1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00

Pull iterators out of CFG.h and genericize them with GraphTraits

llvm-svn: 666
This commit is contained in:
Chris Lattner 2001-09-28 22:59:14 +00:00
parent 97440eba29
commit a8f5e13f7a
3 changed files with 351 additions and 0 deletions

View File

@ -0,0 +1,147 @@
//===- llvm/Support/DepthFirstIterator.h - Depth First iterators -*- C++ -*--=//
//
// This file builds on the Support/GraphTraits.h file to build generic depth
// first graph iterator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
#define LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
#include "llvm/Support/GraphTraits.h"
#include <iterator>
#include <stack>
#include <set>
// Generic Depth First Iterator
template<class GraphT, class GT = GraphTraits<GraphT> >
class df_iterator : public std::forward_iterator<typename GT::NodeType,
ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is node pointer, second is the 'next child' to visit
stack<pair<NodeType *, ChildItTy> > VisitStack;
const bool Reverse; // Iterate over children before self?
private:
void reverseEnterNode() {
pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
for (; It != GT::child_end(Node); ++It) {
NodeType *Child = *It;
if (!Visited.count(Child)) {
Visited.insert(Child);
VisitStack.push(make_pair(Child, GT::child_begin(Child)));
reverseEnterNode();
return;
}
}
}
inline df_iterator(NodeType *Node, bool reverse) : Reverse(reverse) {
Visited.insert(Node);
VisitStack.push(make_pair(Node, GT::child_begin(Node)));
if (Reverse) reverseEnterNode();
}
inline df_iterator() { /* End is when stack is empty */ }
public:
typedef df_iterator<GraphT, GT> _Self;
// Provide static begin and end methods as our public "constructors"
static inline _Self begin(GraphT G, bool Reverse = false) {
return _Self(GT::getEntryNode(G), Reverse);
}
static inline _Self end(GraphT G) { return _Self(); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
if (Reverse) { // Reverse Depth First Iterator
if (VisitStack.top().second == GT::child_end(VisitStack.top().first))
VisitStack.pop();
if (!VisitStack.empty())
reverseEnterNode();
} else { // Normal Depth First Iterator
do {
pair<NodeType *, ChildItTy> &Top = VisitStack.top();
NodeType *Node = Top.first;
ChildItTy &It = Top.second;
while (It != GT::child_end(Node)) {
NodeType *Next = *It++;
if (!Visited.count(Next)) { // Has our next sibling been visited?
// No, do it now.
Visited.insert(Next);
VisitStack.push(make_pair(Next, GT::child_begin(Next)));
return *this;
}
}
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop();
} while (!VisitStack.empty());
}
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
inline bool nodeVisited(NodeType *Node) const {
return Visited.count(Node) != 0;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(T G, bool Reverse = false) {
return df_iterator<T>::begin(G, Reverse);
}
template <class T>
df_iterator<T> df_end(T G) {
return df_iterator<T>::end(G);
}
// Provide global definitions of inverse depth first iterators...
template <class T>
struct idf_iterator : public df_iterator<Inverse<T> > {
idf_iterator(const df_iterator<Inverse<T> > &V) :df_iterator<Inverse<T> >(V){}
};
template <class T>
idf_iterator<T> idf_begin(T G, bool Reverse = false) {
return idf_iterator<T>::begin(G, Reverse);
}
template <class T>
idf_iterator<T> idf_end(T G){
return idf_iterator<T>::end(G);
}
#endif

View File

@ -0,0 +1,59 @@
//===-- llvm/Support/GraphTraits.h - Graph traits template -------*- C++ -*--=//
//
// This file defines the little GraphTraits<X> template class that should be
// specialized by classes that want to be iteratable by generic graph iterators.
//
// This file also defines the marker class Inverse that is used to iterate over
// graphs in a graph defined, inverse ordering...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GRAPH_TRAITS_H
#define LLVM_SUPPORT_GRAPH_TRAITS_H
// GraphTraits - This class should be specialized by different graph types...
// which is why the default version is empty.
//
template<class GraphType>
struct GraphTraits {
// Elements to provide:
// typedef NodeType - Type of Node in the graph
// typedef ChildIteratorType - Type used to iterate over children in graph
// static NodeType *getEntryNode(GraphType *)
// Return the entry node of the graph
// static ChildIteratorType child_begin(NodeType *)
// static ChildIteratorType child_end (NodeType *)
// Return iterators that point to the beginning and ending of the child
// node list for the specified node.
//
// If anyone tries to use this class without having an appropriate
// specialization make an error. If you get this error, it's because you
// need to include the appropriate specialization of GraphTraits<> for your
// graph, or you need to define it for a new graph type.
//
typedef typename GraphType::UnknownGraphTypeError NodeType;
};
// Inverse - This class is used as a little marker class to tell the graph
// iterator to iterate over the graph in a graph defined "Inverse" ordering.
// Not all graphs define an inverse ordering, and if they do, it depends on
// the graph exactly what that is. Here's an example of usage with the
// df_iterator:
//
// df_iterator<Inverse<Method> > I = idf_begin(M), E = idf_end(M);
// for (; I != E; ++I) { ... }
//
template <class GraphType>
struct Inverse {
GraphType &Graph;
inline Inverse(GraphType &G) : Graph(G) {}
};
#endif

View File

@ -0,0 +1,145 @@
//===-- llvm/Support/PostOrderIterator.h - Generic PO iterator ---*- C++ -*--=//
//
// This file builds on the Support/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_POSTORDER_ITERATOR_H
#define LLVM_SUPPORT_POSTORDER_ITERATOR_H
#include "llvm/Support/GraphTraits.h"
#include <iterator>
#include <stack>
#include <set>
template<class GraphT, class GT = GraphTraits<GraphT> >
class po_iterator : public std::forward_iterator<typename GT::NodeType,
ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
stack<pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) {
NodeType *BB = *VisitStack.top().second++;
if (!Visited.count(BB)) { // If the block is not visited...
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() { /* End is when stack is empty */ }
public:
typedef po_iterator<GraphT, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT G) { return _Self(); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
VisitStack.pop();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
// Provide global definitions of inverse post order iterators...
template <class T>
struct ipo_iterator : public po_iterator<Inverse<T> > {
ipo_iterator(const po_iterator<Inverse<T> > &V) :po_iterator<Inverse<T> >(V){}
};
template <class T>
ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(T G){
return ipo_iterator<T>::end(G);
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than neccesary.
//
// This class should be used like this:
// {
// cfg::ReversePostOrderTraversal RPOT(MethodPtr); // Expensive to create
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
typedef reverse_iterator<vector<BasicBlock*>::iterator> rpo_iterator;
// TODO: FIXME: ReversePostOrderTraversal is not generic!
class ReversePostOrderTraversal {
vector<BasicBlock*> Blocks; // Block list in normal PO order
inline void Initialize(BasicBlock *BB) {
copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
}
public:
inline ReversePostOrderTraversal(Method *M) {
Initialize(M->front());
}
inline ReversePostOrderTraversal(BasicBlock *BB) {
Initialize(BB);
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
#endif