1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

Introduce unify-loop-exits pass.

For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.

The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".

This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.

The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.

Reviewers: madhur13490, arsenm, nhaehnle

Reviewed By: nhaehnle

Differential Revision: https://reviews.llvm.org/D75865
This commit is contained in:
Sameer Sahasrabuddhe 2020-03-28 07:13:35 -04:00
parent 5db978be0e
commit b4d5045713
19 changed files with 1255 additions and 38 deletions

View File

@ -415,6 +415,7 @@ void initializeTwoAddressInstructionPassPass(PassRegistry&);
void initializeTypeBasedAAWrapperPassPass(PassRegistry&);
void initializeTypePromotionPass(PassRegistry&);
void initializeUnifyFunctionExitNodesPass(PassRegistry&);
void initializeUnifyLoopExitsPass(PassRegistry &);
void initializeUnpackMachineBundlesPass(PassRegistry&);
void initializeUnreachableBlockElimLegacyPassPass(PassRegistry&);
void initializeUnreachableMachineBlockElimPass(PassRegistry&);

View File

@ -229,7 +229,8 @@ namespace {
(void) llvm::createScalarizeMaskedMemIntrinPass();
(void) llvm::createWarnMissedTransformationsPass();
(void) llvm::createHardwareLoopsPass();
(void)llvm::createInjectTLIMappingsLegacyPass();
(void) llvm::createInjectTLIMappingsLegacyPass();
(void) llvm::createUnifyLoopExitsPass();
(void)new llvm::IntervalPartition();
(void)new llvm::ScalarEvolutionWrapperPass();

View File

@ -126,6 +126,14 @@ FunctionPass *createControlHeightReductionLegacyPass();
// scalar-to-vector mappings from the TargetLibraryInfo.
//
FunctionPass *createInjectTLIMappingsLegacyPass();
//===----------------------------------------------------------------------===//
//
// UnifyLoopExits - For each loop, creates a new block N such that all exiting
// blocks branch to N, and then N distributes control flow to all the original
// exit blocks.
//
FunctionPass *createUnifyLoopExitsPass();
}
#endif

View File

@ -17,6 +17,7 @@
// FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
@ -363,6 +364,81 @@ bool SplitIndirectBrCriticalEdges(Function &F,
BranchProbabilityInfo *BPI = nullptr,
BlockFrequencyInfo *BFI = nullptr);
/// Given a set of incoming and outgoing blocks, create a "hub" such that every
/// edge from an incoming block InBB to an outgoing block OutBB is now split
/// into two edges, one from InBB to the hub and another from the hub to
/// OutBB. The hub consists of a series of guard blocks, one for each outgoing
/// block. Each guard block conditionally branches to the corresponding outgoing
/// block, or the next guard block in the chain. These guard blocks are returned
/// in the argument vector.
///
/// Since the control flow edges from InBB to OutBB have now been replaced, the
/// function also updates any PHINodes in OutBB. For each such PHINode, the
/// operands corresponding to incoming blocks are moved to a new PHINode in the
/// hub, and the hub is made an operand of the original PHINode.
///
/// Input CFG:
/// ----------
///
/// Def
/// |
/// v
/// In1 In2
/// | |
/// | |
/// v v
/// Foo ---> Out1 Out2
/// |
/// v
/// Use
///
///
/// Create hub: Incoming = {In1, In2}, Outgoing = {Out1, Out2}
/// ----------------------------------------------------------
///
/// Def
/// |
/// v
/// In1 In2 Foo
/// | Hub | |
/// | + - - | - - + |
/// | ' v ' V
/// +------> Guard1 -----> Out1
/// ' | '
/// ' v '
/// ' Guard2 -----> Out2
/// ' ' |
/// + - - - - - + |
/// v
/// Use
///
/// Limitations:
/// -----------
/// 1. This assumes that all terminators in the CFG are direct branches (the
/// "br" instruction). The presence of any other control flow such as
/// indirectbr, switch or callbr will cause an assert.
///
/// 2. The updates to the PHINodes are not sufficient to restore SSA
/// form. Consider a definition Def, its use Use, incoming block In2 and
/// outgoing block Out2, such that:
/// a. In2 is reachable from D or contains D.
/// b. U is reachable from Out2 or is contained in Out2.
/// c. U is not a PHINode if U is contained in Out2.
///
/// Clearly, Def dominates Out2 since the program is valid SSA. But when the
/// hub is introduced, there is a new path through the hub along which Use is
/// reachable from entry without passing through Def, and SSA is no longer
/// valid. To fix this, we need to look at all the blocks post-dominated by
/// the hub on the one hand, and dominated by Out2 on the other. This is left
/// for the caller to accomplish, since each specific use of this function
/// may have additional information which simplifies this fixup. For example,
/// see restoreSSA() in the UnifyLoopExits pass.
BasicBlock *CreateControlFlowHub(DomTreeUpdater *DTU,
SmallVectorImpl<BasicBlock *> &GuardBlocks,
const SetVector<BasicBlock *> &Predecessors,
const SetVector<BasicBlock *> &Successors,
const StringRef Prefix);
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H

View File

@ -533,6 +533,13 @@ void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
/// value?
bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
//===----------------------------------------------------------------------===//
// Value helper functions
//
/// Invert the given true/false value, possibly reusing an existing copy.
Value *invertCondition(Value *Condition);
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_LOCAL_H

View File

@ -192,6 +192,11 @@ static cl::opt<bool> EnableScalarIRPasses(
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableStructurizerWorkarounds(
"amdgpu-enable-structurizer-workarounds",
cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(false),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
// Register the target
RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
@ -858,6 +863,9 @@ bool GCNPassConfig::addPreISel() {
// regions formed by them.
addPass(&AMDGPUUnifyDivergentExitNodesID);
if (!LateCFGStructurize) {
if (EnableStructurizerWorkarounds) {
addPass(createUnifyLoopExitsPass());
}
addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
}
addPass(createSinkingPass());

View File

@ -44,6 +44,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <cassert>
@ -218,8 +219,6 @@ class StructurizeCFG : public RegionPass {
void analyzeLoops(RegionNode *N);
Value *invert(Value *Condition);
Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
void gatherPredicates(RegionNode *N);
@ -405,39 +404,6 @@ void StructurizeCFG::analyzeLoops(RegionNode *N) {
}
}
/// Invert the given condition
Value *StructurizeCFG::invert(Value *Condition) {
// First: Check if it's a constant
if (Constant *C = dyn_cast<Constant>(Condition))
return ConstantExpr::getNot(C);
// Second: If the condition is already inverted, return the original value
Value *NotCondition;
if (match(Condition, m_Not(m_Value(NotCondition))))
return NotCondition;
if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
// Third: Check all the users for an invert
BasicBlock *Parent = Inst->getParent();
for (User *U : Condition->users())
if (Instruction *I = dyn_cast<Instruction>(U))
if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
return I;
// Last option: Create a new instruction
return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator());
}
if (Argument *Arg = dyn_cast<Argument>(Condition)) {
BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
return BinaryOperator::CreateNot(Condition,
Arg->getName() + ".inv",
EntryBlock.getTerminator());
}
llvm_unreachable("Unhandled condition to invert");
}
/// Build the condition for one edge
Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
bool Invert) {
@ -446,7 +412,7 @@ Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
Cond = Term->getCondition();
if (Idx != (unsigned)Invert)
Cond = invert(Cond);
Cond = invertCondition(Cond);
}
return Cond;
}

View File

@ -1102,3 +1102,223 @@ Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
}
return BI->getCondition();
}
// After creating a control flow hub, the operands of PHINodes in an outgoing
// block Out no longer match the predecessors of that block. Predecessors of Out
// that are incoming blocks to the hub are now replaced by just one edge from
// the hub. To match this new control flow, the corresponding values from each
// PHINode must now be moved a new PHINode in the first guard block of the hub.
//
// This operation cannot be performed with SSAUpdater, because it involves one
// new use: If the block Out is in the list of Incoming blocks, then the newly
// created PHI in the Hub will use itself along that edge from Out to Hub.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
const SetVector<BasicBlock *> &Incoming,
BasicBlock *FirstGuardBlock) {
auto I = Out->begin();
while (I != Out->end() && isa<PHINode>(I)) {
auto Phi = cast<PHINode>(I);
auto NewPhi =
PHINode::Create(Phi->getType(), Incoming.size(),
Phi->getName() + ".moved", &FirstGuardBlock->back());
for (auto In : Incoming) {
Value *V = UndefValue::get(Phi->getType());
if (In == Out) {
V = NewPhi;
} else if (Phi->getBasicBlockIndex(In) != -1) {
V = Phi->removeIncomingValue(In, false);
}
NewPhi->addIncoming(V, In);
}
assert(NewPhi->getNumIncomingValues() == Incoming.size());
if (Phi->getNumOperands() == 0) {
Phi->replaceAllUsesWith(NewPhi);
I = Phi->eraseFromParent();
continue;
}
Phi->addIncoming(NewPhi, GuardBlock);
++I;
}
}
using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
using BBSetVector = SetVector<BasicBlock *>;
// Collect predicates for each outgoing block. If control reaches the
// Hub from an incoming block InBB, then the predicate for each
// outgoing block OutBB decides whether control is forwarded to OutBB.
//
// These predicates are not orthogonal. The Hub evaluates them in the
// same order as the Outgoing set-vector, and control branches to the
// first outgoing block whose predicate evaluates to true.
static void createGuardPredicates(BasicBlock *FirstGuardBlock,
BBPredicates &GuardPredicates,
SmallVectorImpl<WeakVH> &DeletionCandidates,
const BBSetVector &Incoming,
const BBSetVector &Outgoing) {
auto &Context = Incoming.front()->getContext();
auto BoolTrue = ConstantInt::getTrue(Context);
auto BoolFalse = ConstantInt::getFalse(Context);
// The predicate for the last outgoing is trivially true, and so we
// process only the first N-1 successors.
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
auto Phi =
PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
GuardPredicates[Out] = Phi;
}
for (auto In : Incoming) {
auto Branch = cast<BranchInst>(In->getTerminator());
BasicBlock *Succ0 = Branch->getSuccessor(0);
BasicBlock *Succ1 = nullptr;
Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
if (Branch->isUnconditional()) {
Branch->setSuccessor(0, FirstGuardBlock);
assert(Succ0);
} else {
Succ1 = Branch->getSuccessor(1);
Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
assert(Succ0 || Succ1);
if (Succ0 && !Succ1) {
Branch->setSuccessor(0, FirstGuardBlock);
} else if (Succ1 && !Succ0) {
Branch->setSuccessor(1, FirstGuardBlock);
} else {
Branch->eraseFromParent();
BranchInst::Create(FirstGuardBlock, In);
}
}
assert(Succ0 || Succ1);
// Optimization: Consider an incoming block A with both successors
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
// for Succ0 and Succ1 complement each other. If Succ0 is visited
// first in the loop below, control will branch to Succ0 using the
// corresponding predicate. But if that branch is not taken, then
// control must reach Succ1, which means that the predicate for
// Succ1 is always true.
bool OneSuccessorDone = false;
auto Condition = Branch->getCondition();
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
auto Phi = GuardPredicates[Out];
if (Out != Succ0 && Out != Succ1) {
Phi->addIncoming(BoolFalse, In);
continue;
}
// Optimization: When only one successor is an outgoing block,
// the predicate is always true.
if (!Succ0 || !Succ1 || OneSuccessorDone) {
Phi->addIncoming(BoolTrue, In);
continue;
}
assert(Succ0 && Succ1);
OneSuccessorDone = true;
if (Out == Succ0) {
Phi->addIncoming(Condition, In);
continue;
}
auto Inverted = invertCondition(Condition);
DeletionCandidates.push_back(Condition);
Phi->addIncoming(Inverted, In);
}
}
}
// For each outgoing block OutBB, create a guard block in the Hub. The
// first guard block was already created outside, and available as the
// first element in the vector of guard blocks.
//
// Each guard block terminates in a conditional branch that transfers
// control to the corresponding outgoing block or the next guard
// block. The last guard block has two outgoing blocks as successors
// since the condition for the final outgoing block is trivially
// true. So we create one less block (including the first guard block)
// than the number of outgoing blocks.
static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
Function *F, const BBSetVector &Outgoing,
BBPredicates &GuardPredicates, StringRef Prefix) {
for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
GuardBlocks.push_back(
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
}
assert(GuardBlocks.size() == GuardPredicates.size());
// To help keep the loop simple, temporarily append the last
// outgoing block to the list of guard blocks.
GuardBlocks.push_back(Outgoing.back());
for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
auto Out = Outgoing[i];
assert(GuardPredicates.count(Out));
BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
GuardBlocks[i]);
}
// Remove the last block from the guard list.
GuardBlocks.pop_back();
}
BasicBlock *llvm::CreateControlFlowHub(
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
const BBSetVector &Incoming, const BBSetVector &Outgoing,
const StringRef Prefix) {
auto F = Incoming.front()->getParent();
auto FirstGuardBlock =
BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
SmallVector<DominatorTree::UpdateType, 16> Updates;
if (DTU) {
for (auto In : Incoming) {
for (auto Succ : successors(In)) {
if (Outgoing.count(Succ))
Updates.push_back({DominatorTree::Delete, In, Succ});
}
Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
}
}
BBPredicates GuardPredicates;
SmallVector<WeakVH, 8> DeletionCandidates;
createGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
Incoming, Outgoing);
GuardBlocks.push_back(FirstGuardBlock);
createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
// Update the PHINodes in each outgoing block to match the new control flow.
for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
}
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
if (DTU) {
int NumGuards = GuardBlocks.size();
assert((int)Outgoing.size() == NumGuards + 1);
for (int i = 0; i != NumGuards - 1; ++i) {
Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
Updates.push_back(
{DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
}
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards - 1]});
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards]});
DTU->applyUpdates(Updates);
}
for (auto I : DeletionCandidates) {
if (I->use_empty())
if (auto Inst = dyn_cast_or_null<Instruction>(I))
Inst->eraseFromParent();
}
return FirstGuardBlock;
}

View File

@ -62,6 +62,7 @@ add_llvm_component_library(LLVMTransformUtils
StripNonLineTableDebugInfo.cpp
SymbolRewriter.cpp
UnifyFunctionExitNodes.cpp
UnifyLoopExits.cpp
Utils.cpp
ValueMapper.cpp
VNCoercion.cpp

View File

@ -3031,3 +3031,42 @@ AllocaInst *llvm::findAllocaForValue(Value *V,
AllocaForValue[V] = Res;
return Res;
}
Value *llvm::invertCondition(Value *Condition) {
// First: Check if it's a constant
if (Constant *C = dyn_cast<Constant>(Condition))
return ConstantExpr::getNot(C);
// Second: If the condition is already inverted, return the original value
Value *NotCondition;
if (match(Condition, m_Not(m_Value(NotCondition))))
return NotCondition;
if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
// Third: Check all the users for an invert
BasicBlock *Parent = Inst->getParent();
for (User *U : Condition->users())
if (Instruction *I = dyn_cast<Instruction>(U))
if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
return I;
// Last option: Create a new instruction
auto Inverted = BinaryOperator::CreateNot(Inst, "");
if (isa<PHINode>(Inst)) {
// FIXME: This fails if the inversion is to be used in a
// subsequent PHINode in the same basic block.
Inverted->insertBefore(&*Parent->getFirstInsertionPt());
} else {
Inverted->insertAfter(Inst);
}
return Inverted;
}
if (Argument *Arg = dyn_cast<Argument>(Condition)) {
BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
return BinaryOperator::CreateNot(Condition, Arg->getName() + ".inv",
&*EntryBlock.getFirstInsertionPt());
}
llvm_unreachable("Unhandled condition to invert");
}

View File

@ -0,0 +1,220 @@
//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// For each natural loop with multiple exit blocks, this pass creates a new
// block N such that all exiting blocks now branch to N, and then control flow
// is redistributed to all the original exit blocks.
//
// Limitation: This assumes that all terminators in the CFG are direct branches
// (the "br" instruction). The presence of any other control flow
// such as indirectbr, switch or callbr will cause an assert.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "unify-loop-exits"
using namespace llvm;
namespace {
struct UnifyLoopExits : public FunctionPass {
static char ID;
UnifyLoopExits() : FunctionPass(ID) {
initializeUnifyLoopExitsPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreservedID(LowerSwitchID);
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F);
};
} // namespace
char UnifyLoopExits::ID = 0;
FunctionPass *llvm::createUnifyLoopExitsPass() { return new UnifyLoopExits(); }
INITIALIZE_PASS_BEGIN(UnifyLoopExits, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(UnifyLoopExits, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
// The current transform introduces new control flow paths which may break the
// SSA requirement that every def must dominate all its uses. For example,
// consider a value D defined inside the loop that is used by some instruction
// U outside the loop. It follows that D dominates U, since the original
// program has valid SSA form. After merging the exits, all paths from D to U
// now flow through the unified exit block. In addition, there may be other
// paths that do not pass through D, but now reach the unified exit
// block. Thus, D no longer dominates U.
//
// Restore the dominance by creating a phi for each such D at the new unified
// loop exit. But when doing this, ignore any uses U that are in the new unified
// loop exit, since those were introduced specially when the block was created.
//
// The use of SSAUpdater seems like overkill for this operation. The location
// for creating the new PHI is well-known, and also the set of incoming blocks
// to the new PHI.
static void restoreSSA(const DominatorTree &DT, const Loop *L,
const SetVector<BasicBlock *> &Incoming,
BasicBlock *LoopExitBlock) {
using InstVector = SmallVector<Instruction *, 8>;
using IIMap = DenseMap<Instruction *, InstVector>;
IIMap ExternalUsers;
for (auto BB : L->blocks()) {
for (auto &I : *BB) {
for (auto &U : I.uses()) {
auto UserInst = cast<Instruction>(U.getUser());
auto UserBlock = UserInst->getParent();
if (UserBlock == LoopExitBlock)
continue;
if (L->contains(UserBlock))
continue;
LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
<< BB->getName() << ")"
<< ": " << UserInst->getName() << "("
<< UserBlock->getName() << ")"
<< "\n");
ExternalUsers[&I].push_back(UserInst);
}
}
}
for (auto II : ExternalUsers) {
// For each Def used outside the loop, create NewPhi in
// LoopExitBlock. NewPhi receives Def only along exiting blocks that
// dominate it, while the remaining values are undefined since those paths
// didn't exist in the original CFG.
auto Def = II.first;
LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
Def->getName() + ".moved",
LoopExitBlock->getTerminator());
for (auto In : Incoming) {
LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
if (Def->getParent() == In || DT.dominates(Def, In)) {
LLVM_DEBUG(dbgs() << "dominated\n");
NewPhi->addIncoming(Def, In);
} else {
LLVM_DEBUG(dbgs() << "not dominated\n");
NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
}
}
LLVM_DEBUG(dbgs() << "external users:");
for (auto U : II.second) {
LLVM_DEBUG(dbgs() << " " << U->getName());
U->replaceUsesOfWith(Def, NewPhi);
}
LLVM_DEBUG(dbgs() << "\n");
}
}
static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
// To unify the loop exits, we need a list of the exiting blocks as
// well as exit blocks. The functions for locating these lists both
// traverse the entire loop body. It is more efficient to first
// locate the exiting blocks and then examine their successors to
// locate the exit blocks.
SetVector<BasicBlock *> ExitingBlocks;
SetVector<BasicBlock *> Exits;
// We need SetVectors, but the Loop API takes a vector, so we use a temporary.
SmallVector<BasicBlock *, 8> Temp;
L->getExitingBlocks(Temp);
for (auto BB : Temp) {
ExitingBlocks.insert(BB);
for (auto S : successors(BB)) {
auto SL = LI.getLoopFor(S);
// A successor is not an exit if it is directly or indirectly in the
// current loop.
if (SL == L || L->contains(SL))
continue;
Exits.insert(S);
}
}
LLVM_DEBUG(
dbgs() << "Found exit blocks:";
for (auto Exit : Exits) {
dbgs() << " " << Exit->getName();
}
dbgs() << "\n";
dbgs() << "Found exiting blocks:";
for (auto EB : ExitingBlocks) {
dbgs() << " " << EB->getName();
}
dbgs() << "\n";);
if (Exits.size() <= 1) {
LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
return false;
}
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
Exits, "loop.exit");
restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#endif // EXPENSIVE_CHECKS
L->verifyLoop();
// The guard blocks were created outside the loop, so they need to become
// members of the parent loop.
if (auto ParentLoop = L->getParentLoop()) {
for (auto G : GuardBlocks) {
ParentLoop->addBasicBlockToLoop(G, LI);
}
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
return true;
}
bool UnifyLoopExits::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool Changed = false;
auto Loops = LI.getLoopsInPreorder();
for (auto L : Loops) {
LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
<< LI.getLoopDepth(L->getHeader()) << ")\n");
Changed |= unifyLoopExits(DT, LI, L);
}
return Changed;
}

View File

@ -40,6 +40,7 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) {
initializeStripGCRelocatesPass(Registry);
initializePredicateInfoPrinterLegacyPassPass(Registry);
initializeInjectTLIMappingsLegacyPass(Registry);
initializeUnifyLoopExitsPass(Registry);
}
/// LLVMInitializeTransformUtils - C binding for initializeTransformUtilsPasses.

View File

@ -499,8 +499,8 @@ define amdgpu_kernel void @invert_true_phi_cond_break_loop(i32 %arg) #0 {
; GCN-NEXT: s_or_b64 s[4:5], s[4:5], s[8:9]
; GCN-NEXT: BB5_3: ; %Flow
; GCN-NEXT: ; in Loop: Header=BB5_1 Depth=1
; GCN-NEXT: s_add_i32 s6, s6, 1
; GCN-NEXT: s_xor_b64 s[8:9], s[4:5], -1
; GCN-NEXT: s_add_i32 s6, s6, 1
; GCN-NEXT: s_and_b64 s[8:9], exec, s[8:9]
; GCN-NEXT: s_or_b64 s[0:1], s[8:9], s[0:1]
; GCN-NEXT: s_andn2_b64 exec, exec, s[0:1]

View File

@ -0,0 +1,173 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -unify-loop-exits -structurizecfg -S | FileCheck %s
; The structurizer uses an RPO traversal over a region, along with a
; manual hack that is meant to sort ensure that blocks within a loop
; are all visited before visiting blocks outside the loop. But this
; does not always work as expected. For example the results are
; incorrect when multiple nested loops are involved.
; The workaround for this is to unify loop exits. Each loop now
; becomes an SESE region with a single header and a single exit. The
; structurizer is a region pass, and it no longer sees the entire loop
; nest in a single region. More importantly, for each loop, the only
; block reachable outside the loop is the region exit, which avoids
; any confusion in the hacked RPO traversal.
; In the function below, B1 is an exiting block in outer loop H1. It's
; successor inside the loop is the header of another loop H2. Due to
; the incorrect traversal, B1 dominates all the blocks in the
; structurized program, except the header H1.
define void @exiting-block(i1 %PredH1, i1 %PredB2, i1 %PredB1, i1 %PredH2) {
; CHECK-LABEL: @exiting-block(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PREDH1_INV:%.*]] = xor i1 [[PREDH1:%.*]], true
; CHECK-NEXT: [[PREDB2_INV:%.*]] = xor i1 [[PREDB2:%.*]], true
; CHECK-NEXT: br label [[H1:%.*]]
; CHECK: H1:
; CHECK-NEXT: br i1 [[PREDH1_INV]], label [[B1:%.*]], label [[FLOW3:%.*]]
; CHECK: Flow3:
; CHECK-NEXT: [[TMP0:%.*]] = phi i1 [ [[PREDB1:%.*]], [[B1]] ], [ [[PREDH1]], [[H1]] ]
; CHECK-NEXT: br i1 [[TMP0]], label [[H2:%.*]], label [[FLOW4:%.*]]
; CHECK: H2:
; CHECK-NEXT: br i1 [[PREDH2:%.*]], label [[B2:%.*]], label [[FLOW:%.*]]
; CHECK: B2:
; CHECK-NEXT: br i1 [[PREDB2_INV]], label [[L2:%.*]], label [[FLOW2:%.*]]
; CHECK: Flow:
; CHECK-NEXT: [[TMP1:%.*]] = phi i1 [ false, [[FLOW2]] ], [ true, [[H2]] ]
; CHECK-NEXT: [[TMP2:%.*]] = phi i1 [ [[TMP4:%.*]], [[FLOW2]] ], [ true, [[H2]] ]
; CHECK-NEXT: br i1 [[TMP2]], label [[LOOP_EXIT_GUARD1:%.*]], label [[H2]]
; CHECK: L2:
; CHECK-NEXT: br label [[FLOW2]]
; CHECK: L1:
; CHECK-NEXT: br label [[FLOW5:%.*]]
; CHECK: B1:
; CHECK-NEXT: br label [[FLOW3]]
; CHECK: C:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: Flow5:
; CHECK-NEXT: [[TMP3:%.*]] = phi i1 [ false, [[L1:%.*]] ], [ true, [[LOOP_EXIT_GUARD1]] ]
; CHECK-NEXT: br label [[FLOW4]]
; CHECK: loop.exit.guard:
; CHECK-NEXT: br i1 [[TMP5:%.*]], label [[C:%.*]], label [[EXIT]]
; CHECK: Flow2:
; CHECK-NEXT: [[TMP4]] = phi i1 [ false, [[L2]] ], [ true, [[B2]] ]
; CHECK-NEXT: br label [[FLOW]]
; CHECK: Flow4:
; CHECK-NEXT: [[TMP5]] = phi i1 [ false, [[FLOW5]] ], [ true, [[FLOW3]] ]
; CHECK-NEXT: [[TMP6:%.*]] = phi i1 [ [[TMP3]], [[FLOW5]] ], [ true, [[FLOW3]] ]
; CHECK-NEXT: br i1 [[TMP6]], label [[LOOP_EXIT_GUARD:%.*]], label [[H1]]
; CHECK: loop.exit.guard1:
; CHECK-NEXT: br i1 [[TMP1]], label [[L1]], label [[FLOW5]]
;
entry:
br label %H1
H1: ; preds = %L1, %entry
br i1 %PredH1, label %H2, label %B1
H2: ; preds = %B1, %L2, %H1
br i1 %PredH2, label %B2, label %L1
B2: ; preds = %H2
br i1 %PredB2, label %exit, label %L2
L2: ; preds = %B2
br label %H2
L1: ; preds = %H2
br label %H1
B1: ; preds = %H1
br i1 %PredB1, label %H2, label %C
C: ; preds = %B1
br label %exit
exit: ; preds = %C, %B2
ret void
}
; The function below has three nested loops. Due to the incorrect
; traversal, H2 dominates H3 in the structurized program, and the
; backedge from L13 to H3 has no equivalent path.
define void @incorrect-backedge(i1 %PredH2, i1 %PredH3, i1 %PredL2, i1 %PredL13, i1 %PredL1)
; CHECK-LABEL: @incorrect-backedge(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PREDH2_INV:%.*]] = xor i1 [[PREDH2:%.*]], true
; CHECK-NEXT: [[PREDL2_INV:%.*]] = xor i1 [[PREDL2:%.*]], true
; CHECK-NEXT: [[PREDH3_INV:%.*]] = xor i1 [[PREDH3:%.*]], true
; CHECK-NEXT: [[PREDL13_INV:%.*]] = xor i1 [[PREDL13:%.*]], true
; CHECK-NEXT: br label [[H1:%.*]]
; CHECK: H1:
; CHECK-NEXT: br label [[H2:%.*]]
; CHECK: H2:
; CHECK-NEXT: br i1 [[PREDH2_INV]], label [[H3:%.*]], label [[FLOW4:%.*]]
; CHECK: H3:
; CHECK-NEXT: br i1 [[PREDH3_INV]], label [[L2:%.*]], label [[FLOW:%.*]]
; CHECK: L2:
; CHECK-NEXT: br i1 [[PREDL2_INV]], label [[L13:%.*]], label [[FLOW3:%.*]]
; CHECK: Flow:
; CHECK-NEXT: [[TMP0:%.*]] = phi i1 [ false, [[FLOW3]] ], [ true, [[H3]] ]
; CHECK-NEXT: [[TMP1:%.*]] = phi i1 [ [[TMP6:%.*]], [[FLOW3]] ], [ true, [[H3]] ]
; CHECK-NEXT: [[TMP2:%.*]] = phi i1 [ [[TMP7:%.*]], [[FLOW3]] ], [ true, [[H3]] ]
; CHECK-NEXT: br i1 [[TMP2]], label [[LOOP_EXIT_GUARD2:%.*]], label [[H3]]
; CHECK: L13:
; CHECK-NEXT: br label [[FLOW3]]
; CHECK: Flow5:
; CHECK-NEXT: [[TMP3:%.*]] = phi i1 [ [[TMP8:%.*]], [[LOOP_EXIT_GUARD1:%.*]] ], [ true, [[LOOP_EXIT_GUARD:%.*]] ]
; CHECK-NEXT: [[TMP4:%.*]] = phi i1 [ false, [[LOOP_EXIT_GUARD1]] ], [ true, [[LOOP_EXIT_GUARD]] ]
; CHECK-NEXT: br i1 [[TMP4]], label [[L1:%.*]], label [[FLOW6:%.*]]
; CHECK: L1:
; CHECK-NEXT: br label [[FLOW6]]
; CHECK: Flow6:
; CHECK-NEXT: [[TMP5:%.*]] = phi i1 [ [[PREDL1:%.*]], [[L1]] ], [ [[TMP3]], [[FLOW5:%.*]] ]
; CHECK-NEXT: br i1 [[TMP5]], label [[EXIT:%.*]], label [[H1]]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: loop.exit.guard:
; CHECK-NEXT: br i1 [[TMP11:%.*]], label [[LOOP_EXIT_GUARD1]], label [[FLOW5]]
; CHECK: loop.exit.guard1:
; CHECK-NEXT: br label [[FLOW5]]
; CHECK: Flow3:
; CHECK-NEXT: [[TMP6]] = phi i1 [ true, [[L13]] ], [ false, [[L2]] ]
; CHECK-NEXT: [[TMP7]] = phi i1 [ [[PREDL13_INV]], [[L13]] ], [ true, [[L2]] ]
; CHECK-NEXT: br label [[FLOW]]
; CHECK: Flow4:
; CHECK-NEXT: [[TMP8]] = phi i1 [ [[TMP0]], [[LOOP_EXIT_GUARD2]] ], [ false, [[H2]] ]
; CHECK-NEXT: [[TMP9:%.*]] = phi i1 [ false, [[LOOP_EXIT_GUARD2]] ], [ true, [[H2]] ]
; CHECK-NEXT: [[TMP10:%.*]] = phi i1 [ [[TMP1]], [[LOOP_EXIT_GUARD2]] ], [ true, [[H2]] ]
; CHECK-NEXT: [[TMP11]] = xor i1 [[TMP9]], true
; CHECK-NEXT: br i1 [[TMP10]], label [[LOOP_EXIT_GUARD]], label [[H2]]
; CHECK: loop.exit.guard2:
; CHECK-NEXT: br label [[FLOW4]]
;
{
entry:
br label %H1
H1:
br label %H2
H2:
br i1 %PredH2, label %L1, label %H3
H3:
br i1 %PredH3, label %exit, label %L2
L2:
br i1 %PredL2, label %H2, label %L13
L13:
br i1 %PredL13, label %H3, label %H1
L1:
br i1 %PredL1, label %exit, label %H1
exit:
ret void
}

View File

@ -0,0 +1,109 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -unify-loop-exits -S | FileCheck %s
define void @loop_1(i1 %PredEntry, i1 %PredB, i1 %PredC, i1 %PredD) {
; CHECK-LABEL: @loop_1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[PREDENTRY:%.*]], label [[A:%.*]], label [[G:%.*]]
; CHECK: A:
; CHECK-NEXT: br label [[B:%.*]]
; CHECK: B:
; CHECK-NEXT: br i1 [[PREDB:%.*]], label [[C:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: C:
; CHECK-NEXT: br i1 [[PREDC:%.*]], label [[D:%.*]], label [[LOOP_EXIT_GUARD]]
; CHECK: D:
; CHECK-NEXT: br i1 [[PREDD:%.*]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: E:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: F:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: G:
; CHECK-NEXT: br label [[F:%.*]]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_E:%.*]] = phi i1 [ true, [[B]] ], [ false, [[C]] ], [ false, [[D]] ]
; CHECK-NEXT: br i1 [[GUARD_E]], label [[E:%.*]], label [[F]]
;
entry:
br i1 %PredEntry, label %A, label %G
A:
br label %B
B:
br i1 %PredB, label %C, label %E
C:
br i1 %PredC, label %D, label %F
D:
br i1 %PredD, label %A, label %F
E:
br label %exit
F:
br label %exit
G:
br label %F
exit:
ret void
}
define void @loop_2(i1 %PredA, i1 %PredB, i1 %PredC) {
; CHECK-LABEL: @loop_2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[A:%.*]]
; CHECK: A:
; CHECK-NEXT: br i1 [[PREDA:%.*]], label [[B:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: B:
; CHECK-NEXT: br i1 [[PREDB:%.*]], label [[C:%.*]], label [[LOOP_EXIT_GUARD]]
; CHECK: C:
; CHECK-NEXT: br i1 [[PREDC:%.*]], label [[D:%.*]], label [[LOOP_EXIT_GUARD]]
; CHECK: D:
; CHECK-NEXT: br label [[A]]
; CHECK: X:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: Y:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: Z:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_X:%.*]] = phi i1 [ true, [[A]] ], [ false, [[B]] ], [ false, [[C]] ]
; CHECK-NEXT: [[GUARD_Y:%.*]] = phi i1 [ false, [[A]] ], [ true, [[B]] ], [ false, [[C]] ]
; CHECK-NEXT: br i1 [[GUARD_X]], label [[X:%.*]], label [[LOOP_EXIT_GUARD1:%.*]]
; CHECK: loop.exit.guard1:
; CHECK-NEXT: br i1 [[GUARD_Y]], label [[Y:%.*]], label [[Z:%.*]]
;
entry:
br label %A
A:
br i1 %PredA, label %B, label %X
B:
br i1 %PredB, label %C, label %Y
C:
br i1 %PredC, label %D, label %Z
D:
br label %A
X:
br label %exit
Y:
br label %exit
Z:
br label %exit
exit:
ret void
}

View File

@ -0,0 +1,80 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -unify-loop-exits -S | FileCheck %s
define void @nested(i1 %PredB3, i1 %PredB4, i1 %PredA4, i1 %PredA3, i32 %X, i32 %Y, i32 %Z) {
; CHECK-LABEL: @nested(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[A1:%.*]]
; CHECK: A1:
; CHECK-NEXT: br label [[B1:%.*]]
; CHECK: B1:
; CHECK-NEXT: br label [[B2:%.*]]
; CHECK: B2:
; CHECK-NEXT: [[X_INC:%.*]] = add i32 [[X:%.*]], 1
; CHECK-NEXT: br label [[B3:%.*]]
; CHECK: B3:
; CHECK-NEXT: br i1 [[PREDB3:%.*]], label [[B4:%.*]], label [[LOOP_EXIT_GUARD1:%.*]]
; CHECK: B4:
; CHECK-NEXT: br i1 [[PREDB4:%.*]], label [[B1]], label [[LOOP_EXIT_GUARD1]]
; CHECK: A2:
; CHECK-NEXT: br label [[A4:%.*]]
; CHECK: A3:
; CHECK-NEXT: br label [[A4]]
; CHECK: A4:
; CHECK-NEXT: [[A4_PHI:%.*]] = phi i32 [ [[Y:%.*]], [[A3:%.*]] ], [ [[X_INC_MOVED:%.*]], [[A2:%.*]] ]
; CHECK-NEXT: br i1 [[PREDA4:%.*]], label [[LOOP_EXIT_GUARD:%.*]], label [[A5:%.*]]
; CHECK: A5:
; CHECK-NEXT: br i1 [[PREDA3:%.*]], label [[LOOP_EXIT_GUARD]], label [[A1]]
; CHECK: C:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[EXIT_PHI:%.*]] = phi i32 [ [[Z:%.*]], [[C:%.*]] ], [ [[EXIT_PHI_MOVED:%.*]], [[LOOP_EXIT_GUARD]] ]
; CHECK-NEXT: ret void
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_C:%.*]] = phi i1 [ true, [[A4]] ], [ false, [[A5]] ]
; CHECK-NEXT: [[EXIT_PHI_MOVED]] = phi i32 [ undef, [[A4]] ], [ [[A4_PHI]], [[A5]] ]
; CHECK-NEXT: br i1 [[GUARD_C]], label [[C]], label [[EXIT]]
; CHECK: loop.exit.guard1:
; CHECK-NEXT: [[GUARD_A3:%.*]] = phi i1 [ true, [[B3]] ], [ false, [[B4]] ]
; CHECK-NEXT: [[X_INC_MOVED]] = phi i32 [ [[X_INC]], [[B3]] ], [ [[X_INC]], [[B4]] ]
; CHECK-NEXT: br i1 [[GUARD_A3]], label [[A3]], label [[A2]]
;
entry:
br label %A1
A1:
br label %B1
B1:
br label %B2
B2:
%X.inc = add i32 %X, 1
br label %B3
B3:
br i1 %PredB3, label %B4, label %A3
B4:
br i1 %PredB4, label %B1, label %A2
A2:
br label %A4
A3:
br label %A4
A4:
%A4.phi = phi i32 [%Y, %A3], [%X.inc, %A2]
br i1 %PredA4, label %C, label %A5
A5:
br i1 %PredA3, label %exit, label %A1
C:
br label %exit
exit:
%exit.phi = phi i32 [%A4.phi, %A5], [%Z, %C]
ret void
}

View File

@ -0,0 +1,238 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -unify-loop-exits -S | FileCheck %s
; Loop consists of A and B:
; - A is the header
; - A and B are exiting blocks
; - C and return are exit blocks.
; Pattern: Value (%mytmp42) defined in exiting block (A) and used in
; exit block (return).
; The relevant code uses DT::dominates(Value,
; BasicBlock). This is misnamed because it actually checks
; strict dominance, causing the pattern to be miscompiled
; (the use receives an undef value).
define i32 @exiting-used-in-exit(i32* %arg1, i32* %arg2) local_unnamed_addr align 2 {
; CHECK-LABEL: @exiting-used-in-exit(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[A:%.*]]
; CHECK: A:
; CHECK-NEXT: [[MYTMP42:%.*]] = load i32, i32* [[ARG1:%.*]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[B:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: B:
; CHECK-NEXT: [[MYTMP41:%.*]] = load i32, i32* [[ARG2:%.*]], align 4
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[MYTMP41]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: C:
; CHECK-NEXT: [[INC:%.*]] = add i32 [[MYTMP41_MOVED:%.*]], 1
; CHECK-NEXT: br label [[RETURN:%.*]]
; CHECK: return:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ [[INC]], [[C:%.*]] ], [ [[PHI_MOVED:%.*]], [[LOOP_EXIT_GUARD]] ]
; CHECK-NEXT: ret i32 [[PHI]]
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_RETURN:%.*]] = phi i1 [ true, [[A]] ], [ false, [[B]] ]
; CHECK-NEXT: [[PHI_MOVED]] = phi i32 [ [[MYTMP42]], [[A]] ], [ undef, [[B]] ]
; CHECK-NEXT: [[MYTMP41_MOVED]] = phi i32 [ undef, [[A]] ], [ [[MYTMP41]], [[B]] ]
; CHECK-NEXT: br i1 [[GUARD_RETURN]], label [[RETURN]], label [[C]]
;
entry:
br label %A
A:
%mytmp42 = load i32, i32* %arg1, align 4
%cmp1 = icmp slt i32 %mytmp42, 0
br i1 %cmp1, label %B, label %return
B:
%mytmp41 = load i32, i32* %arg2, align 4
%cmp = icmp slt i32 %mytmp41, 0
br i1 %cmp, label %A, label %C
C:
%inc = add i32 %mytmp41, 1
br label %return
return:
%phi = phi i32 [ %inc, %C ], [ %mytmp42, %A ]
ret i32 %phi
}
; Loop consists of A, B and C:
; - A is the header
; - A and C are exiting blocks
; - B is an "internal" block that dominates exiting block C
; - D and return are exit blocks.
; Pattern: Value (%mytmp41) defined in internal block (B) and used in an
; exit block (D).
define i32 @internal-used-in-exit(i32* %arg1, i32* %arg2) local_unnamed_addr align 2 {
; CHECK-LABEL: @internal-used-in-exit(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[MYTMP42:%.*]] = load i32, i32* [[ARG1:%.*]], align 4
; CHECK-NEXT: br label [[A:%.*]]
; CHECK: A:
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[B:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: B:
; CHECK-NEXT: [[MYTMP41:%.*]] = load i32, i32* [[ARG2:%.*]], align 4
; CHECK-NEXT: br label [[C:%.*]]
; CHECK: C:
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: D:
; CHECK-NEXT: [[INC:%.*]] = add i32 [[MYTMP41_MOVED:%.*]], 1
; CHECK-NEXT: br label [[RETURN:%.*]]
; CHECK: return:
; CHECK-NEXT: ret i32 0
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_RETURN:%.*]] = phi i1 [ true, [[A]] ], [ false, [[C]] ]
; CHECK-NEXT: [[MYTMP41_MOVED]] = phi i32 [ undef, [[A]] ], [ [[MYTMP41]], [[C]] ]
; CHECK-NEXT: br i1 [[GUARD_RETURN]], label [[RETURN]], label [[D:%.*]]
;
entry:
%mytmp42 = load i32, i32* %arg1, align 4
br label %A
A:
%cmp1 = icmp slt i32 %mytmp42, 0
br i1 %cmp1, label %B, label %return
B:
%mytmp41 = load i32, i32* %arg2, align 4
br label %C
C:
%cmp = icmp slt i32 %mytmp42, 0
br i1 %cmp, label %A, label %D
D:
%inc = add i32 %mytmp41, 1
br label %return
return:
ret i32 0
}
; Loop consists of A, B and C:
; - A is the header
; - A and C are exiting blocks
; - B is an "internal" block that dominates exiting block C
; - D and return are exit blocks.
; Pattern: %return contains a phi node that receives values from
; %entry, %A and %D. This mixes all the special cases in a single phi.
define i32 @mixed-use-in-exit(i32* %arg1, i32* %arg2) local_unnamed_addr align 2 {
; CHECK-LABEL: @mixed-use-in-exit(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[MYTMP42:%.*]] = load i32, i32* [[ARG1:%.*]], align 4
; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP2]], label [[A:%.*]], label [[RETURN:%.*]]
; CHECK: A:
; CHECK-NEXT: [[MYTMP43:%.*]] = add i32 [[MYTMP42]], 1
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[B:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: B:
; CHECK-NEXT: [[MYTMP41:%.*]] = load i32, i32* [[ARG2:%.*]], align 4
; CHECK-NEXT: br label [[C:%.*]]
; CHECK: C:
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: D:
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ [[MYTMP41_MOVED:%.*]], [[D:%.*]] ], [ [[MYTMP42]], [[ENTRY:%.*]] ], [ [[PHI_MOVED:%.*]], [[LOOP_EXIT_GUARD]] ]
; CHECK-NEXT: ret i32 [[PHI]]
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_RETURN:%.*]] = phi i1 [ true, [[A]] ], [ false, [[C]] ]
; CHECK-NEXT: [[PHI_MOVED]] = phi i32 [ [[MYTMP43]], [[A]] ], [ undef, [[C]] ]
; CHECK-NEXT: [[MYTMP41_MOVED]] = phi i32 [ undef, [[A]] ], [ [[MYTMP41]], [[C]] ]
; CHECK-NEXT: br i1 [[GUARD_RETURN]], label [[RETURN]], label [[D]]
;
entry:
%mytmp42 = load i32, i32* %arg1, align 4
%cmp2 = icmp slt i32 %mytmp42, 0
br i1 %cmp2, label %A, label %return
A:
%mytmp43 = add i32 %mytmp42, 1
%cmp1 = icmp slt i32 %mytmp42, 0
br i1 %cmp1, label %B, label %return
B:
%mytmp41 = load i32, i32* %arg2, align 4
br label %C
C:
%cmp = icmp slt i32 %mytmp42, 0
br i1 %cmp, label %A, label %D
D:
br label %return
return:
%phi = phi i32 [ %mytmp41, %D ], [ %mytmp43, %A ], [%mytmp42, %entry]
ret i32 %phi
}
; Loop consists of A, B and C:
; - A is the header
; - A and C are exiting blocks
; - B is an "internal" block that dominates exiting block C
; - D and E are exit blocks.
; Pattern: Value (%mytmp41) defined in internal block (B) and used in a
; downstream block not related to the loop (return). The use
; is a phi where the incoming block for %mytmp41 is not related
; to the loop (D).
; This pattern does not involve either the exiting blocks or
; the exit blocks, which catches any such assumptions built
; into the SSA reconstruction phase.
define i32 @phi-via-external-block(i32* %arg1, i32* %arg2) local_unnamed_addr align 2 {
; CHECK-LABEL: @phi-via-external-block(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[MYTMP42:%.*]] = load i32, i32* [[ARG1:%.*]], align 4
; CHECK-NEXT: br label [[A:%.*]]
; CHECK: A:
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[B:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: B:
; CHECK-NEXT: [[MYTMP41:%.*]] = load i32, i32* [[ARG2:%.*]], align 4
; CHECK-NEXT: br label [[C:%.*]]
; CHECK: C:
; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[MYTMP42]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: D:
; CHECK-NEXT: br label [[RETURN:%.*]]
; CHECK: E:
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[PHI:%.*]] = phi i32 [ [[MYTMP41_MOVED:%.*]], [[D:%.*]] ], [ [[MYTMP42]], [[E:%.*]] ]
; CHECK-NEXT: ret i32 [[PHI]]
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_E:%.*]] = phi i1 [ true, [[A]] ], [ false, [[C]] ]
; CHECK-NEXT: [[MYTMP41_MOVED]] = phi i32 [ undef, [[A]] ], [ [[MYTMP41]], [[C]] ]
; CHECK-NEXT: br i1 [[GUARD_E]], label [[E]], label [[D]]
;
entry:
%mytmp42 = load i32, i32* %arg1, align 4
br label %A
A:
%cmp1 = icmp slt i32 %mytmp42, 0
br i1 %cmp1, label %B, label %E
B:
%mytmp41 = load i32, i32* %arg2, align 4
br label %C
C:
%cmp = icmp slt i32 %mytmp42, 0
br i1 %cmp, label %A, label %D
D:
br label %return
E:
br label %return
return:
%phi = phi i32 [ %mytmp41, %D ], [ %mytmp42, %E ]
ret i32 %phi
}

View File

@ -0,0 +1,68 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -unify-loop-exits -S | FileCheck %s
define void @loop_1(i32 %Value, i1 %PredEntry, i1 %PredD) {
; CHECK-LABEL: @loop_1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[PREDENTRY:%.*]], label [[A:%.*]], label [[G:%.*]]
; CHECK: A:
; CHECK-NEXT: br label [[B:%.*]]
; CHECK: B:
; CHECK-NEXT: br label [[NODEBLOCK:%.*]]
; CHECK: NodeBlock:
; CHECK-NEXT: [[PIVOT:%.*]] = icmp slt i32 [[VALUE:%.*]], 1
; CHECK-NEXT: br i1 [[PIVOT]], label [[LEAFBLOCK:%.*]], label [[LEAFBLOCK1:%.*]]
; CHECK: LeafBlock1:
; CHECK-NEXT: [[SWITCHLEAF2:%.*]] = icmp eq i32 [[VALUE]], 1
; CHECK-NEXT: br i1 [[SWITCHLEAF2]], label [[D:%.*]], label [[LOOP_EXIT_GUARD:%.*]]
; CHECK: LeafBlock:
; CHECK-NEXT: [[SWITCHLEAF:%.*]] = icmp eq i32 [[VALUE]], 0
; CHECK-NEXT: br i1 [[SWITCHLEAF]], label [[C:%.*]], label [[LOOP_EXIT_GUARD]]
; CHECK: C:
; CHECK-NEXT: br label [[D]]
; CHECK: D:
; CHECK-NEXT: br i1 [[PREDD:%.*]], label [[A]], label [[LOOP_EXIT_GUARD]]
; CHECK: NewDefault:
; CHECK-NEXT: br label [[X:%.*]]
; CHECK: X:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: Y:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: G:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: loop.exit.guard:
; CHECK-NEXT: [[GUARD_NEWDEFAULT:%.*]] = phi i1 [ true, [[LEAFBLOCK1]] ], [ true, [[LEAFBLOCK]] ], [ false, [[D]] ]
; CHECK-NEXT: br i1 [[GUARD_NEWDEFAULT]], label [[NEWDEFAULT:%.*]], label [[Y:%.*]]
;
entry:
br i1 %PredEntry, label %A, label %G
A:
br label %B
B:
switch i32 %Value, label %X [
i32 0, label %C
i32 1, label %D
]
C:
br label %D
D:
br i1 %PredD, label %A, label %Y
X:
br label %exit
Y:
br label %exit
G:
br label %exit
exit:
ret void
}

View File

@ -319,6 +319,7 @@ int main(int argc, char **argv) {
initializeScalarizeMaskedMemIntrinPass(*Registry);
initializeExpandReductionsPass(*Registry);
initializeHardwareLoopsPass(*Registry);
initializeTransformUtils(*Registry);
// Initialize debugging passes.
initializeScavengerTestPass(*Registry);