1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00

Fixed bug in findAllcircuits. Fixed branch addition to schedule. Added debug information.

llvm-svn: 20280
This commit is contained in:
Tanya Lattner 2005-02-23 02:01:42 +00:00
parent a43f090dcd
commit a981a711aa
4 changed files with 150 additions and 92 deletions

View File

@ -19,6 +19,7 @@
using namespace llvm;
//Returns a boolean indicating if the start cycle needs to be increased/decreased
bool MSSchedule::insert(MSchedGraphNode *node, int cycle) {
//First, check if the cycle has a spot free to start
@ -147,6 +148,7 @@ bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle) {
std::map<int, int>::iterator resourceUse = resourcesForCycle->second.find(resourceNum);
//assert if not in the map.. since it should be!
//assert(resourceUse != resourcesForCycle.end() && "Resource should be in map!");
DEBUG(std::cerr << "Removing resource num " << resourceNum << " from cycle " << oldCycle << "\n");
--resourceUse->second;
}
}
@ -163,7 +165,7 @@ bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle) {
}
bool MSSchedule::constructKernel(int II) {
bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches) {
int stageNum = (schedule.rbegin()->first)/ II;
DEBUG(std::cerr << "Number of Stages: " << stageNum << "\n");
@ -188,6 +190,11 @@ bool MSSchedule::constructKernel(int II) {
}
}
//Push on branches. Branch vector is in order of last branch to first.
for(std::vector<MSchedGraphNode*>::reverse_iterator B = branches.rbegin() , BE = branches.rend(); B != BE; ++B) {
kernel.push_back(std::make_pair(*B, 0));
}
if(stageNum > 0)
maxStage = stageNum;
else

View File

@ -45,7 +45,7 @@ namespace llvm {
int getStartCycle(MSchedGraphNode *node);
void clear() { schedule.clear(); resourceNumPerCycle.clear(); kernel.clear(); }
std::vector<std::pair<MSchedGraphNode*, int> >* getKernel() { return &kernel; }
bool constructKernel(int II);
bool constructKernel(int II, std::vector<MSchedGraphNode*> &branches);
int getMaxStage() { return maxStage; }

View File

@ -1029,7 +1029,38 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
}
}
void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &nodesToAdd) {
//Push node onto the path
path.push_back(node);
//Loop over all successors and see if there is a path from this node to
//a recurrence in the partial order, if so.. add all nodes to be added to recc
for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
++S) {
//If this node exists in a recurrence already in the partial order, then add all
//nodes in the path to the set of nodes to add
//Check if its already in our partial order, if not add it to the final vector
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
//Check if we should ignore this edge first
if(ignoreEdge(node,*S))
continue;
if(PO->count(*S)) {
nodesToAdd.insert(*S);
}
searchPath(*S, path, nodesToAdd);
}
}
//Pop Node off the path
path.pop_back();
}
@ -1042,74 +1073,79 @@ void ModuloSchedulingPass::computePartialOrder() {
//on BA being there?
std::vector<MSchedGraphNode*> branches;
//Loop over all recurrences and add to our partial order
//be sure to remove nodes that are already in the partial order in
//a different recurrence and don't add empty recurrences.
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
//Add nodes that connect this recurrence to the previous recurrence
//If this is the first recurrence in the partial order, add all predecessors
for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
}
//Steps to add a recurrence to the partial order
// 1) Find reccurrence with the highest RecMII. Add it to the partial order.
// 2) For each recurrence with decreasing RecMII, add it to the partial order along with
// any nodes that connect this recurrence to recurrences already in the partial order
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
std::set<MSchedGraphNode*> new_recurrence;
//Loop through recurrence and remove any nodes already in the partial order
for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(),
NE = I->second.end(); N != NE; ++N) {
bool found = false;
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->count(*N))
found = true;
}
//Check if its a branch, and remove to handle special
if(!found) {
if((*N)->isBranch()) {
branches.push_back(*N);
}
else
new_recurrence.insert(*N);
}
if(partialOrder.size() == 0)
//For each predecessors, add it to this recurrence ONLY if it is not already in it
for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(),
PE = (*N)->pred_end(); P != PE; ++P) {
//Check if we are supposed to ignore this edge or not
if(!ignoreEdge(*P, *N))
//Check if already in this recurrence
if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
//Also need to check if in partial order
bool predFound = false;
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
if(PO->count(*P))
predFound = true;
}
if(!predFound)
if(!new_recurrence.count(*P)) {
if((*P)->isBranch()) {
branches.push_back(*P);
}
else
new_recurrence.insert(*P);
}
}
}
}
}
if(new_recurrence.size() > 0)
if(new_recurrence.size() > 0) {
std::vector<MSchedGraphNode*> path;
std::set<MSchedGraphNode*> nodesToAdd;
//Add nodes that connect this recurrence to recurrences in the partial path
for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
NE = new_recurrence.end(); N != NE; ++N)
searchPath(*N, path, nodesToAdd);
//Add nodes to this recurrence if they are not already in the partial order
for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
N != NE; ++N) {
bool found = false;
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->count(*N))
found = true;
}
if(!found) {
assert("FOUND CONNECTOR");
new_recurrence.insert(*N);
}
}
partialOrder.push_back(new_recurrence);
}
}
//Add any nodes that are not already in the partial order
//Add them in a set, one set per connected component
std::set<MSchedGraphNode*> lastNodes;
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
E = nodeToAttributesMap.end(); I != E; ++I) {
bool found = false;
//Check if its already in our partial order, if not add it to the final vector
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->count(I->first))
found = true;
}
@ -1131,9 +1167,7 @@ void ModuloSchedulingPass::computePartialOrder() {
if(ccSet.size() > 0)
partialOrder.push_back(ccSet);
}
//if(lastNodes.size() > 0)
//partialOrder.push_back(lastNodes);
//Clean up branches by putting them in final order
std::map<unsigned, MSchedGraphNode*> branchOrder;
for(std::vector<MSchedGraphNode*>::iterator I = branches.begin(), E = branches.end(); I != E; ++I)
@ -1441,9 +1475,8 @@ bool ModuloSchedulingPass::computeSchedule() {
while(!success) {
int branchES = II - 1;
int branchLS = II - 1;
bool lastBranch = true;
//Keep track of branches, but do not insert into the schedule
std::vector<MSchedGraphNode*> branches;
//Loop over the final node order and process each node
for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(),
@ -1465,54 +1498,62 @@ bool ModuloSchedulingPass::computeSchedule() {
for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
if((*I)->isPredecessor(*schedNode)) {
//if(!ignoreEdge(*schedNode, *I)) {
int diff = (*I)->getInEdge(*schedNode).getIteDiff();
int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
EarlyStart = std::max(EarlyStart, ES_Temp);
hasPred = true;
//}
int diff = (*I)->getInEdge(*schedNode).getIteDiff();
int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
EarlyStart = std::max(EarlyStart, ES_Temp);
hasPred = true;
}
if((*I)->isSuccessor(*schedNode)) {
//if(!ignoreEdge(*I,*schedNode)) {
int diff = (*schedNode)->getInEdge(*I).getIteDiff();
int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
LateStart = std::min(LateStart, LS_Temp);
hasSucc = true;
//}
int diff = (*schedNode)->getInEdge(*I).getIteDiff();
int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
LateStart = std::min(LateStart, LS_Temp);
hasSucc = true;
}
}
}
}
else {
if(lastBranch) {
EarlyStart = branchES;
LateStart = branchLS;
lastBranch = false;
--branchES;
branchLS = 0;
branches.push_back(*I);
continue;
}
//Check if this node is a pred or succ to a branch, and restrict its placement
//even though the branch is not in the schedule
int count = branches.size();
for(std::vector<MSchedGraphNode*>::iterator B = branches.begin(), BE = branches.end();
B != BE; ++B) {
if((*I)->isPredecessor(*B)) {
int diff = (*I)->getInEdge(*B).getIteDiff();
int ES_Temp = (II+count) + (*B)->getLatency() - diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count) << "\n");
DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
EarlyStart = std::max(EarlyStart, ES_Temp);
hasPred = true;
}
else {
EarlyStart = branchLS;
LateStart = branchES;
assert( (EarlyStart >= 0) && (LateStart >=0) && "EarlyStart and LateStart must be greater then 0");
--branchES;
if((*I)->isSuccessor(*B)) {
int diff = (*B)->getInEdge(*I).getIteDiff();
int LS_Temp = (II+count) - (*I)->getLatency() + diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count) << "\n");
DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
LateStart = std::min(LateStart, LS_Temp);
hasSucc = true;
}
hasPred = 0;
hasSucc = 1;
count--;
}
DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
//Check if the node has no pred or successors and set Early Start to its ASAP
if(!hasSucc && !hasPred)
EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
//Now, try to schedule this node depending upon its pred and successor in the schedule
//already
if(!hasSucc && hasPred)
@ -1520,10 +1561,13 @@ bool ModuloSchedulingPass::computeSchedule() {
else if(!hasPred && hasSucc)
success = scheduleNode(*I, LateStart, (LateStart - II +1));
else if(hasPred && hasSucc) {
if(EarlyStart > LateStart)
success = false;
else
success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
if(EarlyStart > LateStart) {
//success = false;
LateStart = EarlyStart;
DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
}
//else
success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
}
else
success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
@ -1539,7 +1583,7 @@ bool ModuloSchedulingPass::computeSchedule() {
if(success) {
DEBUG(std::cerr << "Constructing Schedule Kernel\n");
success = schedule.constructKernel(II);
success = schedule.constructKernel(II, branches);
DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
if(!success) {
++IncreasedII;
@ -1548,8 +1592,10 @@ bool ModuloSchedulingPass::computeSchedule() {
}
}
if(II >= capII)
if(II >= capII) {
DEBUG(std::cerr << "Maximum II reached, giving up\n");
return false;
}
assert(II < capII && "The II should not exceed the original loop number of cycles");
}

View File

@ -97,7 +97,12 @@ namespace llvm {
void unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B);
void searchPath(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &nodesToAdd);
void computePartialOrder();
bool computeSchedule();
bool scheduleNode(MSchedGraphNode *node,
int start, int end);