1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00

LSR: Check more intrinsic pointer operands

llvm-svn: 320424
This commit is contained in:
Matt Arsenault 2017-12-11 21:38:43 +00:00
parent 6c52f16a00
commit b1cb514280
5 changed files with 167 additions and 23 deletions

View File

@ -288,6 +288,32 @@ unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
return 8;
}
bool AMDGPUTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec: {
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
if (!Ordering || !Volatile)
return false; // Invalid.
unsigned OrderingVal = Ordering->getZExtValue();
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
return false;
Info.PtrVal = Inst->getArgOperand(0);
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
Info.ReadMem = true;
Info.WriteMem = true;
Info.IsVolatile = !Volatile->isNullValue();
return true;
}
default:
return false;
}
}
int AMDGPUTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,

View File

@ -132,6 +132,8 @@ public:
unsigned getMaxInterleaveFactor(unsigned VF);
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
int getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,

View File

@ -777,7 +777,8 @@ static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
/// Returns true if the specified instruction is using the specified value as an
/// address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
static bool isAddressUse(const TargetTransformInfo &TTI,
Instruction *Inst, Value *OperandVal) {
bool isAddress = isa<LoadInst>(Inst);
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getPointerOperand() == OperandVal)
@ -786,18 +787,24 @@ static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
// Addressing modes can also be folded into prefetches and a variety
// of intrinsics.
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::memset:
case Intrinsic::prefetch:
if (II->getArgOperand(0) == OperandVal)
case Intrinsic::memset:
case Intrinsic::prefetch:
if (II->getArgOperand(0) == OperandVal)
isAddress = true;
break;
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (II->getArgOperand(0) == OperandVal ||
II->getArgOperand(1) == OperandVal)
isAddress = true;
break;
default: {
MemIntrinsicInfo IntrInfo;
if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
if (IntrInfo.PtrVal == OperandVal)
isAddress = true;
break;
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (II->getArgOperand(0) == OperandVal ||
II->getArgOperand(1) == OperandVal)
isAddress = true;
break;
}
}
}
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
if (RMW->getPointerOperand() == OperandVal)
@ -810,7 +817,8 @@ static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
}
/// Return the type of the memory being accessed.
static MemAccessTy getAccessType(const Instruction *Inst) {
static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
Instruction *Inst) {
MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
AccessTy.MemTy = SI->getOperand(0)->getType();
@ -821,6 +829,21 @@ static MemAccessTy getAccessType(const Instruction *Inst) {
AccessTy.AddrSpace = RMW->getPointerAddressSpace();
} else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::prefetch:
AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
break;
default: {
MemIntrinsicInfo IntrInfo;
if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
AccessTy.AddrSpace
= IntrInfo.PtrVal->getType()->getPointerAddressSpace();
}
break;
}
}
}
// All pointers have the same requirements, so canonicalize them to an
@ -1025,7 +1048,7 @@ private:
ScalarEvolution &SE, DominatorTree &DT,
SmallPtrSetImpl<const SCEV *> *LoserRegs);
};
/// An operand value in an instruction which is to be replaced with some
/// equivalent, possibly strength-reduced, replacement.
struct LSRFixup {
@ -1149,7 +1172,7 @@ public:
if (f.Offset < MinOffset)
MinOffset = f.Offset;
}
bool HasFormulaWithSameRegs(const Formula &F) const;
float getNotSelectedProbability(const SCEV *Reg) const;
bool InsertFormula(const Formula &F, const Loop &L);
@ -2362,7 +2385,7 @@ LSRInstance::OptimizeLoopTermCond() {
C->getValue().isMinSignedValue())
goto decline_post_inc;
// Check for possible scaled-address reuse.
MemAccessTy AccessTy = getAccessType(UI->getUser());
MemAccessTy AccessTy = getAccessType(TTI, UI->getUser());
int64_t Scale = C->getSExtValue();
if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
/*BaseOffset=*/0,
@ -3032,13 +3055,13 @@ void LSRInstance::FinalizeChain(IVChain &Chain) {
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
Value *Operand, const TargetTransformInfo &TTI) {
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
if (!IncConst || !isAddressUse(UserInst, Operand))
if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
return false;
if (IncConst->getAPInt().getMinSignedBits() > 64)
return false;
MemAccessTy AccessTy = getAccessType(UserInst);
MemAccessTy AccessTy = getAccessType(TTI, UserInst);
int64_t IncOffset = IncConst->getValue()->getSExtValue();
if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
IncOffset, /*HaseBaseReg=*/false))
@ -3165,14 +3188,14 @@ void LSRInstance::CollectFixupsAndInitialFormulae() {
LSRUse::KindType Kind = LSRUse::Basic;
MemAccessTy AccessTy;
if (isAddressUse(UserInst, U.getOperandValToReplace())) {
if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
Kind = LSRUse::Address;
AccessTy = getAccessType(UserInst);
AccessTy = getAccessType(TTI, UserInst);
}
const SCEV *S = IU.getExpr(U);
PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
// Equality (== and !=) ICmps are special. We can rewrite (i == N) as
// (N - i == 0), and this allows (N - i) to be the expression that we work
// with rather than just N or i, so we can consider the register
@ -4304,7 +4327,7 @@ void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
LUThatHas->pushFixup(Fixup);
DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
}
// Delete formulae from the new use which are no longer legal.
bool Any = false;
for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {

View File

@ -407,6 +407,19 @@ define amdgpu_kernel void @flat_atomic_inc_noret_i64_offset_addr64(i64 addrspace
ret void
}
; GCN-LABEL: {{^}}nocse_lds_atomic_inc_ret_i32:
; GCN: v_mov_b32_e32 [[K:v[0-9]+]], 42
; GCN: ds_inc_rtn_u32 v{{[0-9]+}}, v{{[0-9]+}}, [[K]]
; GCN: ds_inc_rtn_u32 v{{[0-9]+}}, v{{[0-9]+}}, [[K]]
define amdgpu_kernel void @nocse_lds_atomic_inc_ret_i32(i32 addrspace(1)* %out0, i32 addrspace(1)* %out1, i32 addrspace(3)* %ptr) #0 {
%result0 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %ptr, i32 42, i32 0, i32 0, i1 false)
%result1 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %ptr, i32 42, i32 0, i32 0, i1 false)
store i32 %result0, i32 addrspace(1)* %out0
store i32 %result1, i32 addrspace(1)* %out1
ret void
}
attributes #0 = { nounwind }
attributes #1 = { nounwind readnone }
attributes #2 = { nounwind argmemonly }

View File

@ -84,4 +84,84 @@ bb:
br i1 %exitcond, label %._crit_edge.loopexit, label %.lr.ph
}
attributes #0 = { nounwind }
; OPT-LABEL: @test_local_atomicinc_addressing_loop_uniform_index_max_offset_i32(
; OPT-NOT: getelementptr
; OPT: .lr.ph:
; OPT: %lsr.iv2 = phi i32 addrspace(3)* [ %scevgep3, %.lr.ph ], [ %arg1, %.lr.ph.preheader ]
; OPT: %lsr.iv1 = phi i32 addrspace(3)* [ %scevgep, %.lr.ph ], [ %arg0, %.lr.ph.preheader ]
; OPT: %lsr.iv = phi i32 [ %lsr.iv.next, %.lr.ph ], [ %n, %.lr.ph.preheader ]
; OPT: %scevgep4 = getelementptr i32, i32 addrspace(3)* %lsr.iv2, i32 16383
; OPT: %tmp4 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %scevgep4, i32 undef, i32 0, i32 0, i1 false)
; OPT: %tmp7 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %lsr.iv1, i32 undef, i32 0, i32 0, i1 false)
define amdgpu_kernel void @test_local_atomicinc_addressing_loop_uniform_index_max_offset_i32(i32 addrspace(3)* noalias nocapture %arg0, i32 addrspace(3)* noalias nocapture readonly %arg1, i32 %n) #0 {
bb:
%tmp = icmp sgt i32 %n, 0
br i1 %tmp, label %.lr.ph.preheader, label %._crit_edge
.lr.ph.preheader: ; preds = %bb
br label %.lr.ph
._crit_edge.loopexit: ; preds = %.lr.ph
br label %._crit_edge
._crit_edge: ; preds = %._crit_edge.loopexit, %bb
ret void
.lr.ph: ; preds = %.lr.ph, %.lr.ph.preheader
%indvars.iv = phi i32 [ %indvars.iv.next, %.lr.ph ], [ 0, %.lr.ph.preheader ]
%tmp1 = add nuw nsw i32 %indvars.iv, 16383
%tmp3 = getelementptr inbounds i32, i32 addrspace(3)* %arg1, i32 %tmp1
%tmp4 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %tmp3, i32 undef, i32 0, i32 0, i1 false)
%tmp6 = getelementptr inbounds i32, i32 addrspace(3)* %arg0, i32 %indvars.iv
%tmp7 = call i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* %tmp6, i32 undef, i32 0, i32 0, i1 false)
%tmp8 = add nsw i32 %tmp7, %tmp4
atomicrmw add i32 addrspace(3)* %tmp6, i32 %tmp8 seq_cst
%indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
%exitcond = icmp eq i32 %indvars.iv.next, %n
br i1 %exitcond, label %._crit_edge.loopexit, label %.lr.ph
}
; OPT-LABEL: @test_local_atomicdec_addressing_loop_uniform_index_max_offset_i32(
; OPT-NOT: getelementptr
; OPT: .lr.ph:
; OPT: %lsr.iv2 = phi i32 addrspace(3)* [ %scevgep3, %.lr.ph ], [ %arg1, %.lr.ph.preheader ]
; OPT: %lsr.iv1 = phi i32 addrspace(3)* [ %scevgep, %.lr.ph ], [ %arg0, %.lr.ph.preheader ]
; OPT: %lsr.iv = phi i32 [ %lsr.iv.next, %.lr.ph ], [ %n, %.lr.ph.preheader ]
; OPT: %scevgep4 = getelementptr i32, i32 addrspace(3)* %lsr.iv2, i32 16383
; OPT: %tmp4 = call i32 @llvm.amdgcn.atomic.dec.i32.p3i32(i32 addrspace(3)* %scevgep4, i32 undef, i32 0, i32 0, i1 false)
; OPT: %tmp7 = call i32 @llvm.amdgcn.atomic.dec.i32.p3i32(i32 addrspace(3)* %lsr.iv1, i32 undef, i32 0, i32 0, i1 false)
define amdgpu_kernel void @test_local_atomicdec_addressing_loop_uniform_index_max_offset_i32(i32 addrspace(3)* noalias nocapture %arg0, i32 addrspace(3)* noalias nocapture readonly %arg1, i32 %n) #0 {
bb:
%tmp = icmp sgt i32 %n, 0
br i1 %tmp, label %.lr.ph.preheader, label %._crit_edge
.lr.ph.preheader: ; preds = %bb
br label %.lr.ph
._crit_edge.loopexit: ; preds = %.lr.ph
br label %._crit_edge
._crit_edge: ; preds = %._crit_edge.loopexit, %bb
ret void
.lr.ph: ; preds = %.lr.ph, %.lr.ph.preheader
%indvars.iv = phi i32 [ %indvars.iv.next, %.lr.ph ], [ 0, %.lr.ph.preheader ]
%tmp1 = add nuw nsw i32 %indvars.iv, 16383
%tmp3 = getelementptr inbounds i32, i32 addrspace(3)* %arg1, i32 %tmp1
%tmp4 = call i32 @llvm.amdgcn.atomic.dec.i32.p3i32(i32 addrspace(3)* %tmp3, i32 undef, i32 0, i32 0, i1 false)
%tmp6 = getelementptr inbounds i32, i32 addrspace(3)* %arg0, i32 %indvars.iv
%tmp7 = call i32 @llvm.amdgcn.atomic.dec.i32.p3i32(i32 addrspace(3)* %tmp6, i32 undef, i32 0, i32 0, i1 false)
%tmp8 = add nsw i32 %tmp7, %tmp4
atomicrmw add i32 addrspace(3)* %tmp6, i32 %tmp8 seq_cst
%indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
%exitcond = icmp eq i32 %indvars.iv.next, %n
br i1 %exitcond, label %._crit_edge.loopexit, label %.lr.ph
}
declare i32 @llvm.amdgcn.atomic.inc.i32.p3i32(i32 addrspace(3)* nocapture, i32, i32, i32, i1) #1
declare i32 @llvm.amdgcn.atomic.dec.i32.p3i32(i32 addrspace(3)* nocapture, i32, i32, i32, i1) #1
attributes #0 = { nounwind }
attributes #1 = { nounwind argmemonly }