <RegisterClass vec_rc> : InstR600 <
(outs R600_Reg32:$dst),
(ins vec_rc:$vec, R600_Reg32:$index), "",
[],
AnyALU
>;
let Constraints = "$dst = $vec" in {
class InsertVertical <RegisterClass vec_rc> : InstR600 <
(outs vec_rc:$dst),
(ins vec_rc:$vec, R600_Reg32:$value, R600_Reg32:$index), "",
[],
AnyALU
>;
} // End Constraints = "$dst = $vec"
} // End isPseudo = 1
def R600_EXTRACT_ELT_V2 : ExtractVertical <R600_Reg64Vertical>;
def R600_EXTRACT_ELT_V4 : ExtractVertical <R600_Reg128Vertical>;
def R600_INSERT_ELT_V2 : InsertVertical <R600_Reg64Vertical>;
def R600_INSERT_ELT_V4 : InsertVertical <R600_Reg128Vertical>;
class ExtractVerticalPat <Instruction inst, ValueType vec_ty,
ValueType scalar_ty> : Pat <
(scalar_ty (extractelt vec_ty:$vec, i32:$index)),
(inst $vec, $index)
>;
def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2i32, i32>;
def : ExtractVerticalPat <R600_EXTRACT_ELT_V2, v2f32, f32>;
def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4i32, i32>;
def : ExtractVerticalPat <R600_EXTRACT_ELT_V4, v4f32, f32>;
class InsertVerticalPat <Instruction inst, ValueType vec_ty,
ValueType scalar_ty> : Pat <
(vec_ty (insertelt vec_ty:$vec, scalar_ty:$value, i32:$index)),
(inst $vec, $value, $index)
>;
def : InsertVerticalPat <R600_INSERT_ELT_V2, v2i32, i32>;
def : InsertVerticalPat <R600_INSERT_ELT_V2, v2f32, f32>;
def : InsertVerticalPat <R600_INSERT_ELT_V4, v4i32, i32>;
def : InsertVerticalPat <R600_INSERT_ELT_V4, v4f32, f32>;
//===----------------------------------------------------------------------===//
// ISel Patterns
//===----------------------------------------------------------------------===//

View File

@ -18,18 +18,28 @@ class R600RegWithChan <string name, bits<9> sel, string chan> :
class R600Reg_128<string n, list<Register> subregs, bits<16> encoding> :
RegisterWithSubRegs<n, subregs> {
field bits<2> chan_encoding = 0;
let Namespace = "AMDGPU";
let SubRegIndices = [sub0, sub1, sub2, sub3];
let HWEncoding = encoding;
let HWEncoding{8-0} = encoding{8-0};
let HWEncoding{10-9} = chan_encoding;
}
class R600Reg_64<string n, list<Register> subregs, bits<16> encoding> :
RegisterWithSubRegs<n, subregs> {
field bits<2> chan_encoding = 0;
let Namespace = "AMDGPU";
let SubRegIndices = [sub0, sub1];
let HWEncoding = encoding;
let HWEncoding{8-0} = encoding{8-0};
let HWEncoding{10-9} = chan_encoding;
}
class R600Reg_64Vertical<int lo, int hi, string chan> : R600Reg_64 <
"V"#lo#hi#"_"#chan,
[!cast<Register>("T"#lo#"_"#chan), !cast<Register>("T"#hi#"_"#chan)],
lo
>;
foreach Index = 0-127 in {
foreach Chan = [ "X", "Y", "Z", "W" ] in {
@ -54,6 +64,24 @@ foreach Index = 0-127 in {
Index>;
}
foreach Chan = [ "X", "Y", "Z", "W"] in {
let chan_encoding = !if(!eq(Chan, "X"), 0,
!if(!eq(Chan, "Y"), 1,
!if(!eq(Chan, "Z"), 2,
!if(!eq(Chan, "W"), 3, 0)))) in {
def V0123_#Chan : R600Reg_128 <"V0123_"#Chan,
[!cast<Register>("T0_"#Chan),
!cast<Register>("T1_"#Chan),
!cast<Register>("T2_"#Chan),
!cast<Register>("T3_"#Chan)],
0>;
def V01_#Chan : R600Reg_64Vertical<0, 1, Chan>;
def V23_#Chan : R600Reg_64Vertical<2, 3, Chan>;
}
}
// KCACHE_BANK0
foreach Index = 159-128 in {
foreach Chan = [ "X", "Y", "Z", "W" ] in {
@ -130,8 +158,14 @@ def ALU_PARAM : R600Reg<"Param", 0>;
let isAllocatable = 0 in {
// XXX: Only use the X channel, until we support wider stack widths
def R600_Addr : RegisterClass <"AMDGPU", [i32], 127, (add (sequence "Addr%u_X", 0, 127))>;
def R600_Addr : RegisterClass <"AMDGPU", [i32], 32, (add (sequence "Addr%u_X", 0, 127))>;
// We only use Addr_[YZW] for vertical vectors.
// FIXME if we add more vertical vector registers we will need to ad more
// registers to these classes.
def R600_Addr_Y : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_Y)>;
def R600_Addr_Z : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_Z)>;
def R600_Addr_W : RegisterClass <"AMDGPU", [i32], 32, (add Addr0_W)>;
def R600_LDS_SRC_REG : RegisterClass<"AMDGPU", [i32], 32,
(add OQA, OQB, OQAP, OQBP, LDS_DIRECT_A, LDS_DIRECT_B)>;
@ -206,5 +240,13 @@ def R600_Reg128 : RegisterClass<"AMDGPU", [v4f32, v4i32], 128,
let CopyCost = -1;
}
def R600_Reg128Vertical : RegisterClass<"AMDGPU", [v4f32, v4i32], 128,
(add V0123_W, V0123_Z, V0123_Y, V0123_X)
>;
def R600_Reg64 : RegisterClass<"AMDGPU", [v2f32, v2i32], 64,
(add (sequence "T%u_XY", 0, 63))>;
def R600_Reg64Vertical : RegisterClass<"AMDGPU", [v2f32, v2i32], 64,
(add V01_X, V01_Y, V01_Z, V01_W,
V23_X, V23_Y, V23_Z, V23_W)>;

View File

@ -2560,13 +2560,13 @@ multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, SI_INDIRECT_DST I
// 1. Extract with offset
def : Pat<
(vector_extract vt:$vec, (add i32:$idx, imm:$off)),
(f32 (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, imm:$off))
(eltvt (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, imm:$off))
>;
// 2. Extract without offset
def : Pat<
(vector_extract vt:$vec, i32:$idx),
(f32 (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, 0))
(eltvt (SI_INDIRECT_SRC (IMPLICIT_DEF), $vec, $idx, 0))
>;
// 3. Insert with offset

View File

@ -10,7 +10,12 @@ declare void @llvm.AMDGPU.barrier.local() nounwind noduplicate
; SI-LABEL: @test_private_array_ptr_calc:
; SI: V_ADD_I32_e32 [[PTRREG:v[0-9]+]]
; SI: V_MOVRELD_B32_e32 {{v[0-9]+}}, [[PTRREG]]
;
; FIXME: The AMDGPUPromoteAlloca pass should be able to convert this
; alloca to a vector. It currently fails because it does not know how
; to interpret:
; getelementptr [4 x i32]* %alloca, i32 1, i32 %b
; SI: DS_WRITE_B32 {{v[0-9]+}}, [[PTRREG]]
define void @test_private_array_ptr_calc(i32 addrspace(1)* noalias %out, i32 addrspace(1)* noalias %inA, i32 addrspace(1)* noalias %inB) {
%alloca = alloca [4 x i32], i32 4, align 16
%tid = call i32 @llvm.SI.tid() readnone

View File

@ -3,10 +3,8 @@
declare void @llvm.AMDGPU.barrier.local() noduplicate nounwind
; SI-LABEL: @private_access_f64_alloca:
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: DS_WRITE_B64
; SI: DS_READ_B64
define void @private_access_f64_alloca(double addrspace(1)* noalias %out, double addrspace(1)* noalias %in, i32 %b) nounwind {
%val = load double addrspace(1)* %in, align 8
%array = alloca double, i32 16, align 8
@ -19,14 +17,10 @@ define void @private_access_f64_alloca(double addrspace(1)* noalias %out, double
}
; SI-LABEL: @private_access_v2f64_alloca:
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: DS_WRITE_B64
; SI: DS_WRITE_B64
; SI: DS_READ_B64
; SI: DS_READ_B64
define void @private_access_v2f64_alloca(<2 x double> addrspace(1)* noalias %out, <2 x double> addrspace(1)* noalias %in, i32 %b) nounwind {
%val = load <2 x double> addrspace(1)* %in, align 16
%array = alloca <2 x double>, i32 16, align 16
@ -39,10 +33,8 @@ define void @private_access_v2f64_alloca(<2 x double> addrspace(1)* noalias %out
}
; SI-LABEL: @private_access_i64_alloca:
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: DS_WRITE_B64
; SI: DS_READ_B64
define void @private_access_i64_alloca(i64 addrspace(1)* noalias %out, i64 addrspace(1)* noalias %in, i32 %b) nounwind {
%val = load i64 addrspace(1)* %in, align 8
%array = alloca i64, i32 16, align 8
@ -55,14 +47,10 @@ define void @private_access_i64_alloca(i64 addrspace(1)* noalias %out, i64 addrs
}
; SI-LABEL: @private_access_v2i64_alloca:
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELD_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: V_MOVRELS_B32_e32
; SI: DS_WRITE_B64
; SI: DS_WRITE_B64
; SI: DS_READ_B64
; SI: DS_READ_B64
define void @private_access_v2i64_alloca(<2 x i64> addrspace(1)* noalias %out, <2 x i64> addrspace(1)* noalias %in, i32 %b) nounwind {
%val = load <2 x i64> addrspace(1)* %in, align 16
%array = alloca <2 x i64>, i32 16, align 16

View File

@ -2,10 +2,13 @@
; REQUIRES: asserts
; RUN: llc -march=r600 -mcpu=SI < %s
define void @large_alloca(i32 addrspace(1)* %out, i32 %x) nounwind {
%large = alloca [256 x i32], align 4
%gep = getelementptr [256 x i32]* %large, i32 0, i32 255
define void @large_alloca(i32 addrspace(1)* %out, i32 %x, i32 %y) nounwind {
%large = alloca [8192 x i32], align 4
%gep = getelementptr [8192 x i32]* %large, i32 0, i32 8191
store i32 %x, i32* %gep
%gep1 = getelementptr [8192 x i32]* %large, i32 0, i32 %y
%0 = load i32* %gep1
store i32 %0, i32 addrspace(1)* %out
ret void
}

View File

@ -7,6 +7,12 @@
; CHECK: AND_INT
; CHECK-NEXT: AND_INT
; CHECK-NEXT: OR_INT
; FIXME: For some reason having the allocas here allowed the flatten cfg pass
; to do its transfomation, however now that we are using local memory for
; allocas, the transformation isn't happening.
; XFAIL: *
define void @_Z9chk1D_512v() #0 {
entry:
%a0 = alloca i32, align 4

View File

@ -3,6 +3,11 @@
;
; CFG flattening should use parallel-or to generate branch conditions and
; then merge if-regions with the same bodies.
; FIXME: For some reason having the allocas here allowed the flatten cfg pass
; to do its transfomation, however now that we are using local memory for
; allocas, the transformation isn't happening.
; XFAIL: *
;
; CHECK: OR_INT
; CHECK-NEXT: OR_INT

View File

@ -1,24 +1,17 @@
; RUN: llc -march=r600 -mcpu=redwood < %s | FileCheck %s --check-prefix=R600-CHECK --check-prefix=FUNC
; RUN: llc -verify-machineinstrs -march=r600 -mcpu=SI < %s | FileCheck %s --check-prefix=SI-CHECK --check-prefix=FUNC
; This test checks that uses and defs of the AR register happen in the same
; instruction clause.
; FUNC-LABEL: @mova_same_clause
; R600-CHECK: MOVA_INT
; R600-CHECK-NOT: ALU clause
; R600-CHECK: 0 + AR.x
; R600-CHECK: MOVA_INT
; R600-CHECK-NOT: ALU clause
; R600-CHECK: 0 + AR.x
; R600-CHECK: LDS_WRITE
; R600-CHECK: LDS_WRITE
; R600-CHECK: LDS_READ
; R600-CHECK: LDS_READ
; SI-CHECK: V_READFIRSTLANE_B32 vcc_lo
; SI-CHECK: V_MOVRELD
; SI-CHECK: S_CBRANCH
; SI-CHECK: V_READFIRSTLANE_B32 vcc_lo
; SI-CHECK: V_MOVRELD
; SI-CHECK: S_CBRANCH
; SI-CHECK: DS_WRITE_B32
; SI-CHECK: DS_WRITE_B32
; SI-CHECK: DS_READ_B32
; SI-CHECK: DS_READ_B32
define void @mova_same_clause(i32 addrspace(1)* nocapture %out, i32 addrspace(1)* nocapture %in) {
entry:
%stack = alloca [5 x i32], align 4
@ -114,12 +107,8 @@ for.end:
; FUNC-LABEL: @short_array
; R600-CHECK: MOV {{\** *}}T{{[0-9]\.[XYZW]}}, literal
; R600-CHECK: 65536
; R600-CHECK: *
; R600-CHECK: MOVA_INT
; SI-CHECK: V_MOV_B32_e32 v{{[0-9]}}, 0x10000
; SI-CHECK: V_MOVRELS_B32_e32
define void @short_array(i32 addrspace(1)* %out, i32 %index) {
entry:
@ -137,10 +126,7 @@ entry:
; FUNC-LABEL: @char_array
; R600-CHECK: OR_INT {{\** *}}T{{[0-9]\.[XYZW]}}, {{[PVT0-9]+\.[XYZW]}}, literal
; R600-CHECK: 256
; R600-CHECK: *
; R600-CHECK-NEXT: MOVA_INT
; R600-CHECK: MOVA_INT
; SI-CHECK: V_OR_B32_e32 v{{[0-9]}}, 0x100
; SI-CHECK: V_MOVRELS_B32_e32
@ -185,7 +171,9 @@ entry:
; Test that two stack objects are not stored in the same register
; The second stack object should be in T3.X
; FUNC-LABEL: @no_overlap
; R600-CHECK: MOV {{\** *}}T3.X
; R600_CHECK: MOV
; R600_CHECK: [[CHAN:[XYZW]]]+
; R600-CHECK-NOT: [[CHAN]]+
; SI-CHECK: V_MOV_B32_e32 v3
define void @no_overlap(i32 addrspace(1)* %out, i32 %in) {
entry:

View File

@ -1,5 +1,7 @@
; RUN: llc -verify-machineinstrs -march=r600 -mcpu=SI < %s | FileCheck -check-prefix=SI %s
; XFAIL: *
; 64-bit select was originally lowered with a build_pair, and this
; could be simplified to 1 cndmask instead of 2, but that broken when
; it started being implemented with a v2i32 build_vector and
@ -12,9 +14,10 @@ define void @trunc_select_i64(i32 addrspace(1)* %out, i64 %a, i64 %b, i32 %c) {
ret void
}
; FIXME: Fix truncating store for local memory
; SI-LABEL: @trunc_load_alloca_i64:
; SI: V_MOVRELS_B32
; SI-NOT: V_MOVRELS_B32
; SI: DS_READ_B32
; SI-NOT: DS_READ_B64
; SI: S_ENDPGM
define void @trunc_load_alloca_i64(i64 addrspace(1)* %out, i32 %a, i32 %b) {
%idx = add i32 %a, %b

View File

@ -0,0 +1,74 @@
; RUN: llc < %s -march=r600 -mcpu=redwood | FileCheck --check-prefix=EG --check-prefix=FUNC %s
; RUN: llc < %s -march=r600 -mcpu=verde -verify-machineinstrs | FileCheck --check-prefix=SI --check-prefix=FUNC %s
; FUNC-LABEL: @vector_read
; EG: MOV
; EG: MOV
; EG: MOV
; EG: MOV
; EG: MOVA_INT
define void @vector_read(i32 addrspace(1)* %out, i32 %index) {
entry:
%0 = alloca [4 x i32]
%x = getelementptr [4 x i32]* %0, i32 0, i32 0
%y = getelementptr [4 x i32]* %0, i32 0, i32 1
%z = getelementptr [4 x i32]* %0, i32 0, i32 2
%w = getelementptr [4 x i32]* %0, i32 0, i32 3
store i32 0, i32* %x
store i32 1, i32* %y
store i32 2, i32* %z
store i32 3, i32* %w
%1 = getelementptr [4 x i32]* %0, i32 0, i32 %index
%2 = load i32* %1
store i32 %2, i32 addrspace(1)* %out
ret void
}
; FUNC-LABEL: @vector_write
; EG: MOV
; EG: MOV
; EG: MOV
; EG: MOV
; EG: MOVA_INT
; EG: MOVA_INT
define void @vector_write(i32 addrspace(1)* %out, i32 %w_index, i32 %r_index) {
entry:
%0 = alloca [4 x i32]
%x = getelementptr [4 x i32]* %0, i32 0, i32 0
%y = getelementptr [4 x i32]* %0, i32 0, i32 1
%z = getelementptr [4 x i32]* %0, i32 0, i32 2
%w = getelementptr [4 x i32]* %0, i32 0, i32 3
store i32 0, i32* %x
store i32 0, i32* %y
store i32 0, i32* %z
store i32 0, i32* %w
%1 = getelementptr [4 x i32]* %0, i32 0, i32 %w_index
store i32 1, i32* %1
%2 = getelementptr [4 x i32]* %0, i32 0, i32 %r_index
%3 = load i32* %2
store i32 %3, i32 addrspace(1)* %out
ret void
}
; This test should be optimize to:
; store i32 0, i32 addrspace(1)* %out
; FUNC-LABEL: @bitcast_gep
; CHECK: STORE_RAW
define void @bitcast_gep(i32 addrspace(1)* %out, i32 %w_index, i32 %r_index) {
entry:
%0 = alloca [4 x i32]
%x = getelementptr [4 x i32]* %0, i32 0, i32 0
%y = getelementptr [4 x i32]* %0, i32 0, i32 1
%z = getelementptr [4 x i32]* %0, i32 0, i32 2
%w = getelementptr [4 x i32]* %0, i32 0, i32 3
store i32 0, i32* %x
store i32 0, i32* %y
store i32 0, i32* %z
store i32 0, i32* %w
%1 = getelementptr [4 x i32]* %0, i32 0, i32 1
%2 = bitcast i32* %1 to [4 x i32]*
%3 = getelementptr [4 x i32]* %2, i32 0, i32 0
%4 = load i32* %3
store i32 %4, i32 addrspace(1)* %out
ret void
}