1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00

R600/SI: Use v_cvt_f32_ubyte* instructions

This eliminates extra extract instructions when loading an i8 vector to
a float vector.

llvm-svn: 210666
This commit is contained in:
Matt Arsenault 2014-06-11 17:50:44 +00:00
parent 01e532692b
commit a75d166beb
10 changed files with 397 additions and 5 deletions

View File

@ -786,6 +786,18 @@ SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_bfe_i32:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1),
@ -1256,7 +1268,6 @@ SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
}
SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
@ -1582,6 +1593,10 @@ const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
NODE_NAME_CASE(SAMPLEB)
NODE_NAME_CASE(SAMPLED)
NODE_NAME_CASE(SAMPLEL)
NODE_NAME_CASE(CVT_F32_UBYTE0)
NODE_NAME_CASE(CVT_F32_UBYTE1)
NODE_NAME_CASE(CVT_F32_UBYTE2)
NODE_NAME_CASE(CVT_F32_UBYTE3)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
}

View File

@ -205,6 +205,12 @@ enum {
SAMPLEB,
SAMPLED,
SAMPLEL,
// These cvt_f32_ubyte* nodes need to remain consecutive and in order.
CVT_F32_UBYTE0,
CVT_F32_UBYTE1,
CVT_F32_UBYTE2,
CVT_F32_UBYTE3,
FIRST_MEM_OPCODE_NUMBER = ISD::FIRST_TARGET_MEMORY_OPCODE,
STORE_MSKOR,
LOAD_CONSTANT,

View File

@ -59,6 +59,17 @@ def AMDGPUumin : SDNode<"AMDGPUISD::UMIN", SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]
>;
def AMDGPUcvt_f32_ubyte0 : SDNode<"AMDGPUISD::CVT_F32_UBYTE0",
SDTIntToFPOp, []>;
def AMDGPUcvt_f32_ubyte1 : SDNode<"AMDGPUISD::CVT_F32_UBYTE1",
SDTIntToFPOp, []>;
def AMDGPUcvt_f32_ubyte2 : SDNode<"AMDGPUISD::CVT_F32_UBYTE2",
SDTIntToFPOp, []>;
def AMDGPUcvt_f32_ubyte3 : SDNode<"AMDGPUISD::CVT_F32_UBYTE3",
SDTIntToFPOp, []>;
// urecip - This operation is a helper for integer division, it returns the
// result of 1 / a as a fractional unsigned integer.
// out = (2^32 / a) + e

View File

@ -53,6 +53,10 @@ let TargetPrefix = "AMDGPU", isTarget = 1 in {
def int_AMDGPU_imul24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_imad24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_umad24 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_cvt_f32_ubyte0 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_cvt_f32_ubyte1 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_cvt_f32_ubyte2 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_cvt_f32_ubyte3 : Intrinsic<[llvm_float_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_cube : Intrinsic<[llvm_v4f32_ty], [llvm_v4f32_ty], [IntrNoMem]>;
def int_AMDGPU_bfi : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;
def int_AMDGPU_bfe_i32 : Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], [IntrNoMem]>;

View File

@ -24,6 +24,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
@ -214,6 +215,8 @@ SITargetLowering::SITargetLowering(TargetMachine &TM) :
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::UINT_TO_FP);
setSchedulingPreference(Sched::RegPressure);
}
@ -979,6 +982,96 @@ SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
// We are primarily trying to catch operations on illegal vector types
// before they are expanded.
// For scalars, we can use the more flexible method of checking masked bits
// after legalization.
if (!DCI.isBeforeLegalize() ||
!SrcVT.isVector() ||
SrcVT.getVectorElementType() != MVT::i8) {
return SDValue();
}
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
// Weird sized vectors are a pain to handle, but we know 3 is really the same
// size as 4.
unsigned NElts = SrcVT.getVectorNumElements();
if (!SrcVT.isSimple() && NElts != 3)
return SDValue();
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
// prevent a mess from expanding to v4i32 and repacking.
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
LoadSDNode *Load = cast<LoadSDNode>(Src);
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
LoadVT,
Load->getMemOperand());
// Make sure successors of the original load stay after it by updating
// them to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
SmallVector<SDValue, 4> Elts;
if (RegVT.isVector())
DAG.ExtractVectorElements(NewLoad, Elts);
else
Elts.push_back(NewLoad);
SmallVector<SDValue, 4> Ops;
unsigned EltIdx = 0;
for (SDValue Elt : Elts) {
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
for (unsigned I = 0; I < ComponentsInElt; ++I) {
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
DCI.AddToWorklist(Cvt.getNode());
Ops.push_back(Cvt);
}
++EltIdx;
}
assert(Ops.size() == NElts);
return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
@ -1020,6 +1113,31 @@ SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
}
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
}
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);

View File

@ -43,6 +43,9 @@ class SITargetLowering : public AMDGPUTargetLowering {
void adjustWritemask(MachineSDNode *&N, SelectionDAG &DAG) const;
MachineSDNode *AdjustRegClass(MachineSDNode *N, SelectionDAG &DAG) const;
static SDValue performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI);
public:
SITargetLowering(TargetMachine &tm);
bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,

View File

@ -978,10 +978,18 @@ defm V_CVT_F32_F64 : VOP1_32_64 <0x0000000f, "V_CVT_F32_F64",
defm V_CVT_F64_F32 : VOP1_64_32 <0x00000010, "V_CVT_F64_F32",
[(set f64:$dst, (fextend f32:$src0))]
>;
//defm V_CVT_F32_UBYTE0 : VOP1_32 <0x00000011, "V_CVT_F32_UBYTE0", []>;
//defm V_CVT_F32_UBYTE1 : VOP1_32 <0x00000012, "V_CVT_F32_UBYTE1", []>;
//defm V_CVT_F32_UBYTE2 : VOP1_32 <0x00000013, "V_CVT_F32_UBYTE2", []>;
//defm V_CVT_F32_UBYTE3 : VOP1_32 <0x00000014, "V_CVT_F32_UBYTE3", []>;
defm V_CVT_F32_UBYTE0 : VOP1_32 <0x00000011, "V_CVT_F32_UBYTE0",
[(set f32:$dst, (AMDGPUcvt_f32_ubyte0 i32:$src0))]
>;
defm V_CVT_F32_UBYTE1 : VOP1_32 <0x00000012, "V_CVT_F32_UBYTE1",
[(set f32:$dst, (AMDGPUcvt_f32_ubyte1 i32:$src0))]
>;
defm V_CVT_F32_UBYTE2 : VOP1_32 <0x00000013, "V_CVT_F32_UBYTE2",
[(set f32:$dst, (AMDGPUcvt_f32_ubyte2 i32:$src0))]
>;
defm V_CVT_F32_UBYTE3 : VOP1_32 <0x00000014, "V_CVT_F32_UBYTE3",
[(set f32:$dst, (AMDGPUcvt_f32_ubyte3 i32:$src0))]
>;
defm V_CVT_U32_F64 : VOP1_32_64 <0x00000015, "V_CVT_U32_F64",
[(set i32:$dst, (fp_to_uint f64:$src0))]
>;

View File

@ -42,3 +42,17 @@ define void @v2i16_to_f32(float addrspace(1)* %out, <2 x i16> addrspace(1)* %in)
store float %bc, float addrspace(1)* %out, align 4
ret void
}
define void @v4i8_to_i32(i32 addrspace(1)* %out, <4 x i8> addrspace(1)* %in) nounwind {
%load = load <4 x i8> addrspace(1)* %in, align 4
%bc = bitcast <4 x i8> %load to i32
store i32 %bc, i32 addrspace(1)* %out, align 4
ret void
}
define void @i32_to_v4i8(<4 x i8> addrspace(1)* %out, i32 addrspace(1)* %in) nounwind {
%load = load i32 addrspace(1)* %in, align 4
%bc = bitcast i32 %load to <4 x i8>
store <4 x i8> %bc, <4 x i8> addrspace(1)* %out, align 4
ret void
}

View File

@ -0,0 +1,171 @@
; RUN: llc -march=r600 -mcpu=SI -verify-machineinstrs < %s | FileCheck -check-prefix=SI %s
; SI-LABEL: @load_i8_to_f32:
; SI: BUFFER_LOAD_UBYTE [[LOADREG:v[0-9]+]],
; SI-NOT: BFE
; SI-NOT: LSHR
; SI: V_CVT_F32_UBYTE0_e32 [[CONV:v[0-9]+]], [[LOADREG]]
; SI: BUFFER_STORE_DWORD [[CONV]],
define void @load_i8_to_f32(float addrspace(1)* noalias %out, i8 addrspace(1)* noalias %in) nounwind {
%load = load i8 addrspace(1)* %in, align 1
%cvt = uitofp i8 %load to float
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @load_v2i8_to_v2f32:
; SI: BUFFER_LOAD_USHORT [[LOADREG:v[0-9]+]],
; SI-NOT: BFE
; SI-NOT: LSHR
; SI-NOT: AND
; SI-DAG: V_CVT_F32_UBYTE1_e32 v[[HIRESULT:[0-9]+]], [[LOADREG]]
; SI-DAG: V_CVT_F32_UBYTE0_e32 v[[LORESULT:[0-9]+]], [[LOADREG]]
; SI: BUFFER_STORE_DWORDX2 v{{\[}}[[LORESULT]]:[[HIRESULT]]{{\]}},
define void @load_v2i8_to_v2f32(<2 x float> addrspace(1)* noalias %out, <2 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <2 x i8> addrspace(1)* %in, align 1
%cvt = uitofp <2 x i8> %load to <2 x float>
store <2 x float> %cvt, <2 x float> addrspace(1)* %out, align 16
ret void
}
; SI-LABEL: @load_v3i8_to_v3f32:
; SI-NOT: BFE
; SI-NOT: V_CVT_F32_UBYTE3_e32
; SI-DAG: V_CVT_F32_UBYTE2_e32
; SI-DAG: V_CVT_F32_UBYTE1_e32
; SI-DAG: V_CVT_F32_UBYTE0_e32
; SI: BUFFER_STORE_DWORDX2 v{{\[}}[[LORESULT]]:[[HIRESULT]]{{\]}},
define void @load_v3i8_to_v3f32(<3 x float> addrspace(1)* noalias %out, <3 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <3 x i8> addrspace(1)* %in, align 1
%cvt = uitofp <3 x i8> %load to <3 x float>
store <3 x float> %cvt, <3 x float> addrspace(1)* %out, align 16
ret void
}
; SI-LABEL: @load_v4i8_to_v4f32:
; SI: BUFFER_LOAD_DWORD [[LOADREG:v[0-9]+]],
; SI-NOT: BFE
; SI-NOT: LSHR
; SI-DAG: V_CVT_F32_UBYTE3_e32 v[[HIRESULT:[0-9]+]], [[LOADREG]]
; SI-DAG: V_CVT_F32_UBYTE2_e32 v{{[0-9]+}}, [[LOADREG]]
; SI-DAG: V_CVT_F32_UBYTE1_e32 v{{[0-9]+}}, [[LOADREG]]
; SI-DAG: V_CVT_F32_UBYTE0_e32 v[[LORESULT:[0-9]+]], [[LOADREG]]
; SI: BUFFER_STORE_DWORDX4 v{{\[}}[[LORESULT]]:[[HIRESULT]]{{\]}},
define void @load_v4i8_to_v4f32(<4 x float> addrspace(1)* noalias %out, <4 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <4 x i8> addrspace(1)* %in, align 1
%cvt = uitofp <4 x i8> %load to <4 x float>
store <4 x float> %cvt, <4 x float> addrspace(1)* %out, align 16
ret void
}
; XXX - This should really still be able to use the V_CVT_F32_UBYTE0
; for each component, but computeKnownBits doesn't handle vectors very
; well.
; SI-LABEL: @load_v4i8_to_v4f32_2_uses:
; SI: BUFFER_LOAD_UBYTE
; SI: V_CVT_F32_UBYTE0_e32
; SI: BUFFER_LOAD_UBYTE
; SI: V_CVT_F32_UBYTE0_e32
; SI: BUFFER_LOAD_UBYTE
; SI: V_CVT_F32_UBYTE0_e32
; SI: BUFFER_LOAD_UBYTE
; SI: V_CVT_F32_UBYTE0_e32
; XXX - replace with this when v4i8 loads aren't scalarized anymore.
; XSI: BUFFER_LOAD_DWORD
; XSI: V_CVT_F32_U32_e32
; XSI: V_CVT_F32_U32_e32
; XSI: V_CVT_F32_U32_e32
; XSI: V_CVT_F32_U32_e32
; SI: S_ENDPGM
define void @load_v4i8_to_v4f32_2_uses(<4 x float> addrspace(1)* noalias %out, <4 x i8> addrspace(1)* noalias %out2, <4 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <4 x i8> addrspace(1)* %in, align 4
%cvt = uitofp <4 x i8> %load to <4 x float>
store <4 x float> %cvt, <4 x float> addrspace(1)* %out, align 16
%add = add <4 x i8> %load, <i8 9, i8 9, i8 9, i8 9> ; Second use of %load
store <4 x i8> %add, <4 x i8> addrspace(1)* %out2, align 4
ret void
}
; Make sure this doesn't crash.
; SI-LABEL: @load_v7i8_to_v7f32:
; SI: S_ENDPGM
define void @load_v7i8_to_v7f32(<7 x float> addrspace(1)* noalias %out, <7 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <7 x i8> addrspace(1)* %in, align 1
%cvt = uitofp <7 x i8> %load to <7 x float>
store <7 x float> %cvt, <7 x float> addrspace(1)* %out, align 16
ret void
}
; SI-LABEL: @load_v8i8_to_v8f32:
; SI: BUFFER_LOAD_DWORDX2 v{{\[}}[[LOLOAD:[0-9]+]]:[[HILOAD:[0-9]+]]{{\]}},
; SI-NOT: BFE
; SI-NOT: LSHR
; SI-DAG: V_CVT_F32_UBYTE3_e32 v{{[0-9]+}}, v[[LOLOAD]]
; SI-DAG: V_CVT_F32_UBYTE2_e32 v{{[0-9]+}}, v[[LOLOAD]]
; SI-DAG: V_CVT_F32_UBYTE1_e32 v{{[0-9]+}}, v[[LOLOAD]]
; SI-DAG: V_CVT_F32_UBYTE0_e32 v{{[0-9]+}}, v[[LOLOAD]]
; SI-DAG: V_CVT_F32_UBYTE3_e32 v{{[0-9]+}}, v[[HILOAD]]
; SI-DAG: V_CVT_F32_UBYTE2_e32 v{{[0-9]+}}, v[[HILOAD]]
; SI-DAG: V_CVT_F32_UBYTE1_e32 v{{[0-9]+}}, v[[HILOAD]]
; SI-DAG: V_CVT_F32_UBYTE0_e32 v{{[0-9]+}}, v[[HILOAD]]
; SI-NOT: BFE
; SI-NOT: LSHR
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
; SI: BUFFER_STORE_DWORD
define void @load_v8i8_to_v8f32(<8 x float> addrspace(1)* noalias %out, <8 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <8 x i8> addrspace(1)* %in, align 1
%cvt = uitofp <8 x i8> %load to <8 x float>
store <8 x float> %cvt, <8 x float> addrspace(1)* %out, align 16
ret void
}
; SI-LABEL: @i8_zext_inreg_i32_to_f32:
; SI: BUFFER_LOAD_DWORD [[LOADREG:v[0-9]+]],
; SI: V_ADD_I32_e32 [[ADD:v[0-9]+]], 2, [[LOADREG]]
; SI-NEXT: V_CVT_F32_UBYTE0_e32 [[CONV:v[0-9]+]], [[ADD]]
; SI: BUFFER_STORE_DWORD [[CONV]],
define void @i8_zext_inreg_i32_to_f32(float addrspace(1)* noalias %out, i32 addrspace(1)* noalias %in) nounwind {
%load = load i32 addrspace(1)* %in, align 4
%add = add i32 %load, 2
%inreg = and i32 %add, 255
%cvt = uitofp i32 %inreg to float
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @i8_zext_inreg_hi1_to_f32:
define void @i8_zext_inreg_hi1_to_f32(float addrspace(1)* noalias %out, i32 addrspace(1)* noalias %in) nounwind {
%load = load i32 addrspace(1)* %in, align 4
%inreg = and i32 %load, 65280
%shr = lshr i32 %inreg, 8
%cvt = uitofp i32 %shr to float
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; We don't get these ones because of the zext, but instcombine removes
; them so it shouldn't really matter.
define void @i8_zext_i32_to_f32(float addrspace(1)* noalias %out, i8 addrspace(1)* noalias %in) nounwind {
%load = load i8 addrspace(1)* %in, align 1
%ext = zext i8 %load to i32
%cvt = uitofp i32 %ext to float
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
define void @v4i8_zext_v4i32_to_v4f32(<4 x float> addrspace(1)* noalias %out, <4 x i8> addrspace(1)* noalias %in) nounwind {
%load = load <4 x i8> addrspace(1)* %in, align 1
%ext = zext <4 x i8> %load to <4 x i32>
%cvt = uitofp <4 x i32> %ext to <4 x float>
store <4 x float> %cvt, <4 x float> addrspace(1)* %out, align 16
ret void
}

View File

@ -0,0 +1,42 @@
; RUN: llc -march=r600 -mcpu=SI < %s | FileCheck -check-prefix=SI %s
declare float @llvm.AMDGPU.cvt.f32.ubyte0(i32) nounwind readnone
declare float @llvm.AMDGPU.cvt.f32.ubyte1(i32) nounwind readnone
declare float @llvm.AMDGPU.cvt.f32.ubyte2(i32) nounwind readnone
declare float @llvm.AMDGPU.cvt.f32.ubyte3(i32) nounwind readnone
; SI-LABEL: @test_unpack_byte0_to_float:
; SI: V_CVT_F32_UBYTE0
define void @test_unpack_byte0_to_float(float addrspace(1)* %out, i32 addrspace(1)* %in) nounwind {
%val = load i32 addrspace(1)* %in, align 4
%cvt = call float @llvm.AMDGPU.cvt.f32.ubyte0(i32 %val) nounwind readnone
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @test_unpack_byte1_to_float:
; SI: V_CVT_F32_UBYTE1
define void @test_unpack_byte1_to_float(float addrspace(1)* %out, i32 addrspace(1)* %in) nounwind {
%val = load i32 addrspace(1)* %in, align 4
%cvt = call float @llvm.AMDGPU.cvt.f32.ubyte1(i32 %val) nounwind readnone
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @test_unpack_byte2_to_float:
; SI: V_CVT_F32_UBYTE2
define void @test_unpack_byte2_to_float(float addrspace(1)* %out, i32 addrspace(1)* %in) nounwind {
%val = load i32 addrspace(1)* %in, align 4
%cvt = call float @llvm.AMDGPU.cvt.f32.ubyte2(i32 %val) nounwind readnone
store float %cvt, float addrspace(1)* %out, align 4
ret void
}
; SI-LABEL: @test_unpack_byte3_to_float:
; SI: V_CVT_F32_UBYTE3
define void @test_unpack_byte3_to_float(float addrspace(1)* %out, i32 addrspace(1)* %in) nounwind {
%val = load i32 addrspace(1)* %in, align 4
%cvt = call float @llvm.AMDGPU.cvt.f32.ubyte3(i32 %val) nounwind readnone
store float %cvt, float addrspace(1)* %out, align 4
ret void
}