mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
Re-land r331622 "[llvm-exegesis] Add a library to cluster benchmark results."
Add missing move. llvm-svn: 331624
This commit is contained in:
parent
f3e4460ec8
commit
ad35ed3ca7
@ -2,6 +2,7 @@ add_library(LLVMExegesis
|
||||
STATIC
|
||||
BenchmarkResult.cpp
|
||||
BenchmarkRunner.cpp
|
||||
Clustering.cpp
|
||||
InMemoryAssembler.cpp
|
||||
InstructionSnippetGenerator.cpp
|
||||
Latency.cpp
|
||||
|
170
tools/llvm-exegesis/lib/Clustering.cpp
Normal file
170
tools/llvm-exegesis/lib/Clustering.cpp
Normal file
@ -0,0 +1,170 @@
|
||||
//===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Clustering.h"
|
||||
#include <string>
|
||||
#include <unordered_set>
|
||||
|
||||
namespace exegesis {
|
||||
|
||||
// The clustering problem has the following characteristics:
|
||||
// (A) - Low dimension (dimensions are typically proc resource units,
|
||||
// typically < 10).
|
||||
// (B) - Number of points : ~thousands (points are measurements of an MCInst)
|
||||
// (C) - Number of clusters: ~tens.
|
||||
// (D) - The number of clusters is not known /a priory/.
|
||||
// (E) - The amount of noise is relatively small.
|
||||
// The problem is rather small. In terms of algorithms, (D) disqualifies
|
||||
// k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
|
||||
//
|
||||
// We've used DBSCAN here because it's simple to implement. This is a pretty
|
||||
// straightforward and inefficient implementation of the pseudocode in [2].
|
||||
//
|
||||
// [1] https://en.wikipedia.org/wiki/DBSCAN
|
||||
// [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
|
||||
|
||||
namespace {
|
||||
|
||||
// Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
|
||||
// including Q).
|
||||
std::vector<size_t> rangeQuery(const std::vector<InstructionBenchmark> &Points,
|
||||
const size_t Q, const double EpsilonSquared) {
|
||||
std::vector<size_t> Neighbors;
|
||||
const auto &QMeasurements = Points[Q].Measurements;
|
||||
for (size_t P = 0, NumPoints = Points.size(); P < NumPoints; ++P) {
|
||||
if (P == Q)
|
||||
continue;
|
||||
const auto &PMeasurements = Points[P].Measurements;
|
||||
if (PMeasurements.empty()) // Error point.
|
||||
continue;
|
||||
double DistanceSquared = 0;
|
||||
for (size_t I = 0, E = QMeasurements.size(); I < E; ++I) {
|
||||
const auto Diff = PMeasurements[I].Value - QMeasurements[I].Value;
|
||||
DistanceSquared += Diff * Diff;
|
||||
}
|
||||
if (DistanceSquared <= EpsilonSquared) {
|
||||
Neighbors.push_back(P);
|
||||
}
|
||||
}
|
||||
return Neighbors;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
InstructionBenchmarkClustering::InstructionBenchmarkClustering()
|
||||
: NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
|
||||
|
||||
llvm::Error InstructionBenchmarkClustering::validateAndSetup(
|
||||
const std::vector<InstructionBenchmark> &Points) {
|
||||
ClusterIdForPoint_.resize(Points.size());
|
||||
// Mark erroneous measurements out.
|
||||
// All points must have the same number of dimensions, in the same order.
|
||||
const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
|
||||
for (size_t P = 0, NumPoints = Points.size(); P < NumPoints; ++P) {
|
||||
const auto &Point = Points[P];
|
||||
if (!Point.Error.empty()) {
|
||||
ClusterIdForPoint_[P] = ClusterId::error();
|
||||
ErrorCluster_.PointIndices.push_back(P);
|
||||
continue;
|
||||
}
|
||||
const auto *CurMeasurement = &Point.Measurements;
|
||||
if (LastMeasurement) {
|
||||
if (LastMeasurement->size() != CurMeasurement->size()) {
|
||||
return llvm::make_error<llvm::StringError>(
|
||||
"inconsistent measurement dimensions",
|
||||
llvm::inconvertibleErrorCode());
|
||||
}
|
||||
for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
|
||||
if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
|
||||
return llvm::make_error<llvm::StringError>(
|
||||
"inconsistent measurement dimensions keys",
|
||||
llvm::inconvertibleErrorCode());
|
||||
}
|
||||
}
|
||||
}
|
||||
LastMeasurement = CurMeasurement;
|
||||
}
|
||||
if (LastMeasurement) {
|
||||
NumDimensions_ = LastMeasurement->size();
|
||||
}
|
||||
return llvm::Error::success();
|
||||
}
|
||||
|
||||
void InstructionBenchmarkClustering::dbScan(
|
||||
const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
|
||||
const double EpsilonSquared) {
|
||||
for (size_t P = 0, NumPoints = Points.size(); P < NumPoints; ++P) {
|
||||
if (!ClusterIdForPoint_[P].isUndef())
|
||||
continue; // Previously processed in inner loop.
|
||||
const auto Neighbors = rangeQuery(Points, P, EpsilonSquared);
|
||||
if (Neighbors.size() + 1 < MinPts) { // Density check.
|
||||
// The region around P is not dense enough to create a new cluster, mark
|
||||
// as noise for now.
|
||||
ClusterIdForPoint_[P] = ClusterId::noise();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new cluster, add P.
|
||||
Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
|
||||
Cluster &CurrentCluster = Clusters_.back();
|
||||
ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
|
||||
CurrentCluster.PointIndices.push_back(P);
|
||||
|
||||
// Process P's neighbors.
|
||||
std::unordered_set<size_t> ToProcess(Neighbors.begin(), Neighbors.end());
|
||||
while (!ToProcess.empty()) {
|
||||
// Retrieve a point from the set.
|
||||
const size_t Q = *ToProcess.begin();
|
||||
ToProcess.erase(Q);
|
||||
|
||||
if (ClusterIdForPoint_[Q].isNoise()) {
|
||||
// Change noise point to border point.
|
||||
ClusterIdForPoint_[Q] = CurrentCluster.Id;
|
||||
CurrentCluster.PointIndices.push_back(Q);
|
||||
continue;
|
||||
}
|
||||
if (!ClusterIdForPoint_[Q].isUndef()) {
|
||||
continue; // Previously processed.
|
||||
}
|
||||
// Add Q to the current custer.
|
||||
ClusterIdForPoint_[Q] = CurrentCluster.Id;
|
||||
CurrentCluster.PointIndices.push_back(Q);
|
||||
// And extend to the neighbors of Q if the region is dense enough.
|
||||
const auto Neighbors = rangeQuery(Points, Q, EpsilonSquared);
|
||||
if (Neighbors.size() + 1 >= MinPts) {
|
||||
ToProcess.insert(Neighbors.begin(), Neighbors.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add noisy points to noise cluster.
|
||||
for (size_t P = 0, NumPoints = Points.size(); P < NumPoints; ++P) {
|
||||
if (ClusterIdForPoint_[P].isNoise()) {
|
||||
NoiseCluster_.PointIndices.push_back(P);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llvm::Expected<InstructionBenchmarkClustering>
|
||||
InstructionBenchmarkClustering::create(
|
||||
const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
|
||||
const double Epsilon) {
|
||||
InstructionBenchmarkClustering Clustering;
|
||||
if (auto Error = Clustering.validateAndSetup(Points)) {
|
||||
return std::move(Error);
|
||||
}
|
||||
if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
|
||||
return Clustering; // Nothing to cluster.
|
||||
}
|
||||
|
||||
Clustering.dbScan(Points, MinPts, Epsilon * Epsilon);
|
||||
return Clustering;
|
||||
}
|
||||
|
||||
} // namespace exegesis
|
103
tools/llvm-exegesis/lib/Clustering.h
Normal file
103
tools/llvm-exegesis/lib/Clustering.h
Normal file
@ -0,0 +1,103 @@
|
||||
//===-- Clustering.h --------------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
///
|
||||
/// \file
|
||||
/// Utilities to compute benchmark result clusters.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
|
||||
#define LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
|
||||
|
||||
#include "BenchmarkResult.h"
|
||||
#include "llvm/Support/Error.h"
|
||||
#include <vector>
|
||||
|
||||
namespace exegesis {
|
||||
|
||||
class InstructionBenchmarkClustering {
|
||||
public:
|
||||
// Clusters `Points` using DBSCAN with the given parameters. See the cc file
|
||||
// for more explanations on the algorithm.
|
||||
static llvm::Expected<InstructionBenchmarkClustering>
|
||||
create(const std::vector<InstructionBenchmark> &Points, size_t MinPts,
|
||||
double Epsilon);
|
||||
|
||||
class ClusterId {
|
||||
public:
|
||||
static ClusterId noise() { return ClusterId(kNoise); }
|
||||
static ClusterId error() { return ClusterId(kError); }
|
||||
static ClusterId makeValid(int Id) {
|
||||
assert(Id >= 0);
|
||||
return ClusterId(Id);
|
||||
}
|
||||
ClusterId() : Id_(kUndef) {}
|
||||
bool operator==(const ClusterId &O) const { return Id_ == O.Id_; }
|
||||
|
||||
bool isValid() const { return Id_ >= 0; }
|
||||
bool isUndef() const { return Id_ == kUndef; }
|
||||
bool isNoise() const { return Id_ == kNoise; }
|
||||
bool isError() const { return Id_ == kError; }
|
||||
|
||||
// Precondition: isValid().
|
||||
size_t getId() const {
|
||||
assert(isValid());
|
||||
return static_cast<size_t>(Id_);
|
||||
}
|
||||
|
||||
private:
|
||||
explicit ClusterId(int Id) : Id_(Id) {}
|
||||
static constexpr const int kUndef = -1;
|
||||
static constexpr const int kNoise = -2;
|
||||
static constexpr const int kError = -3;
|
||||
int Id_;
|
||||
};
|
||||
|
||||
struct Cluster {
|
||||
Cluster() = delete;
|
||||
explicit Cluster(const ClusterId &Id) : Id(Id) {}
|
||||
|
||||
const ClusterId Id;
|
||||
// Indices of benchmarks within the cluster.
|
||||
std::vector<int> PointIndices;
|
||||
};
|
||||
|
||||
ClusterId getClusterIdForPoint(size_t P) const {
|
||||
return ClusterIdForPoint_[P];
|
||||
}
|
||||
|
||||
const Cluster &getCluster(ClusterId Id) const {
|
||||
assert(!Id.isUndef() && "unlabeled cluster");
|
||||
if (Id.isNoise()) {
|
||||
return NoiseCluster_;
|
||||
}
|
||||
if (Id.isError()) {
|
||||
return ErrorCluster_;
|
||||
}
|
||||
return Clusters_[Id.getId()];
|
||||
}
|
||||
|
||||
const std::vector<Cluster> &getValidClusters() const { return Clusters_; }
|
||||
|
||||
private:
|
||||
InstructionBenchmarkClustering();
|
||||
llvm::Error validateAndSetup(const std::vector<InstructionBenchmark> &Points);
|
||||
void dbScan(const std::vector<InstructionBenchmark> &Points, size_t MinPts,
|
||||
double EpsilonSquared);
|
||||
int NumDimensions_ = 0;
|
||||
// ClusterForPoint_[P] is the cluster id for Points[P].
|
||||
std::vector<ClusterId> ClusterIdForPoint_;
|
||||
std::vector<Cluster> Clusters_;
|
||||
Cluster NoiseCluster_;
|
||||
Cluster ErrorCluster_;
|
||||
};
|
||||
|
||||
} // namespace exegesis
|
||||
|
||||
#endif // LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
|
@ -12,6 +12,7 @@ set(LLVM_LINK_COMPONENTS
|
||||
|
||||
add_llvm_unittest(LLVMExegesisTests
|
||||
BenchmarkResultTest.cpp
|
||||
ClusteringTest.cpp
|
||||
OperandGraphTest.cpp
|
||||
PerfHelperTest.cpp
|
||||
)
|
||||
|
86
unittests/tools/llvm-exegesis/ClusteringTest.cpp
Normal file
86
unittests/tools/llvm-exegesis/ClusteringTest.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
//===-- ClusteringTest.cpp --------------------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Clustering.h"
|
||||
#include "BenchmarkResult.h"
|
||||
#include "llvm/Support/Error.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "gmock/gmock.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace exegesis {
|
||||
|
||||
namespace {
|
||||
|
||||
using testing::Field;
|
||||
using testing::UnorderedElementsAre;
|
||||
using testing::UnorderedElementsAreArray;
|
||||
|
||||
TEST(ClusteringTest, Clusters3D) {
|
||||
std::vector<InstructionBenchmark> Points(6);
|
||||
|
||||
// Cluster around (x=0, y=1, z=2): points {0, 3}.
|
||||
Points[0].Measurements = {{"x", 0.01, ""}, {"y", 1.02, ""}, {"z", 1.98, "A"}};
|
||||
Points[3].Measurements = {{"x", -0.01, ""}, {"y", 1.02, ""}, {"z", 1.98, ""}};
|
||||
// Cluster around (x=1, y=1, z=2): points {1, 4}.
|
||||
Points[1].Measurements = {{"x", 1.01, ""}, {"y", 1.02, ""}, {"z", 1.98, ""}};
|
||||
Points[4].Measurements = {{"x", 0.99, ""}, {"y", 1.02, ""}, {"z", 1.98, ""}};
|
||||
// Cluster around (x=0, y=0, z=0): points {5}, marked as noise.
|
||||
Points[5].Measurements = {{"x", 0.0, ""}, {"y", 0.01, ""}, {"z", -0.02, ""}};
|
||||
// Error cluster: points {2}
|
||||
Points[2].Error = "oops";
|
||||
|
||||
auto HasPoints = [](const std::vector<int> &Indices) {
|
||||
return Field(&InstructionBenchmarkClustering::Cluster::PointIndices,
|
||||
UnorderedElementsAreArray(Indices));
|
||||
};
|
||||
|
||||
auto Clustering = InstructionBenchmarkClustering::create(Points, 2, 0.25);
|
||||
ASSERT_TRUE((bool)Clustering);
|
||||
EXPECT_THAT(Clustering.get().getValidClusters(),
|
||||
UnorderedElementsAre(HasPoints({0, 3}), HasPoints({1, 4})));
|
||||
EXPECT_THAT(Clustering.get().getCluster(
|
||||
InstructionBenchmarkClustering::ClusterId::noise()),
|
||||
HasPoints({5}));
|
||||
EXPECT_THAT(Clustering.get().getCluster(
|
||||
InstructionBenchmarkClustering::ClusterId::error()),
|
||||
HasPoints({2}));
|
||||
|
||||
EXPECT_EQ(Clustering.get().getClusterIdForPoint(2),
|
||||
InstructionBenchmarkClustering::ClusterId::error());
|
||||
EXPECT_EQ(Clustering.get().getClusterIdForPoint(5),
|
||||
InstructionBenchmarkClustering::ClusterId::noise());
|
||||
EXPECT_EQ(Clustering.get().getClusterIdForPoint(0),
|
||||
Clustering.get().getClusterIdForPoint(3));
|
||||
EXPECT_EQ(Clustering.get().getClusterIdForPoint(1),
|
||||
Clustering.get().getClusterIdForPoint(4));
|
||||
}
|
||||
|
||||
TEST(ClusteringTest, Clusters3D_InvalidSize) {
|
||||
std::vector<InstructionBenchmark> Points(6);
|
||||
Points[0].Measurements = {{"x", 0.01, ""}, {"y", 1.02, ""}, {"z", 1.98, ""}};
|
||||
Points[1].Measurements = {{"y", 1.02, ""}, {"z", 1.98, ""}};
|
||||
auto Error =
|
||||
InstructionBenchmarkClustering::create(Points, 2, 0.25).takeError();
|
||||
ASSERT_TRUE((bool)Error);
|
||||
consumeError(std::move(Error));
|
||||
}
|
||||
|
||||
TEST(ClusteringTest, Clusters3D_InvalidOrder) {
|
||||
std::vector<InstructionBenchmark> Points(6);
|
||||
Points[0].Measurements = {{"x", 0.01, ""}, {"y", 1.02, ""}};
|
||||
Points[1].Measurements = {{"y", 1.02, ""}, {"x", 1.98, ""}};
|
||||
auto Error =
|
||||
InstructionBenchmarkClustering::create(Points, 2, 0.25).takeError();
|
||||
ASSERT_TRUE((bool)Error);
|
||||
consumeError(std::move(Error));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace exegesis
|
Loading…
Reference in New Issue
Block a user