1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00

[BrachProbablityInfo] Set edge probabilities at once and fix calcMetadataWeights()

Hide the method that allows setting probability for particular edge
and introduce a public method that sets probabilities for all
outgoing edges at once.
Setting individual edge probability is error prone. More over it is
difficult to check that the total probability is 1.0 because there is
no easy way to know when the user finished setting all
the probabilities.

Related bug is fixed in BranchProbabilityInfo::calcMetadataWeights().
Changing unreachable branch probabilities to raw(1) and distributing
the rest (oldProbability - raw(1)) over the reachable branches could
introduce total probability inaccuracy bigger than 1/numOfBranches.

Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79396
This commit is contained in:
Yevgeny Rouban 2020-05-21 11:49:11 +07:00
parent b257e7e587
commit b2147209fd
7 changed files with 202 additions and 50 deletions

View File

@ -121,6 +121,7 @@ public:
raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
const BasicBlock *Dst) const;
protected:
/// Set the raw edge probability for the given edge.
///
/// This allows a pass to explicitly set the edge probability for an edge. It
@ -130,6 +131,15 @@ public:
void setEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors,
BranchProbability Prob);
public:
/// Set the raw probabilities for all edges from the given block.
///
/// This allows a pass to explicitly set edge probabilities for a block. It
/// can be used when updating the CFG to update the branch probability
/// information.
void setEdgeProbability(const BasicBlock *Src,
const SmallVectorImpl<BranchProbability> &Probs);
static BranchProbability getBranchProbStackProtector(bool IsLikely) {
static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
return IsLikely ? LikelyProb : LikelyProb.getCompl();

View File

@ -251,10 +251,13 @@ bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
if (UnreachableEdges.empty())
return false;
SmallVector<BranchProbability, 4> EdgeProbabilities(
BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
if (ReachableEdges.empty()) {
BranchProbability Prob(1, UnreachableEdges.size());
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
setEdgeProbability(BB, EdgeProbabilities);
return true;
}
@ -264,10 +267,11 @@ bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
ReachableEdges.size();
for (unsigned SuccIdx : UnreachableEdges)
setEdgeProbability(BB, SuccIdx, UnreachableProb);
EdgeProbabilities[SuccIdx] = UnreachableProb;
for (unsigned SuccIdx : ReachableEdges)
setEdgeProbability(BB, SuccIdx, ReachableProb);
EdgeProbabilities[SuccIdx] = ReachableProb;
setEdgeProbability(BB, EdgeProbabilities);
return true;
}
@ -346,25 +350,37 @@ bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
// Examine the metadata against unreachable heuristic.
// If the unreachable heuristic is more strong then we use it for this edge.
if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
auto ToDistribute = BranchProbability::getZero();
auto UnreachableProb = UR_TAKEN_PROB;
for (auto i : UnreachableIdxs)
if (UnreachableProb < BP[i]) {
ToDistribute += BP[i] - UnreachableProb;
BP[i] = UnreachableProb;
}
// Because of possible rounding errors and the above fix up for
// the unreachable heuristic the sum of probabilities of all edges may be
// less than 1.0. Distribute the remaining probability (calculated as
// 1.0 - (sum of BP[i])) evenly among all the reachable edges.
auto ToDistribute = BranchProbability::getOne();
for (auto &P : BP)
ToDistribute -= P;
// If we modified the probability of some edges then we must distribute
// the difference between reachable blocks.
if (ToDistribute > BranchProbability::getZero()) {
BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
// TODO: This spreads ToDistribute evenly upon the reachable edges. A better
// distribution would be proportional. So the relation between weights of
// the reachable edges would be kept unchanged. That is for any reachable
// edges i and j:
// newBP[i] / newBP[j] == oldBP[i] / oldBP[j]
// newBP[i] / oldBP[i] == newBP[j] / oldBP[j] ==
// == Denominator / (Denominator - ToDistribute)
// newBP[i] = oldBP[i] * Denominator / (Denominator - ToDistribute)
BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
if (PerEdge > BranchProbability::getZero())
for (auto i : ReachableIdxs)
BP[i] += PerEdge;
}
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
setEdgeProbability(BB, i, BP[i]);
setEdgeProbability(BB, BP);
return true;
}
@ -397,10 +413,13 @@ bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
if (ColdEdges.empty())
return false;
SmallVector<BranchProbability, 4> EdgeProbabilities(
BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
if (NormalEdges.empty()) {
BranchProbability Prob(1, ColdEdges.size());
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
setEdgeProbability(BB, EdgeProbabilities);
return true;
}
@ -412,10 +431,11 @@ bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
(CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
for (unsigned SuccIdx : ColdEdges)
setEdgeProbability(BB, SuccIdx, ColdProb);
EdgeProbabilities[SuccIdx] = ColdProb;
for (unsigned SuccIdx : NormalEdges)
setEdgeProbability(BB, SuccIdx, NormalProb);
EdgeProbabilities[SuccIdx] = NormalProb;
setEdgeProbability(BB, EdgeProbabilities);
return true;
}
@ -438,19 +458,21 @@ bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
assert(CI->getOperand(1)->getType()->isPointerTy());
BranchProbability TakenProb(PH_TAKEN_WEIGHT,
PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
// p != 0 -> isProb = true
// p == 0 -> isProb = false
// p != q -> isProb = true
// p == q -> isProb = false;
unsigned TakenIdx = 0, NonTakenIdx = 1;
bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
std::swap(TakenProb, UntakenProb);
BranchProbability TakenProb(PH_TAKEN_WEIGHT,
PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
setEdgeProbability(
BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
return true;
}
@ -647,18 +669,20 @@ bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
(UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
(ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
SmallVector<BranchProbability, 4> EdgeProbabilities(
BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
if (uint32_t numBackEdges = BackEdges.size()) {
BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
auto Prob = TakenProb / numBackEdges;
for (unsigned SuccIdx : BackEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
}
if (uint32_t numInEdges = InEdges.size()) {
BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
auto Prob = TakenProb / numInEdges;
for (unsigned SuccIdx : InEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
}
if (uint32_t numExitingEdges = ExitingEdges.size()) {
@ -666,7 +690,7 @@ bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
Denom);
auto Prob = NotTakenProb / numExitingEdges;
for (unsigned SuccIdx : ExitingEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
}
if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
@ -674,9 +698,10 @@ bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
Denom);
auto Prob = UnlikelyProb / numUnlikelyEdges;
for (unsigned SuccIdx : UnlikelyEdges)
setEdgeProbability(BB, SuccIdx, Prob);
EdgeProbabilities[SuccIdx] = Prob;
}
setEdgeProbability(BB, EdgeProbabilities);
return true;
}
@ -787,15 +812,15 @@ bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
if (!isProb)
std::swap(TakenProb, UntakenProb);
setEdgeProbability(
BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
return true;
}
@ -830,14 +855,13 @@ bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
setEdgeProbability(BB, TakenIdx, TakenProb);
setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
if (!isProb)
std::swap(TakenProb, UntakenProb);
setEdgeProbability(
BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
return true;
}
@ -848,8 +872,8 @@ bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
BranchProbability TakenProb(IH_TAKEN_WEIGHT,
IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
setEdgeProbability(
BB, SmallVector<BranchProbability, 2>({TakenProb, TakenProb.getCompl()}));
return true;
}
@ -962,6 +986,28 @@ void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
<< "\n");
}
/// Set the edge probability for all edges at once.
void BranchProbabilityInfo::setEdgeProbability(
const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
if (Probs.size() == 0)
return; // Nothing to set.
uint64_t TotalNumerator = 0;
for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
setEdgeProbability(Src, SuccIdx, Probs[SuccIdx]);
TotalNumerator += Probs[SuccIdx].getNumerator();
}
// Because of rounding errors the total probability cannot be checked to be
// 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
// Instead, every single probability in Probs must be as accurate as possible.
// This results in error 1/denominator at most, thus the total absolute error
// should be within Probs.size / BranchProbability::getDenominator.
assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
}
raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
const BasicBlock *Src,

View File

@ -2469,8 +2469,7 @@ void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
}
// Update edge probabilities in BPI.
for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
BPI->setEdgeProbability(BB, BBSuccProbs);
// Update the profile metadata as well.
//

View File

@ -401,9 +401,7 @@ bool llvm::SplitIndirectBrCriticalEdges(Function &F,
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
if (ShouldUpdateAnalysis) {
// Copy the BFI/BPI from Target to BodyBlock.
for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
I < E; ++I)
BPI->setEdgeProbability(BodyBlock, I, EdgeProbabilities[I]);
BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
}
// It's possible Target was its own successor through an indirectbr.

View File

@ -1364,6 +1364,9 @@ void CodeExtractor::calculateNewCallTerminatorWeights(
// Block Frequency distribution with dummy node.
Distribution BranchDist;
SmallVector<BranchProbability, 4> EdgeProbabilities(
TI->getNumSuccessors(), BranchProbability::getUnknown());
// Add each of the frequencies of the successors.
for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
BlockNode ExitNode(i);
@ -1371,12 +1374,14 @@ void CodeExtractor::calculateNewCallTerminatorWeights(
if (ExitFreq != 0)
BranchDist.addExit(ExitNode, ExitFreq);
else
BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
EdgeProbabilities[i] = BranchProbability::getZero();
}
// Check for no total weight.
if (BranchDist.Total == 0)
if (BranchDist.Total == 0) {
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
return;
}
// Normalize the distribution so that they can fit in unsigned.
BranchDist.normalize();
@ -1388,8 +1393,9 @@ void CodeExtractor::calculateNewCallTerminatorWeights(
// Get the weight and update the current BFI.
BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
BranchProbability BP(Weight.Amount, BranchDist.Total);
BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
EdgeProbabilities[Weight.TargetNode.Index] = BP;
}
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
TI->setMetadata(
LLVMContext::MD_prof,
MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));

View File

@ -513,9 +513,9 @@ entry:
i32 4, label %case_e ], !prof !9
; CHECK: edge entry -> case_a probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_b probability is 0x00000001 / 0x80000000 = 0.00%
; CHECK: edge entry -> case_c probability is 0x6aaaaaa9 / 0x80000000 = 83.33% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x0aaaaaa9 / 0x80000000 = 8.33%
; CHECK: edge entry -> case_e probability is 0x0aaaaaa9 / 0x80000000 = 8.33%
; CHECK: edge entry -> case_c probability is 0x6aaaaaaa / 0x80000000 = 83.33% [HOT edge]
; CHECK: edge entry -> case_d probability is 0x0aaaaaaa / 0x80000000 = 8.33%
; CHECK: edge entry -> case_e probability is 0x0aaaaaaa / 0x80000000 = 8.33%
case_a:
unreachable

View File

@ -181,3 +181,96 @@ TEST(BasicBlockUtils, SplitIndirectBrCriticalEdge) {
EXPECT_EQ(BranchProbability(1, 2), BPI.getEdgeProbability(SplitBB, 0u));
EXPECT_EQ(BranchProbability(1, 2), BPI.getEdgeProbability(SplitBB, 1u));
}
TEST(BasicBlockUtils, SetEdgeProbability) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(
C, "define void @edge_probability(i32 %0) {\n"
"entry:\n"
"switch i32 %0, label %LD [\n"
" i32 700, label %L0\n"
" i32 701, label %L1\n"
" i32 702, label %L2\n"
" i32 703, label %L3\n"
" i32 704, label %L4\n"
" i32 705, label %L5\n"
" i32 706, label %L6\n"
" i32 707, label %L7\n"
" i32 708, label %L8\n"
" i32 709, label %L9\n"
" i32 710, label %L10\n"
" i32 711, label %L11\n"
" i32 712, label %L12\n"
" i32 713, label %L13\n"
" i32 714, label %L14\n"
" i32 715, label %L15\n"
" i32 716, label %L16\n"
" i32 717, label %L17\n"
" i32 718, label %L18\n"
" i32 719, label %L19\n"
"], !prof !{!\"branch_weights\", i32 1, i32 1, i32 1, i32 1, i32 1, "
"i32 451, i32 1, i32 12, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, "
"i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1}\n"
"LD:\n"
" unreachable\n"
"L0:\n"
" ret void\n"
"L1:\n"
" ret void\n"
"L2:\n"
" ret void\n"
"L3:\n"
" ret void\n"
"L4:\n"
" ret void\n"
"L5:\n"
" ret void\n"
"L6:\n"
" ret void\n"
"L7:\n"
" ret void\n"
"L8:\n"
" ret void\n"
"L9:\n"
" ret void\n"
"L10:\n"
" ret void\n"
"L11:\n"
" ret void\n"
"L12:\n"
" ret void\n"
"L13:\n"
" ret void\n"
"L14:\n"
" ret void\n"
"L15:\n"
" ret void\n"
"L16:\n"
" ret void\n"
"L17:\n"
" ret void\n"
"L18:\n"
" ret void\n"
"L19:\n"
" ret void\n"
"}\n");
auto *F = M->getFunction("edge_probability");
DominatorTree DT(*F);
LoopInfo LI(DT);
BranchProbabilityInfo BPI(*F, LI);
auto Block = [&F](StringRef BBName) -> const BasicBlock & {
for (auto &BB : *F)
if (BB.getName() == BBName)
return BB;
llvm_unreachable("Block not found");
};
// Check that the unreachable block has the minimal probability.
const BasicBlock &EntryBB = Block("entry");
const BasicBlock &UnreachableBB = Block("LD");
EXPECT_EQ(BranchProbability::getRaw(1),
BPI.getEdgeProbability(&EntryBB, &UnreachableBB));
}