1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

[X86] Teach the backend how to fold target specific dag node for packed

vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.

Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.

This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.

Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.

llvm-svn: 198113
This commit is contained in:
Andrea Di Biagio 2013-12-28 11:11:52 +00:00
parent e4373d751b
commit b2f4969e98
2 changed files with 213 additions and 2 deletions

View File

@ -11103,11 +11103,12 @@ static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue SrcOp, uint64_t ShiftAmt,
SelectionDAG &DAG) {
EVT ElementType = VT.getVectorElementType();
// Check for ShiftAmt >= element width
if (ShiftAmt >= VT.getVectorElementType().getSizeInBits()) {
if (ShiftAmt >= ElementType.getSizeInBits()) {
if (Opc == X86ISD::VSRAI)
ShiftAmt = VT.getVectorElementType().getSizeInBits() - 1;
ShiftAmt = ElementType.getSizeInBits() - 1;
else
return DAG.getConstant(0, VT);
}
@ -11115,6 +11116,56 @@ static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
&& "Unknown target vector shift-by-constant node");
// Fold this packed vector shift into a build vector if SrcOp is a
// vector of ConstantSDNodes or UNDEFs.
if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
SmallVector<SDValue, 8> Elts;
unsigned NumElts = SrcOp->getNumOperands();
ConstantSDNode *ND;
switch(Opc) {
default: llvm_unreachable(0);
case X86ISD::VSHLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->getOpcode() == ISD::UNDEF) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
}
break;
case X86ISD::VSRLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->getOpcode() == ISD::UNDEF) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
}
break;
case X86ISD::VSRAI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->getOpcode() == ISD::UNDEF) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
}
break;
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Elts[0], NumElts);
}
return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
}

View File

@ -0,0 +1,160 @@
; RUN: llc -march=x86-64 -mcpu=corei7 -mattr=-sse4.1 < %s | FileCheck %s
; Verify that we correctly fold target specific packed vector shifts by
; immediate count into a simple build_vector when the elements of the vector
; in input to the packed shift are all constants or undef.
define <8 x i16> @test1() {
%1 = tail call <8 x i16> @llvm.x86.sse2.pslli.w(<8 x i16> <i16 1, i16 2, i16 4, i16 8, i16 1, i16 2, i16 4, i16 8>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test1
; CHECK-NOT: psll
; CHECK: movaps
; CHECK-NEXT: ret
define <8 x i16> @test2() {
%1 = tail call <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16> <i16 4, i16 8, i16 16, i16 32, i16 4, i16 8, i16 16, i16 32>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test2
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <8 x i16> @test3() {
%1 = tail call <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16> <i16 4, i16 8, i16 16, i16 32, i16 4, i16 8, i16 16, i16 32>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test3
; CHECK-NOT: psra
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test4() {
%1 = tail call <4 x i32> @llvm.x86.sse2.pslli.d(<4 x i32> <i32 1, i32 2, i32 4, i32 8>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test4
; CHECK-NOT: psll
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test5() {
%1 = tail call <4 x i32> @llvm.x86.sse2.psrli.d(<4 x i32> <i32 4, i32 8, i32 16, i32 32>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test5
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test6() {
%1 = tail call <4 x i32> @llvm.x86.sse2.psrai.d(<4 x i32> <i32 4, i32 8, i32 16, i32 32>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test6
; CHECK-NOT: psra
; CHECK: movaps
; CHECK-NEXT: ret
define <2 x i64> @test7() {
%1 = tail call <2 x i64> @llvm.x86.sse2.pslli.q(<2 x i64> <i64 1, i64 2>, i32 3)
ret <2 x i64> %1
}
; CHECK-LABEL: test7
; CHECK-NOT: psll
; CHECK: movaps
; CHECK-NEXT: ret
define <2 x i64> @test8() {
%1 = tail call <2 x i64> @llvm.x86.sse2.psrli.q(<2 x i64> <i64 8, i64 16>, i32 3)
ret <2 x i64> %1
}
; CHECK-LABEL: test8
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <8 x i16> @test9() {
%1 = tail call <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16> <i16 15, i16 8, i16 undef, i16 undef, i16 31, i16 undef, i16 64, i16 128>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test9
; CHECK-NOT: psra
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test10() {
%1 = tail call <4 x i32> @llvm.x86.sse2.psrai.d(<4 x i32> <i32 undef, i32 8, i32 undef, i32 32>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test10
; CHECK-NOT: psra
; CHECK: movaps
; CHECK-NEXT: ret
define <2 x i64> @test11() {
%1 = tail call <2 x i64> @llvm.x86.sse2.psrli.q(<2 x i64> <i64 undef, i64 31>, i32 3)
ret <2 x i64> %1
}
; CHECK-LABEL: test11
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <8 x i16> @test12() {
%1 = tail call <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16> <i16 15, i16 8, i16 undef, i16 undef, i16 31, i16 undef, i16 64, i16 128>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test12
; CHECK-NOT: psra
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test13() {
%1 = tail call <4 x i32> @llvm.x86.sse2.psrli.d(<4 x i32> <i32 undef, i32 8, i32 undef, i32 32>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test13
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <8 x i16> @test14() {
%1 = tail call <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16> <i16 15, i16 8, i16 undef, i16 undef, i16 31, i16 undef, i16 64, i16 128>, i32 3)
ret <8 x i16> %1
}
; CHECK-LABEL: test14
; CHECK-NOT: psrl
; CHECK: movaps
; CHECK-NEXT: ret
define <4 x i32> @test15() {
%1 = tail call <4 x i32> @llvm.x86.sse2.pslli.d(<4 x i32> <i32 undef, i32 8, i32 undef, i32 32>, i32 3)
ret <4 x i32> %1
}
; CHECK-LABEL: test15
; CHECK-NOT: psll
; CHECK: movaps
; CHECK-NEXT: ret
define <2 x i64> @test16() {
%1 = tail call <2 x i64> @llvm.x86.sse2.pslli.q(<2 x i64> <i64 undef, i64 31>, i32 3)
ret <2 x i64> %1
}
; CHECK-LABEL: test16
; CHECK-NOT: psll
; CHECK: movaps
; CHECK-NEXT: ret
declare <8 x i16> @llvm.x86.sse2.pslli.w(<8 x i16>, i32)
declare <8 x i16> @llvm.x86.sse2.psrli.w(<8 x i16>, i32)
declare <8 x i16> @llvm.x86.sse2.psrai.w(<8 x i16>, i32)
declare <4 x i32> @llvm.x86.sse2.pslli.d(<4 x i32>, i32)
declare <4 x i32> @llvm.x86.sse2.psrli.d(<4 x i32>, i32)
declare <4 x i32> @llvm.x86.sse2.psrai.d(<4 x i32>, i32)
declare <2 x i64> @llvm.x86.sse2.pslli.q(<2 x i64>, i32)
declare <2 x i64> @llvm.x86.sse2.psrli.q(<2 x i64>, i32)