1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00

Use C++14-style return type deduction in LLVM.

Summary:
Simplifies the C++11-style "-> decltype(...)" return-type deduction.

Note that you have to be careful about whether the function return type
is `auto` or `decltype(auto)`.  The difference is that bare `auto`
strips const and reference, just like lambda return type deduction.  In
some cases that's what we want (or more likely, we know that the return
type is a value type), but whenever we're wrapping a templated function
which might return a reference, we need to be sure that the return type
is decltype(auto).

No functional change.

Subscribers: dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74383
This commit is contained in:
Justin Lebar 2020-02-10 15:49:14 -08:00
parent 90f6d0dfcd
commit b77224b68f
11 changed files with 49 additions and 93 deletions

View File

@ -146,16 +146,14 @@ namespace adl_detail {
using std::begin;
template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
-> decltype(begin(std::forward<ContainerTy>(container))) {
decltype(auto) adl_begin(ContainerTy &&container) {
return begin(std::forward<ContainerTy>(container));
}
using std::end;
template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
-> decltype(end(std::forward<ContainerTy>(container))) {
decltype(auto) adl_end(ContainerTy &&container) {
return end(std::forward<ContainerTy>(container));
}
@ -170,14 +168,12 @@ void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
} // end namespace adl_detail
template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
-> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
decltype(auto) adl_begin(ContainerTy &&container) {
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}
template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
-> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
decltype(auto) adl_end(ContainerTy &&container) {
return adl_detail::adl_end(std::forward<ContainerTy>(container));
}
@ -195,9 +191,7 @@ constexpr bool empty(const T &RangeOrContainer) {
/// Return a range covering \p RangeOrContainer with the first N elements
/// excluded.
template <typename T>
auto drop_begin(T &&RangeOrContainer, size_t N) ->
iterator_range<decltype(adl_begin(RangeOrContainer))> {
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N) {
return make_range(std::next(adl_begin(RangeOrContainer), N),
adl_end(RangeOrContainer));
}
@ -233,9 +227,7 @@ inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
}
template <class ContainerTy, class FuncTy>
auto map_range(ContainerTy &&C, FuncTy F)
-> decltype(make_range(map_iterator(C.begin(), F),
map_iterator(C.end(), F))) {
auto map_range(ContainerTy &&C, FuncTy F) {
return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
}
@ -262,9 +254,9 @@ struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
auto reverse(
ContainerTy &&C,
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = nullptr) {
return make_range(C.rbegin(), C.rend());
}
@ -278,11 +270,9 @@ std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(
ContainerTy &&C,
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
-> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)))) {
auto reverse(ContainerTy &&C,
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * =
nullptr) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
@ -680,9 +670,8 @@ static Iter next_or_end(const Iter &I, const Iter &End) {
}
template <typename Iter>
static auto deref_or_none(const Iter &I, const Iter &End)
-> llvm::Optional<typename std::remove_const<
typename std::remove_reference<decltype(*I)>::type>::type> {
static auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
if (I == End)
return None;
return *I;
@ -983,8 +972,7 @@ struct on_first {
FuncTy func;
template <typename T>
auto operator()(const T &lhs, const T &rhs) const
-> decltype(func(lhs.first, rhs.first)) {
decltype(auto) operator()(const T &lhs, const T &rhs) const {
return func(lhs.first, rhs.first);
}
};
@ -1164,8 +1152,7 @@ auto size(R &&Range, typename std::enable_if<
std::is_same<typename std::iterator_traits<decltype(
Range.begin())>::iterator_category,
std::random_access_iterator_tag>::value,
void>::type * = nullptr)
-> decltype(std::distance(Range.begin(), Range.end())) {
void>::type * = nullptr) {
return std::distance(Range.begin(), Range.end());
}
@ -1199,27 +1186,26 @@ bool none_of(R &&Range, UnaryPredicate P) {
/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T>
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
template <typename R, typename T> auto find(R &&Range, const T &Val) {
return std::find(adl_begin(Range), adl_end(Range), Val);
}
/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
auto find_if(R &&Range, UnaryPredicate P) {
return std::find_if(adl_begin(Range), adl_end(Range), P);
}
template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
auto find_if_not(R &&Range, UnaryPredicate P) {
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
auto remove_if(R &&Range, UnaryPredicate P) {
return std::remove_if(adl_begin(Range), adl_end(Range), P);
}
@ -1244,17 +1230,14 @@ bool is_contained(R &&Range, const E &Element) {
/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E>
auto count(R &&Range, const E &Element) ->
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
template <typename R, typename E> auto count(R &&Range, const E &Element) {
return std::count(adl_begin(Range), adl_end(Range), Element);
}
/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) ->
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
auto count_if(R &&Range, UnaryPredicate P) {
return std::count_if(adl_begin(Range), adl_end(Range), P);
}
@ -1268,36 +1251,32 @@ OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
auto partition(R &&Range, UnaryPredicate P) {
return std::partition(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T>
auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto lower_bound(R &&Range, T &&Value, Compare C)
-> decltype(adl_begin(Range)) {
auto lower_bound(R &&Range, T &&Value, Compare C) {
return std::lower_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename T>
auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value));
}
template <typename R, typename T, typename Compare>
auto upper_bound(R &&Range, T &&Value, Compare C)
-> decltype(adl_begin(Range)) {
auto upper_bound(R &&Range, T &&Value, Compare C) {
return std::upper_bound(adl_begin(Range), adl_end(Range),
std::forward<T>(Value), C);
}
@ -1316,7 +1295,7 @@ void stable_sort(R &&Range, Compare C) {
/// Requires that C is always true below some limit, and always false above it.
template <typename R, typename Predicate,
typename Val = decltype(*adl_begin(std::declval<R>()))>
auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
auto partition_point(R &&Range, Predicate P) {
return std::partition_point(adl_begin(Range), adl_end(Range), P);
}
@ -1393,8 +1372,7 @@ template <typename T> struct deref {
// Could be further improved to cope with non-derivable functors and
// non-binary functors (should be a variadic template member function
// operator()).
template <typename A, typename B>
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
assert(lhs);
assert(rhs);
return func(*lhs, *rhs);
@ -1515,8 +1493,7 @@ template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
namespace detail {
template <typename F, typename Tuple, std::size_t... I>
auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
-> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
@ -1526,10 +1503,7 @@ auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
std::forward<F>(f), std::forward<Tuple>(t),
std::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
decltype(auto) apply_tuple(F &&f, Tuple &&t) {
using Indices = std::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>;
@ -1573,15 +1547,12 @@ bool hasNItemsOrMore(
/// Returns a raw pointer that represents the same address as the argument.
///
/// The late bound return should be removed once we move to C++14 to better
/// align with the C++20 declaration. Also, this implementation can be removed
/// once we move to C++20 where it's defined as std::to_addres()
/// This implementation can be removed once we move to C++20 where it's defined
/// as std::to_addres().
///
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
/// not been implemented.
template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
return P.operator->();
}
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
template <class T> constexpr T *to_address(T *P) { return P; }
} // end namespace llvm

View File

@ -96,12 +96,10 @@ public:
}
/// Forward dereference to the underlying iterator.
auto operator*() -> decltype(*std::declval<Underlying>()) { return *I; }
decltype(auto) operator*() { return *I; }
/// Forward const dereference to the underlying iterator.
auto operator*() const -> decltype(*std::declval<const Underlying>()) {
return *I;
}
decltype(auto) operator*() const { return *I; }
/// Forward structure dereference to the underlying iterator (if the
/// underlying iterator supports it).

View File

@ -17,13 +17,11 @@
#include "llvm/Support/Casting.h"
#define FORWARD_SYMBOL_METHOD(MethodName) \
auto MethodName() const->decltype(RawSymbol->MethodName()) { \
return RawSymbol->MethodName(); \
}
decltype(auto) MethodName() const { return RawSymbol->MethodName(); }
#define FORWARD_CONCRETE_SYMBOL_ID_METHOD_WITH_NAME(ConcreteType, PrivateName, \
PublicName) \
auto PublicName##Id() const->decltype(RawSymbol->PrivateName##Id()) { \
decltype(auto) PublicName##Id() const { \
return RawSymbol->PrivateName##Id(); \
} \
std::unique_ptr<ConcreteType> PublicName() const { \

View File

@ -1079,7 +1079,7 @@ public:
std::shared_ptr<SymbolStringPool> getSymbolStringPool() const { return SSP; }
/// Run the given lambda with the session mutex locked.
template <typename Func> auto runSessionLocked(Func &&F) -> decltype(F()) {
template <typename Func> decltype(auto) runSessionLocked(Func &&F) {
std::lock_guard<std::recursive_mutex> Lock(SessionMutex);
return F();
}

View File

@ -130,8 +130,7 @@ public:
/// Locks the associated ThreadSafeContext and calls the given function
/// on the contained Module.
template <typename Func>
auto withModuleDo(Func &&F) -> decltype(F(std::declval<Module &>())) {
template <typename Func> decltype(auto) withModuleDo(Func &&F) {
assert(M && "Can not call on null module");
auto Lock = TSCtx.getLock();
return F(*M);
@ -139,9 +138,7 @@ public:
/// Locks the associated ThreadSafeContext and calls the given function
/// on the contained Module.
template <typename Func>
auto withModuleDo(Func &&F) const
-> decltype(F(std::declval<const Module &>())) {
template <typename Func> decltype(auto) withModuleDo(Func &&F) const {
auto Lock = TSCtx.getLock();
return F(*M);
}

View File

@ -382,8 +382,7 @@ LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
}
template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
-> decltype(cast<X>(Val)) {
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
return unique_dyn_cast<X, Y>(Val);
}
@ -398,8 +397,7 @@ LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
}
template <class X, class Y>
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
-> decltype(cast<X>(Val)) {
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
return unique_dyn_cast_or_null<X, Y>(Val);
}

View File

@ -30,8 +30,8 @@ std::string StrError();
std::string StrError(int errnum);
template <typename FailT, typename Fun, typename... Args>
inline auto RetryAfterSignal(const FailT &Fail, const Fun &F,
const Args &... As) -> decltype(F(As...)) {
inline decltype(auto) RetryAfterSignal(const FailT &Fail, const Fun &F,
const Args &... As) {
decltype(F(As...)) Res;
do {
errno = 0;

View File

@ -177,8 +177,7 @@ size_t randomIndex(size_t Max) {
return Distribution(randomGenerator());
}
template <typename C>
static auto randomElement(const C &Container) -> decltype(Container[0]) {
template <typename C> static decltype(auto) randomElement(const C &Container) {
assert(!Container.empty() &&
"Can't pick a random element from an empty container)");
return Container[randomIndex(Container.size() - 1)];

View File

@ -221,9 +221,7 @@ class apply_variadic {
static StringRef apply_one(StringRef S) { return S.drop_back(); }
public:
template <typename... Ts>
auto operator()(Ts &&... Items)
-> decltype(std::make_tuple(apply_one(Items)...)) {
template <typename... Ts> auto operator()(Ts &&... Items) {
return std::make_tuple(apply_one(Items)...);
}
};

View File

@ -487,9 +487,7 @@ struct format_tuple {
const char *Fmt;
explicit format_tuple(const char *Fmt) : Fmt(Fmt) {}
template <typename... Ts>
auto operator()(Ts &&... Values) const
-> decltype(formatv(Fmt, std::forward<Ts>(Values)...)) {
template <typename... Ts> auto operator()(Ts &&... Values) const {
return formatv(Fmt, std::forward<Ts>(Values)...);
}
};

View File

@ -31,8 +31,7 @@ template <typename T, typename Enable = void> struct StreamSwitch {
// printable() returns a version of its argument that can be streamed into a
// std::ostream. This may be the argument itself, or some other representation.
template <typename T>
auto printable(const T &V) -> decltype(StreamSwitch<T>::printable(V)) {
template <typename T> decltype(auto) printable(const T &V) {
// We delegate to the trait, to allow partial specialization.
return StreamSwitch<T>::printable(V);
}