mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 12:41:49 +01:00
[LoopRotate] add ability to repeat loop rotation until non-deoptimizing exit is found
In case of loops with multiple exit where all-but-one exit are deoptimizing it might happen that the first rotation will end up with latch having a deoptimizing exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount) as well as for loop transformations that know how to handle multple deoptimizing exits. It pretty much means that canonical form in multple-deoptimizing-exits case should be with non-deoptimizing exit at latch. Teach loop-rotation to reach this canonical form by repeating rotation. -loop-rotate-multi option introduced to control this behavior, currently disabled by default. Reviewers: skatkov, asbirlea, reames, fhahn Reviewed By: skatkov Tags: #llvm Differential Revision: https://reviews.llvm.org/D73058
This commit is contained in:
parent
084ea94702
commit
af7baa2a66
@ -46,6 +46,11 @@ using namespace llvm;
|
||||
|
||||
STATISTIC(NumRotated, "Number of loops rotated");
|
||||
|
||||
static cl::opt<bool>
|
||||
MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
|
||||
cl::desc("Allow loop rotation multiple times in order to reach "
|
||||
"a better latch exit"));
|
||||
|
||||
namespace {
|
||||
/// A simple loop rotation transformation.
|
||||
class LoopRotate {
|
||||
@ -177,14 +182,16 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
|
||||
}
|
||||
}
|
||||
|
||||
// Look for a phi which is only used outside the loop (via a LCSSA phi)
|
||||
// in the exit from the header. This means that rotating the loop can
|
||||
// remove the phi.
|
||||
static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
// Assuming both header and latch are exiting, look for a phi which is only
|
||||
// used outside the loop (via a LCSSA phi) in the exit from the header.
|
||||
// This means that rotating the loop can remove the phi.
|
||||
static bool profitableToRotateLoopExitingLatch(Loop *L) {
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
|
||||
BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
|
||||
assert(BI && BI->isConditional() && "need header with conditional exit");
|
||||
BasicBlock *HeaderExit = BI->getSuccessor(0);
|
||||
if (L->contains(HeaderExit))
|
||||
HeaderExit = Header->getTerminator()->getSuccessor(1);
|
||||
HeaderExit = BI->getSuccessor(1);
|
||||
|
||||
for (auto &Phi : Header->phis()) {
|
||||
// Look for uses of this phi in the loop/via exits other than the header.
|
||||
@ -194,7 +201,50 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
continue;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that latch exit is deoptimizing (which means - very unlikely to happen)
|
||||
// and there is another exit from the loop which is non-deoptimizing.
|
||||
// If we rotate latch to that exit our loop has a better chance of being fully
|
||||
// canonical.
|
||||
//
|
||||
// It can give false positives in some rare cases.
|
||||
static bool canRotateDeoptimizingLatchExit(Loop *L) {
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
assert(Latch && "need latch");
|
||||
BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
|
||||
// Need normal exiting latch.
|
||||
if (!BI || !BI->isConditional())
|
||||
return false;
|
||||
|
||||
BasicBlock *Exit = BI->getSuccessor(1);
|
||||
if (L->contains(Exit))
|
||||
Exit = BI->getSuccessor(0);
|
||||
|
||||
// Latch exit is non-deoptimizing, no need to rotate.
|
||||
if (!Exit->getPostdominatingDeoptimizeCall())
|
||||
return false;
|
||||
|
||||
SmallVector<BasicBlock *, 4> Exits;
|
||||
L->getUniqueExitBlocks(Exits);
|
||||
if (!Exits.empty()) {
|
||||
// There is at least one non-deoptimizing exit.
|
||||
//
|
||||
// Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
|
||||
// as it can conservatively return false for deoptimizing exits with
|
||||
// complex enough control flow down to deoptimize call.
|
||||
//
|
||||
// That means here we can report success for a case where
|
||||
// all exits are deoptimizing but one of them has complex enough
|
||||
// control flow (e.g. with loops).
|
||||
//
|
||||
// That should be a very rare case and false positives for this function
|
||||
// have compile-time effect only.
|
||||
return any_of(Exits, [](const BasicBlock *BB) {
|
||||
return !BB->getPostdominatingDeoptimizeCall();
|
||||
});
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -208,319 +258,336 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
/// rotation. LoopRotate should be repeatable and converge to a canonical
|
||||
/// form. This property is satisfied because simplifying the loop latch can only
|
||||
/// happen once across multiple invocations of the LoopRotate pass.
|
||||
///
|
||||
/// If -loop-rotate-multi is enabled we can do multiple rotations in one go
|
||||
/// so to reach a suitable (non-deoptimizing) exit.
|
||||
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||
// If the loop has only one block then there is not much to rotate.
|
||||
if (L->getBlocks().size() == 1)
|
||||
return false;
|
||||
|
||||
BasicBlock *OrigHeader = L->getHeader();
|
||||
BasicBlock *OrigLatch = L->getLoopLatch();
|
||||
bool Rotated = false;
|
||||
do {
|
||||
BasicBlock *OrigHeader = L->getHeader();
|
||||
BasicBlock *OrigLatch = L->getLoopLatch();
|
||||
|
||||
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
||||
if (!BI || BI->isUnconditional())
|
||||
return false;
|
||||
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
||||
if (!BI || BI->isUnconditional())
|
||||
return Rotated;
|
||||
|
||||
// If the loop header is not one of the loop exiting blocks then
|
||||
// either this loop is already rotated or it is not
|
||||
// suitable for loop rotation transformations.
|
||||
if (!L->isLoopExiting(OrigHeader))
|
||||
return false;
|
||||
// If the loop header is not one of the loop exiting blocks then
|
||||
// either this loop is already rotated or it is not
|
||||
// suitable for loop rotation transformations.
|
||||
if (!L->isLoopExiting(OrigHeader))
|
||||
return Rotated;
|
||||
|
||||
// If the loop latch already contains a branch that leaves the loop then the
|
||||
// loop is already rotated.
|
||||
if (!OrigLatch)
|
||||
return false;
|
||||
// If the loop latch already contains a branch that leaves the loop then the
|
||||
// loop is already rotated.
|
||||
if (!OrigLatch)
|
||||
return Rotated;
|
||||
|
||||
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
||||
// latch was just simplified. Or if we think it will be profitable.
|
||||
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
|
||||
!shouldRotateLoopExitingLatch(L))
|
||||
return false;
|
||||
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
||||
// latch was just simplified. Or if we think it will be profitable.
|
||||
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
|
||||
!profitableToRotateLoopExitingLatch(L) &&
|
||||
!canRotateDeoptimizingLatchExit(L))
|
||||
return Rotated;
|
||||
|
||||
// Check size of original header and reject loop if it is very big or we can't
|
||||
// duplicate blocks inside it.
|
||||
{
|
||||
SmallPtrSet<const Value *, 32> EphValues;
|
||||
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
||||
// Check size of original header and reject loop if it is very big or we can't
|
||||
// duplicate blocks inside it.
|
||||
{
|
||||
SmallPtrSet<const Value *, 32> EphValues;
|
||||
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
||||
|
||||
CodeMetrics Metrics;
|
||||
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
|
||||
if (Metrics.notDuplicatable) {
|
||||
LLVM_DEBUG(
|
||||
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
||||
<< " instructions: ";
|
||||
L->dump());
|
||||
return false;
|
||||
CodeMetrics Metrics;
|
||||
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
|
||||
if (Metrics.notDuplicatable) {
|
||||
LLVM_DEBUG(
|
||||
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
||||
<< " instructions: ";
|
||||
L->dump());
|
||||
return Rotated;
|
||||
}
|
||||
if (Metrics.convergent) {
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
||||
"instructions: ";
|
||||
L->dump());
|
||||
return Rotated;
|
||||
}
|
||||
if (Metrics.NumInsts > MaxHeaderSize)
|
||||
return Rotated;
|
||||
}
|
||||
if (Metrics.convergent) {
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
||||
"instructions: ";
|
||||
L->dump());
|
||||
return false;
|
||||
}
|
||||
if (Metrics.NumInsts > MaxHeaderSize)
|
||||
return false;
|
||||
}
|
||||
|
||||
// Now, this loop is suitable for rotation.
|
||||
BasicBlock *OrigPreheader = L->getLoopPreheader();
|
||||
// Now, this loop is suitable for rotation.
|
||||
BasicBlock *OrigPreheader = L->getLoopPreheader();
|
||||
|
||||
// If the loop could not be converted to canonical form, it must have an
|
||||
// indirectbr in it, just give up.
|
||||
if (!OrigPreheader || !L->hasDedicatedExits())
|
||||
return false;
|
||||
// If the loop could not be converted to canonical form, it must have an
|
||||
// indirectbr in it, just give up.
|
||||
if (!OrigPreheader || !L->hasDedicatedExits())
|
||||
return Rotated;
|
||||
|
||||
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
||||
// in its header will soon be invalidated. We should also invalidate
|
||||
// all outer loops because insertion and deletion of blocks that happens
|
||||
// during the rotation may violate invariants related to backedge taken
|
||||
// infos in them.
|
||||
if (SE)
|
||||
SE->forgetTopmostLoop(L);
|
||||
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
||||
// in its header will soon be invalidated. We should also invalidate
|
||||
// all outer loops because insertion and deletion of blocks that happens
|
||||
// during the rotation may violate invariants related to backedge taken
|
||||
// infos in them.
|
||||
if (SE)
|
||||
SE->forgetTopmostLoop(L);
|
||||
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
|
||||
// Find new Loop header. NewHeader is a Header's one and only successor
|
||||
// that is inside loop. Header's other successor is outside the
|
||||
// loop. Otherwise loop is not suitable for rotation.
|
||||
BasicBlock *Exit = BI->getSuccessor(0);
|
||||
BasicBlock *NewHeader = BI->getSuccessor(1);
|
||||
if (L->contains(Exit))
|
||||
std::swap(Exit, NewHeader);
|
||||
assert(NewHeader && "Unable to determine new loop header");
|
||||
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
||||
"Unable to determine loop header and exit blocks");
|
||||
// Find new Loop header. NewHeader is a Header's one and only successor
|
||||
// that is inside loop. Header's other successor is outside the
|
||||
// loop. Otherwise loop is not suitable for rotation.
|
||||
BasicBlock *Exit = BI->getSuccessor(0);
|
||||
BasicBlock *NewHeader = BI->getSuccessor(1);
|
||||
if (L->contains(Exit))
|
||||
std::swap(Exit, NewHeader);
|
||||
assert(NewHeader && "Unable to determine new loop header");
|
||||
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
||||
"Unable to determine loop header and exit blocks");
|
||||
|
||||
// This code assumes that the new header has exactly one predecessor.
|
||||
// Remove any single-entry PHI nodes in it.
|
||||
assert(NewHeader->getSinglePredecessor() &&
|
||||
"New header doesn't have one pred!");
|
||||
FoldSingleEntryPHINodes(NewHeader);
|
||||
// This code assumes that the new header has exactly one predecessor.
|
||||
// Remove any single-entry PHI nodes in it.
|
||||
assert(NewHeader->getSinglePredecessor() &&
|
||||
"New header doesn't have one pred!");
|
||||
FoldSingleEntryPHINodes(NewHeader);
|
||||
|
||||
// Begin by walking OrigHeader and populating ValueMap with an entry for
|
||||
// each Instruction.
|
||||
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
|
||||
ValueToValueMapTy ValueMap, ValueMapMSSA;
|
||||
// Begin by walking OrigHeader and populating ValueMap with an entry for
|
||||
// each Instruction.
|
||||
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
|
||||
ValueToValueMapTy ValueMap, ValueMapMSSA;
|
||||
|
||||
// For PHI nodes, the value available in OldPreHeader is just the
|
||||
// incoming value from OldPreHeader.
|
||||
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
||||
InsertNewValueIntoMap(ValueMap, PN,
|
||||
PN->getIncomingValueForBlock(OrigPreheader));
|
||||
// For PHI nodes, the value available in OldPreHeader is just the
|
||||
// incoming value from OldPreHeader.
|
||||
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
||||
InsertNewValueIntoMap(ValueMap, PN,
|
||||
PN->getIncomingValueForBlock(OrigPreheader));
|
||||
|
||||
// For the rest of the instructions, either hoist to the OrigPreheader if
|
||||
// possible or create a clone in the OldPreHeader if not.
|
||||
Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
|
||||
// For the rest of the instructions, either hoist to the OrigPreheader if
|
||||
// possible or create a clone in the OldPreHeader if not.
|
||||
Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
|
||||
|
||||
// Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
|
||||
using DbgIntrinsicHash =
|
||||
// Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
|
||||
using DbgIntrinsicHash =
|
||||
std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
|
||||
auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
|
||||
return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
|
||||
};
|
||||
SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
|
||||
for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
|
||||
I != E; ++I) {
|
||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
|
||||
DbgIntrinsics.insert(makeHash(DII));
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
while (I != E) {
|
||||
Instruction *Inst = &*I++;
|
||||
|
||||
// If the instruction's operands are invariant and it doesn't read or write
|
||||
// memory, then it is safe to hoist. Doing this doesn't change the order of
|
||||
// execution in the preheader, but does prevent the instruction from
|
||||
// executing in each iteration of the loop. This means it is safe to hoist
|
||||
// something that might trap, but isn't safe to hoist something that reads
|
||||
// memory (without proving that the loop doesn't write).
|
||||
if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
|
||||
!Inst->mayWriteToMemory() && !Inst->isTerminator() &&
|
||||
!isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
|
||||
Inst->moveBefore(LoopEntryBranch);
|
||||
continue;
|
||||
auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
|
||||
return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
|
||||
};
|
||||
SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
|
||||
for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
|
||||
I != E; ++I) {
|
||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
|
||||
DbgIntrinsics.insert(makeHash(DII));
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
// Otherwise, create a duplicate of the instruction.
|
||||
Instruction *C = Inst->clone();
|
||||
while (I != E) {
|
||||
Instruction *Inst = &*I++;
|
||||
|
||||
// Eagerly remap the operands of the instruction.
|
||||
RemapInstruction(C, ValueMap,
|
||||
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
||||
|
||||
// Avoid inserting the same intrinsic twice.
|
||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
|
||||
if (DbgIntrinsics.count(makeHash(DII))) {
|
||||
C->deleteValue();
|
||||
// If the instruction's operands are invariant and it doesn't read or write
|
||||
// memory, then it is safe to hoist. Doing this doesn't change the order of
|
||||
// execution in the preheader, but does prevent the instruction from
|
||||
// executing in each iteration of the loop. This means it is safe to hoist
|
||||
// something that might trap, but isn't safe to hoist something that reads
|
||||
// memory (without proving that the loop doesn't write).
|
||||
if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
|
||||
!Inst->mayWriteToMemory() && !Inst->isTerminator() &&
|
||||
!isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
|
||||
Inst->moveBefore(LoopEntryBranch);
|
||||
continue;
|
||||
}
|
||||
|
||||
// With the operands remapped, see if the instruction constant folds or is
|
||||
// otherwise simplifyable. This commonly occurs because the entry from PHI
|
||||
// nodes allows icmps and other instructions to fold.
|
||||
Value *V = SimplifyInstruction(C, SQ);
|
||||
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
|
||||
// If so, then delete the temporary instruction and stick the folded value
|
||||
// in the map.
|
||||
InsertNewValueIntoMap(ValueMap, Inst, V);
|
||||
if (!C->mayHaveSideEffects()) {
|
||||
C->deleteValue();
|
||||
C = nullptr;
|
||||
// Otherwise, create a duplicate of the instruction.
|
||||
Instruction *C = Inst->clone();
|
||||
|
||||
// Eagerly remap the operands of the instruction.
|
||||
RemapInstruction(C, ValueMap,
|
||||
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
||||
|
||||
// Avoid inserting the same intrinsic twice.
|
||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
|
||||
if (DbgIntrinsics.count(makeHash(DII))) {
|
||||
C->deleteValue();
|
||||
continue;
|
||||
}
|
||||
|
||||
// With the operands remapped, see if the instruction constant folds or is
|
||||
// otherwise simplifyable. This commonly occurs because the entry from PHI
|
||||
// nodes allows icmps and other instructions to fold.
|
||||
Value *V = SimplifyInstruction(C, SQ);
|
||||
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
|
||||
// If so, then delete the temporary instruction and stick the folded value
|
||||
// in the map.
|
||||
InsertNewValueIntoMap(ValueMap, Inst, V);
|
||||
if (!C->mayHaveSideEffects()) {
|
||||
C->deleteValue();
|
||||
C = nullptr;
|
||||
}
|
||||
} else {
|
||||
InsertNewValueIntoMap(ValueMap, Inst, C);
|
||||
}
|
||||
if (C) {
|
||||
// Otherwise, stick the new instruction into the new block!
|
||||
C->setName(Inst->getName());
|
||||
C->insertBefore(LoopEntryBranch);
|
||||
|
||||
if (auto *II = dyn_cast<IntrinsicInst>(C))
|
||||
if (II->getIntrinsicID() == Intrinsic::assume)
|
||||
AC->registerAssumption(II);
|
||||
// MemorySSA cares whether the cloned instruction was inserted or not, and
|
||||
// not whether it can be remapped to a simplified value.
|
||||
if (MSSAU)
|
||||
InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
|
||||
}
|
||||
} else {
|
||||
InsertNewValueIntoMap(ValueMap, Inst, C);
|
||||
}
|
||||
if (C) {
|
||||
// Otherwise, stick the new instruction into the new block!
|
||||
C->setName(Inst->getName());
|
||||
C->insertBefore(LoopEntryBranch);
|
||||
|
||||
if (auto *II = dyn_cast<IntrinsicInst>(C))
|
||||
if (II->getIntrinsicID() == Intrinsic::assume)
|
||||
AC->registerAssumption(II);
|
||||
// MemorySSA cares whether the cloned instruction was inserted or not, and
|
||||
// not whether it can be remapped to a simplified value.
|
||||
if (MSSAU)
|
||||
InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
|
||||
}
|
||||
}
|
||||
// Along with all the other instructions, we just cloned OrigHeader's
|
||||
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
|
||||
// successors by duplicating their incoming values for OrigHeader.
|
||||
for (BasicBlock *SuccBB : successors(OrigHeader))
|
||||
for (BasicBlock::iterator BI = SuccBB->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
||||
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
|
||||
|
||||
// Along with all the other instructions, we just cloned OrigHeader's
|
||||
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
|
||||
// successors by duplicating their incoming values for OrigHeader.
|
||||
for (BasicBlock *SuccBB : successors(OrigHeader))
|
||||
for (BasicBlock::iterator BI = SuccBB->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
||||
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
|
||||
|
||||
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
|
||||
// OrigPreHeader's old terminator (the original branch into the loop), and
|
||||
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
|
||||
LoopEntryBranch->eraseFromParent();
|
||||
|
||||
// Update MemorySSA before the rewrite call below changes the 1:1
|
||||
// instruction:cloned_instruction_or_value mapping.
|
||||
if (MSSAU) {
|
||||
InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
|
||||
MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
|
||||
ValueMapMSSA);
|
||||
}
|
||||
|
||||
SmallVector<PHINode*, 2> InsertedPHIs;
|
||||
// If there were any uses of instructions in the duplicated block outside the
|
||||
// loop, update them, inserting PHI nodes as required
|
||||
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
|
||||
&InsertedPHIs);
|
||||
|
||||
// Attach dbg.value intrinsics to the new phis if that phi uses a value that
|
||||
// previously had debug metadata attached. This keeps the debug info
|
||||
// up-to-date in the loop body.
|
||||
if (!InsertedPHIs.empty())
|
||||
insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
|
||||
|
||||
// NewHeader is now the header of the loop.
|
||||
L->moveToHeader(NewHeader);
|
||||
assert(L->getHeader() == NewHeader && "Latch block is our new header");
|
||||
|
||||
// Inform DT about changes to the CFG.
|
||||
if (DT) {
|
||||
// The OrigPreheader branches to the NewHeader and Exit now. Then, inform
|
||||
// the DT about the removed edge to the OrigHeader (that got removed).
|
||||
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
|
||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
|
||||
Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
|
||||
DT->applyUpdates(Updates);
|
||||
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
|
||||
// OrigPreHeader's old terminator (the original branch into the loop), and
|
||||
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
|
||||
LoopEntryBranch->eraseFromParent();
|
||||
|
||||
// Update MemorySSA before the rewrite call below changes the 1:1
|
||||
// instruction:cloned_instruction_or_value mapping.
|
||||
if (MSSAU) {
|
||||
MSSAU->applyUpdates(Updates, *DT);
|
||||
if (VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
|
||||
MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
|
||||
ValueMapMSSA);
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, we've finished our major CFG changes. As part of cloning
|
||||
// the loop into the preheader we've simplified instructions and the
|
||||
// duplicated conditional branch may now be branching on a constant. If it is
|
||||
// branching on a constant and if that constant means that we enter the loop,
|
||||
// then we fold away the cond branch to an uncond branch. This simplifies the
|
||||
// loop in cases important for nested loops, and it also means we don't have
|
||||
// to split as many edges.
|
||||
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
|
||||
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
|
||||
if (!isa<ConstantInt>(PHBI->getCondition()) ||
|
||||
PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
|
||||
NewHeader) {
|
||||
// The conditional branch can't be folded, handle the general case.
|
||||
// Split edges as necessary to preserve LoopSimplify form.
|
||||
SmallVector<PHINode*, 2> InsertedPHIs;
|
||||
// If there were any uses of instructions in the duplicated block outside the
|
||||
// loop, update them, inserting PHI nodes as required
|
||||
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
|
||||
&InsertedPHIs);
|
||||
|
||||
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
|
||||
// thus is not a preheader anymore.
|
||||
// Split the edge to form a real preheader.
|
||||
BasicBlock *NewPH = SplitCriticalEdge(
|
||||
OrigPreheader, NewHeader,
|
||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||
NewPH->setName(NewHeader->getName() + ".lr.ph");
|
||||
// Attach dbg.value intrinsics to the new phis if that phi uses a value that
|
||||
// previously had debug metadata attached. This keeps the debug info
|
||||
// up-to-date in the loop body.
|
||||
if (!InsertedPHIs.empty())
|
||||
insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
|
||||
|
||||
// Preserve canonical loop form, which means that 'Exit' should have only
|
||||
// one predecessor. Note that Exit could be an exit block for multiple
|
||||
// nested loops, causing both of the edges to now be critical and need to
|
||||
// be split.
|
||||
SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
|
||||
bool SplitLatchEdge = false;
|
||||
for (BasicBlock *ExitPred : ExitPreds) {
|
||||
// We only need to split loop exit edges.
|
||||
Loop *PredLoop = LI->getLoopFor(ExitPred);
|
||||
if (!PredLoop || PredLoop->contains(Exit) ||
|
||||
ExitPred->getTerminator()->isIndirectTerminator())
|
||||
continue;
|
||||
SplitLatchEdge |= L->getLoopLatch() == ExitPred;
|
||||
BasicBlock *ExitSplit = SplitCriticalEdge(
|
||||
ExitPred, Exit,
|
||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||
ExitSplit->moveBefore(Exit);
|
||||
// NewHeader is now the header of the loop.
|
||||
L->moveToHeader(NewHeader);
|
||||
assert(L->getHeader() == NewHeader && "Latch block is our new header");
|
||||
|
||||
// Inform DT about changes to the CFG.
|
||||
if (DT) {
|
||||
// The OrigPreheader branches to the NewHeader and Exit now. Then, inform
|
||||
// the DT about the removed edge to the OrigHeader (that got removed).
|
||||
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
|
||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
|
||||
Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
|
||||
DT->applyUpdates(Updates);
|
||||
|
||||
if (MSSAU) {
|
||||
MSSAU->applyUpdates(Updates, *DT);
|
||||
if (VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
}
|
||||
}
|
||||
assert(SplitLatchEdge &&
|
||||
"Despite splitting all preds, failed to split latch exit?");
|
||||
} else {
|
||||
// We can fold the conditional branch in the preheader, this makes things
|
||||
// simpler. The first step is to remove the extra edge to the Exit block.
|
||||
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
|
||||
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
|
||||
NewBI->setDebugLoc(PHBI->getDebugLoc());
|
||||
PHBI->eraseFromParent();
|
||||
|
||||
// With our CFG finalized, update DomTree if it is available.
|
||||
if (DT) DT->deleteEdge(OrigPreheader, Exit);
|
||||
// At this point, we've finished our major CFG changes. As part of cloning
|
||||
// the loop into the preheader we've simplified instructions and the
|
||||
// duplicated conditional branch may now be branching on a constant. If it is
|
||||
// branching on a constant and if that constant means that we enter the loop,
|
||||
// then we fold away the cond branch to an uncond branch. This simplifies the
|
||||
// loop in cases important for nested loops, and it also means we don't have
|
||||
// to split as many edges.
|
||||
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
|
||||
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
|
||||
if (!isa<ConstantInt>(PHBI->getCondition()) ||
|
||||
PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
|
||||
NewHeader) {
|
||||
// The conditional branch can't be folded, handle the general case.
|
||||
// Split edges as necessary to preserve LoopSimplify form.
|
||||
|
||||
// Update MSSA too, if available.
|
||||
if (MSSAU)
|
||||
MSSAU->removeEdge(OrigPreheader, Exit);
|
||||
}
|
||||
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
|
||||
// thus is not a preheader anymore.
|
||||
// Split the edge to form a real preheader.
|
||||
BasicBlock *NewPH = SplitCriticalEdge(
|
||||
OrigPreheader, NewHeader,
|
||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||
NewPH->setName(NewHeader->getName() + ".lr.ph");
|
||||
|
||||
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
|
||||
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
|
||||
// Preserve canonical loop form, which means that 'Exit' should have only
|
||||
// one predecessor. Note that Exit could be an exit block for multiple
|
||||
// nested loops, causing both of the edges to now be critical and need to
|
||||
// be split.
|
||||
SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
|
||||
bool SplitLatchEdge = false;
|
||||
for (BasicBlock *ExitPred : ExitPreds) {
|
||||
// We only need to split loop exit edges.
|
||||
Loop *PredLoop = LI->getLoopFor(ExitPred);
|
||||
if (!PredLoop || PredLoop->contains(Exit) ||
|
||||
ExitPred->getTerminator()->isIndirectTerminator())
|
||||
continue;
|
||||
SplitLatchEdge |= L->getLoopLatch() == ExitPred;
|
||||
BasicBlock *ExitSplit = SplitCriticalEdge(
|
||||
ExitPred, Exit,
|
||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||
ExitSplit->moveBefore(Exit);
|
||||
}
|
||||
assert(SplitLatchEdge &&
|
||||
"Despite splitting all preds, failed to split latch exit?");
|
||||
} else {
|
||||
// We can fold the conditional branch in the preheader, this makes things
|
||||
// simpler. The first step is to remove the extra edge to the Exit block.
|
||||
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
|
||||
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
|
||||
NewBI->setDebugLoc(PHBI->getDebugLoc());
|
||||
PHBI->eraseFromParent();
|
||||
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
// With our CFG finalized, update DomTree if it is available.
|
||||
if (DT) DT->deleteEdge(OrigPreheader, Exit);
|
||||
|
||||
// Now that the CFG and DomTree are in a consistent state again, try to merge
|
||||
// the OrigHeader block into OrigLatch. This will succeed if they are
|
||||
// connected by an unconditional branch. This is just a cleanup so the
|
||||
// emitted code isn't too gross in this common case.
|
||||
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
||||
MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
|
||||
// Update MSSA too, if available.
|
||||
if (MSSAU)
|
||||
MSSAU->removeEdge(OrigPreheader, Exit);
|
||||
}
|
||||
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
|
||||
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
|
||||
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
|
||||
// Now that the CFG and DomTree are in a consistent state again, try to merge
|
||||
// the OrigHeader block into OrigLatch. This will succeed if they are
|
||||
// connected by an unconditional branch. This is just a cleanup so the
|
||||
// emitted code isn't too gross in this common case.
|
||||
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
||||
MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
|
||||
|
||||
if (MSSAU && VerifyMemorySSA)
|
||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
||||
|
||||
++NumRotated;
|
||||
|
||||
Rotated = true;
|
||||
SimplifiedLatch = false;
|
||||
|
||||
// Check that new latch is a deoptimizing exit and then repeat rotation if possible.
|
||||
// Deoptimizing latch exit is not a generally typical case, so we just loop over.
|
||||
// TODO: if it becomes a performance bottleneck extend rotation algorithm
|
||||
// to handle multiple rotations in one go.
|
||||
} while (MultiRotate && canRotateDeoptimizingLatchExit(L));
|
||||
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
||||
|
||||
++NumRotated;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
165
test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
165
test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
@ -0,0 +1,165 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
||||
; RUN: opt -S < %s -loop-rotate -loop-rotate-multi=true | FileCheck %s
|
||||
; RUN: opt -S < %s -passes='loop(rotate)' -loop-rotate-multi=true | FileCheck %s
|
||||
|
||||
; Test loop rotation with multiple exits, some of them - deoptimizing.
|
||||
; We should end up with a latch which exit is non-deoptimizing, so we should rotate
|
||||
; more than once.
|
||||
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
define i32 @test_cond_with_one_deopt_exit(i32 * nonnull %a, i64 %x) {
|
||||
; Rotation done twice.
|
||||
; Latch should be at the 2nd condition (for.cond2), exiting to %return.
|
||||
;
|
||||
; CHECK-LABEL: @test_cond_with_one_deopt_exit(
|
||||
; CHECK-NEXT: entry:
|
||||
; CHECK-NEXT: [[VAL_A_IDX3:%.*]] = load i32, i32* %a, align 4
|
||||
; CHECK-NEXT: [[ZERO_CHECK4:%.*]] = icmp eq i32 [[VAL_A_IDX3]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK4]], label %deopt.exit, label %for.cond2.lr.ph
|
||||
; CHECK: for.cond2.lr.ph:
|
||||
; CHECK-NEXT: [[FOR_CHECK8:%.*]] = icmp ult i64 0, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK8]], label %for.body.lr.ph, label %return
|
||||
; CHECK: for.body.lr.ph:
|
||||
; CHECK-NEXT: br label %for.body
|
||||
; CHECK: for.cond2:
|
||||
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond2.return_crit_edge
|
||||
; CHECK: for.body:
|
||||
; CHECK: br label %for.tail
|
||||
; CHECK: for.tail:
|
||||
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond1.deopt.exit_crit_edge, label %for.cond2
|
||||
; CHECK: for.cond2.return_crit_edge:
|
||||
; CHECK-NEXT: {{%.*}} = phi i32
|
||||
; CHECK-NEXT: br label %return
|
||||
; CHECK: return:
|
||||
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||
; CHECK: for.cond1.deopt.exit_crit_edge:
|
||||
; CHECK-NEXT: {{%.*}} = phi i32
|
||||
; CHECK-NEXT: br label %deopt.exit
|
||||
; CHECK: deopt.exit:
|
||||
; CHECK: [[DEOPT_VAL:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 {{%.*}}) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL]]
|
||||
;
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
}
|
||||
|
||||
define i32 @test_cond_with_two_deopt_exits(i32 ** nonnull %a, i64 %x) {
|
||||
; Rotation done three times.
|
||||
; Latch should be at the 3rd condition (for.cond3), exiting to %return.
|
||||
;
|
||||
; CHECK-LABEL: @test_cond_with_two_deopt_exits(
|
||||
; CHECK-NEXT: entry:
|
||||
; CHECK-NEXT: [[A_IDX_DEREF4:%.*]] = load i32*, i32** %a
|
||||
; CHECK-NEXT: [[NULL_CHECK5:%.*]] = icmp eq i32* [[A_IDX_DEREF4]], null
|
||||
; CHECK-NEXT: br i1 [[NULL_CHECK5]], label %deopt.exit1, label %for.cond2.lr.ph
|
||||
; CHECK: for.cond2.lr.ph:
|
||||
; CHECK-NEXT: [[VAL_A_IDX9:%.*]] = load i32, i32* [[A_IDX_DEREF4]], align 4
|
||||
; CHECK-NEXT: [[ZERO_CHECK10:%.*]] = icmp eq i32 [[VAL_A_IDX9]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK10]], label %deopt.exit2, label %for.cond3.lr.ph
|
||||
; CHECK: for.cond3.lr.ph:
|
||||
; CHECK-NEXT: [[FOR_CHECK14:%.*]] = icmp ult i64 0, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK14]], label %for.body.lr.ph, label %return
|
||||
; CHECK: for.body.lr.ph:
|
||||
; CHECK-NEXT: br label %for.body
|
||||
; CHECK: for.cond2:
|
||||
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond2.deopt.exit2_crit_edge, label %for.cond3
|
||||
; CHECK: for.cond3:
|
||||
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond3.return_crit_edge
|
||||
; CHECK: for.body:
|
||||
; CHECK: br label %for.tail
|
||||
; CHECK: for.tail:
|
||||
; CHECK: [[IDX_NEXT:%.*]] = add nuw nsw i64 {{%.*}}, 1
|
||||
; CHECK: [[NULL_CHECK:%.*]] = icmp eq i32* {{%.*}}, null
|
||||
; CHECK-NEXT: br i1 [[NULL_CHECK]], label %for.cond1.deopt.exit1_crit_edge, label %for.cond2
|
||||
; CHECK: for.cond3.return_crit_edge:
|
||||
; CHECK-NEXT: [[SPLIT18:%.*]] = phi i32
|
||||
; CHECK-NEXT: br label %return
|
||||
; CHECK: return:
|
||||
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||
; CHECK: for.cond1.deopt.exit1_crit_edge:
|
||||
; CHECK-NEXT: br label %deopt.exit1
|
||||
; CHECK: deopt.exit1:
|
||||
; CHECK-NEXT: [[DEOPT_VAL1:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL1]]
|
||||
; CHECK: for.cond2.deopt.exit2_crit_edge:
|
||||
; CHECK-NEXT: [[SPLIT:%.*]] = phi i32
|
||||
; CHECK-NEXT: br label %deopt.exit2
|
||||
; CHECK: deopt.exit2:
|
||||
; CHECK-NEXT: [[VAL_A_IDX_LCSSA:%.*]] = phi i32
|
||||
; CHECK-NEXT: [[DEOPT_VAL2:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 [[VAL_A_IDX_LCSSA]]) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL2]]
|
||||
;
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32*, i32 **%a, i64 %idx
|
||||
%a.idx.deref = load i32*, i32** %a.idx
|
||||
%null.check = icmp eq i32* %a.idx.deref, null
|
||||
br i1 %null.check, label %deopt.exit1, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%val.a.idx = load i32, i32* %a.idx.deref, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit2, label %for.cond3
|
||||
|
||||
for.cond3:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit1:
|
||||
%deopt.val1 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||
ret i32 %deopt.val1
|
||||
deopt.exit2:
|
||||
%deopt.val2 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val2
|
||||
}
|
@ -15,6 +15,7 @@ add_llvm_unittest(UtilsTests
|
||||
FunctionComparatorTest.cpp
|
||||
IntegerDivisionTest.cpp
|
||||
LocalTest.cpp
|
||||
LoopRotationUtilsTest.cpp
|
||||
LoopUtilsTest.cpp
|
||||
SizeOptsTest.cpp
|
||||
SSAUpdaterBulkTest.cpp
|
||||
|
166
unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
166
unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
@ -0,0 +1,166 @@
|
||||
//===- LoopRotationUtilsTest.cpp - Unit tests for LoopRotation utility ----===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/LoopRotationUtils.h"
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/AsmParser/Parser.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
||||
SMDiagnostic Err;
|
||||
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
||||
if (!Mod)
|
||||
Err.print("LoopRotationUtilsTest", errs());
|
||||
return Mod;
|
||||
}
|
||||
|
||||
/// This test contains multi-deopt-exits pattern that might allow loop rotation
|
||||
/// to trigger multiple times if multiple rotations are enabled.
|
||||
/// At least one rotation should be performed, no matter what loop rotation settings are.
|
||||
TEST(LoopRotate, MultiDeoptExit) {
|
||||
LLVMContext C;
|
||||
|
||||
std::unique_ptr<Module> M = parseIR(
|
||||
C,
|
||||
R"(
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
define i32 @test(i32 * nonnull %a, i64 %x) {
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
})"
|
||||
);
|
||||
|
||||
auto *F = M->getFunction("test");
|
||||
DominatorTree DT(*F);
|
||||
LoopInfo LI(DT);
|
||||
AssumptionCache AC(*F);
|
||||
TargetTransformInfo TTI(M->getDataLayout());
|
||||
TargetLibraryInfoImpl TLII;
|
||||
TargetLibraryInfo TLI(TLII);
|
||||
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||
SimplifyQuery SQ(M->getDataLayout());
|
||||
|
||||
Loop *L = *LI.begin();
|
||||
|
||||
bool ret = LoopRotation(L, &LI, &TTI,
|
||||
&AC, &DT,
|
||||
&SE, nullptr,
|
||||
SQ, true, -1, false);
|
||||
EXPECT_TRUE(ret);
|
||||
}
|
||||
|
||||
/// Checking a special case of multi-deopt exit loop that can not perform
|
||||
/// required amount of rotations due to the desired header containing
|
||||
/// non-duplicatable code.
|
||||
/// Similar to MultiDeoptExit test this one should do at least one rotation and
|
||||
/// pass no matter what loop rotation settings are.
|
||||
TEST(LoopRotate, MultiDeoptExit_Nondup) {
|
||||
LLVMContext C;
|
||||
|
||||
std::unique_ptr<Module> M = parseIR(
|
||||
C,
|
||||
R"(
|
||||
; Rotation should be done once, attempted twice.
|
||||
; Second time fails due to non-duplicatable header.
|
||||
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
declare void @nondup()
|
||||
|
||||
define i32 @test_nondup(i32 * nonnull %a, i64 %x) {
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
call void @nondup() noduplicate
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
})"
|
||||
);
|
||||
|
||||
auto *F = M->getFunction("test_nondup");
|
||||
DominatorTree DT(*F);
|
||||
LoopInfo LI(DT);
|
||||
AssumptionCache AC(*F);
|
||||
TargetTransformInfo TTI(M->getDataLayout());
|
||||
TargetLibraryInfoImpl TLII;
|
||||
TargetLibraryInfo TLI(TLII);
|
||||
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||
SimplifyQuery SQ(M->getDataLayout());
|
||||
|
||||
Loop *L = *LI.begin();
|
||||
|
||||
bool ret = LoopRotation(L, &LI, &TTI,
|
||||
&AC, &DT,
|
||||
&SE, nullptr,
|
||||
SQ, true, -1, false);
|
||||
/// LoopRotation should properly report "true" as we still perform the first rotation
|
||||
/// so we do change the IR.
|
||||
EXPECT_TRUE(ret);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user