mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
Use C++14-style return type deduction in LLVM.
Summary: Simplifies the C++11-style "-> decltype(...)" return-type deduction. Note that you have to be careful about whether the function return type is `auto` or `decltype(auto)`. The difference is that bare `auto` strips const and reference, just like lambda return type deduction. In some cases that's what we want (or more likely, we know that the return type is a value type), but whenever we're wrapping a templated function which might return a reference, we need to be sure that the return type is decltype(auto). No functional change. Subscribers: dexonsmith, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D74383
This commit is contained in:
parent
90f6d0dfcd
commit
b77224b68f
@ -146,16 +146,14 @@ namespace adl_detail {
|
||||
using std::begin;
|
||||
|
||||
template <typename ContainerTy>
|
||||
auto adl_begin(ContainerTy &&container)
|
||||
-> decltype(begin(std::forward<ContainerTy>(container))) {
|
||||
decltype(auto) adl_begin(ContainerTy &&container) {
|
||||
return begin(std::forward<ContainerTy>(container));
|
||||
}
|
||||
|
||||
using std::end;
|
||||
|
||||
template <typename ContainerTy>
|
||||
auto adl_end(ContainerTy &&container)
|
||||
-> decltype(end(std::forward<ContainerTy>(container))) {
|
||||
decltype(auto) adl_end(ContainerTy &&container) {
|
||||
return end(std::forward<ContainerTy>(container));
|
||||
}
|
||||
|
||||
@ -170,14 +168,12 @@ void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
|
||||
} // end namespace adl_detail
|
||||
|
||||
template <typename ContainerTy>
|
||||
auto adl_begin(ContainerTy &&container)
|
||||
-> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
|
||||
decltype(auto) adl_begin(ContainerTy &&container) {
|
||||
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
|
||||
}
|
||||
|
||||
template <typename ContainerTy>
|
||||
auto adl_end(ContainerTy &&container)
|
||||
-> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
|
||||
decltype(auto) adl_end(ContainerTy &&container) {
|
||||
return adl_detail::adl_end(std::forward<ContainerTy>(container));
|
||||
}
|
||||
|
||||
@ -195,9 +191,7 @@ constexpr bool empty(const T &RangeOrContainer) {
|
||||
|
||||
/// Return a range covering \p RangeOrContainer with the first N elements
|
||||
/// excluded.
|
||||
template <typename T>
|
||||
auto drop_begin(T &&RangeOrContainer, size_t N) ->
|
||||
iterator_range<decltype(adl_begin(RangeOrContainer))> {
|
||||
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N) {
|
||||
return make_range(std::next(adl_begin(RangeOrContainer), N),
|
||||
adl_end(RangeOrContainer));
|
||||
}
|
||||
@ -233,9 +227,7 @@ inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
|
||||
}
|
||||
|
||||
template <class ContainerTy, class FuncTy>
|
||||
auto map_range(ContainerTy &&C, FuncTy F)
|
||||
-> decltype(make_range(map_iterator(C.begin(), F),
|
||||
map_iterator(C.end(), F))) {
|
||||
auto map_range(ContainerTy &&C, FuncTy F) {
|
||||
return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
|
||||
}
|
||||
|
||||
@ -262,9 +254,9 @@ struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
|
||||
// Returns an iterator_range over the given container which iterates in reverse.
|
||||
// Note that the container must have rbegin()/rend() methods for this to work.
|
||||
template <typename ContainerTy>
|
||||
auto reverse(ContainerTy &&C,
|
||||
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
|
||||
nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
|
||||
auto reverse(
|
||||
ContainerTy &&C,
|
||||
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = nullptr) {
|
||||
return make_range(C.rbegin(), C.rend());
|
||||
}
|
||||
|
||||
@ -278,11 +270,9 @@ std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
|
||||
// Note that the container must have begin()/end() methods which return
|
||||
// bidirectional iterators for this to work.
|
||||
template <typename ContainerTy>
|
||||
auto reverse(
|
||||
ContainerTy &&C,
|
||||
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
|
||||
-> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
|
||||
llvm::make_reverse_iterator(std::begin(C)))) {
|
||||
auto reverse(ContainerTy &&C,
|
||||
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * =
|
||||
nullptr) {
|
||||
return make_range(llvm::make_reverse_iterator(std::end(C)),
|
||||
llvm::make_reverse_iterator(std::begin(C)));
|
||||
}
|
||||
@ -680,9 +670,8 @@ static Iter next_or_end(const Iter &I, const Iter &End) {
|
||||
}
|
||||
|
||||
template <typename Iter>
|
||||
static auto deref_or_none(const Iter &I, const Iter &End)
|
||||
-> llvm::Optional<typename std::remove_const<
|
||||
typename std::remove_reference<decltype(*I)>::type>::type> {
|
||||
static auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
|
||||
std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
|
||||
if (I == End)
|
||||
return None;
|
||||
return *I;
|
||||
@ -983,8 +972,7 @@ struct on_first {
|
||||
FuncTy func;
|
||||
|
||||
template <typename T>
|
||||
auto operator()(const T &lhs, const T &rhs) const
|
||||
-> decltype(func(lhs.first, rhs.first)) {
|
||||
decltype(auto) operator()(const T &lhs, const T &rhs) const {
|
||||
return func(lhs.first, rhs.first);
|
||||
}
|
||||
};
|
||||
@ -1164,8 +1152,7 @@ auto size(R &&Range, typename std::enable_if<
|
||||
std::is_same<typename std::iterator_traits<decltype(
|
||||
Range.begin())>::iterator_category,
|
||||
std::random_access_iterator_tag>::value,
|
||||
void>::type * = nullptr)
|
||||
-> decltype(std::distance(Range.begin(), Range.end())) {
|
||||
void>::type * = nullptr) {
|
||||
return std::distance(Range.begin(), Range.end());
|
||||
}
|
||||
|
||||
@ -1199,27 +1186,26 @@ bool none_of(R &&Range, UnaryPredicate P) {
|
||||
|
||||
/// Provide wrappers to std::find which take ranges instead of having to pass
|
||||
/// begin/end explicitly.
|
||||
template <typename R, typename T>
|
||||
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
|
||||
template <typename R, typename T> auto find(R &&Range, const T &Val) {
|
||||
return std::find(adl_begin(Range), adl_end(Range), Val);
|
||||
}
|
||||
|
||||
/// Provide wrappers to std::find_if which take ranges instead of having to pass
|
||||
/// begin/end explicitly.
|
||||
template <typename R, typename UnaryPredicate>
|
||||
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
|
||||
auto find_if(R &&Range, UnaryPredicate P) {
|
||||
return std::find_if(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
template <typename R, typename UnaryPredicate>
|
||||
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
|
||||
auto find_if_not(R &&Range, UnaryPredicate P) {
|
||||
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
/// Provide wrappers to std::remove_if which take ranges instead of having to
|
||||
/// pass begin/end explicitly.
|
||||
template <typename R, typename UnaryPredicate>
|
||||
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
|
||||
auto remove_if(R &&Range, UnaryPredicate P) {
|
||||
return std::remove_if(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
@ -1244,17 +1230,14 @@ bool is_contained(R &&Range, const E &Element) {
|
||||
|
||||
/// Wrapper function around std::count to count the number of times an element
|
||||
/// \p Element occurs in the given range \p Range.
|
||||
template <typename R, typename E>
|
||||
auto count(R &&Range, const E &Element) ->
|
||||
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
|
||||
template <typename R, typename E> auto count(R &&Range, const E &Element) {
|
||||
return std::count(adl_begin(Range), adl_end(Range), Element);
|
||||
}
|
||||
|
||||
/// Wrapper function around std::count_if to count the number of times an
|
||||
/// element satisfying a given predicate occurs in a range.
|
||||
template <typename R, typename UnaryPredicate>
|
||||
auto count_if(R &&Range, UnaryPredicate P) ->
|
||||
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
|
||||
auto count_if(R &&Range, UnaryPredicate P) {
|
||||
return std::count_if(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
@ -1268,36 +1251,32 @@ OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
|
||||
/// Provide wrappers to std::partition which take ranges instead of having to
|
||||
/// pass begin/end explicitly.
|
||||
template <typename R, typename UnaryPredicate>
|
||||
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
|
||||
auto partition(R &&Range, UnaryPredicate P) {
|
||||
return std::partition(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
/// Provide wrappers to std::lower_bound which take ranges instead of having to
|
||||
/// pass begin/end explicitly.
|
||||
template <typename R, typename T>
|
||||
auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
|
||||
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
|
||||
return std::lower_bound(adl_begin(Range), adl_end(Range),
|
||||
std::forward<T>(Value));
|
||||
}
|
||||
|
||||
template <typename R, typename T, typename Compare>
|
||||
auto lower_bound(R &&Range, T &&Value, Compare C)
|
||||
-> decltype(adl_begin(Range)) {
|
||||
auto lower_bound(R &&Range, T &&Value, Compare C) {
|
||||
return std::lower_bound(adl_begin(Range), adl_end(Range),
|
||||
std::forward<T>(Value), C);
|
||||
}
|
||||
|
||||
/// Provide wrappers to std::upper_bound which take ranges instead of having to
|
||||
/// pass begin/end explicitly.
|
||||
template <typename R, typename T>
|
||||
auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
|
||||
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
|
||||
return std::upper_bound(adl_begin(Range), adl_end(Range),
|
||||
std::forward<T>(Value));
|
||||
}
|
||||
|
||||
template <typename R, typename T, typename Compare>
|
||||
auto upper_bound(R &&Range, T &&Value, Compare C)
|
||||
-> decltype(adl_begin(Range)) {
|
||||
auto upper_bound(R &&Range, T &&Value, Compare C) {
|
||||
return std::upper_bound(adl_begin(Range), adl_end(Range),
|
||||
std::forward<T>(Value), C);
|
||||
}
|
||||
@ -1316,7 +1295,7 @@ void stable_sort(R &&Range, Compare C) {
|
||||
/// Requires that C is always true below some limit, and always false above it.
|
||||
template <typename R, typename Predicate,
|
||||
typename Val = decltype(*adl_begin(std::declval<R>()))>
|
||||
auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
|
||||
auto partition_point(R &&Range, Predicate P) {
|
||||
return std::partition_point(adl_begin(Range), adl_end(Range), P);
|
||||
}
|
||||
|
||||
@ -1393,8 +1372,7 @@ template <typename T> struct deref {
|
||||
// Could be further improved to cope with non-derivable functors and
|
||||
// non-binary functors (should be a variadic template member function
|
||||
// operator()).
|
||||
template <typename A, typename B>
|
||||
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
|
||||
template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
|
||||
assert(lhs);
|
||||
assert(rhs);
|
||||
return func(*lhs, *rhs);
|
||||
@ -1515,8 +1493,7 @@ template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
|
||||
namespace detail {
|
||||
|
||||
template <typename F, typename Tuple, std::size_t... I>
|
||||
auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
|
||||
-> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
|
||||
decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
|
||||
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
|
||||
}
|
||||
|
||||
@ -1526,10 +1503,7 @@ auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
|
||||
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
|
||||
/// return the result.
|
||||
template <typename F, typename Tuple>
|
||||
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
|
||||
std::forward<F>(f), std::forward<Tuple>(t),
|
||||
std::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
|
||||
decltype(auto) apply_tuple(F &&f, Tuple &&t) {
|
||||
using Indices = std::make_index_sequence<
|
||||
std::tuple_size<typename std::decay<Tuple>::type>::value>;
|
||||
|
||||
@ -1573,15 +1547,12 @@ bool hasNItemsOrMore(
|
||||
|
||||
/// Returns a raw pointer that represents the same address as the argument.
|
||||
///
|
||||
/// The late bound return should be removed once we move to C++14 to better
|
||||
/// align with the C++20 declaration. Also, this implementation can be removed
|
||||
/// once we move to C++20 where it's defined as std::to_addres()
|
||||
/// This implementation can be removed once we move to C++20 where it's defined
|
||||
/// as std::to_addres().
|
||||
///
|
||||
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
|
||||
/// not been implemented.
|
||||
template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
|
||||
return P.operator->();
|
||||
}
|
||||
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
|
||||
template <class T> constexpr T *to_address(T *P) { return P; }
|
||||
|
||||
} // end namespace llvm
|
||||
|
@ -96,12 +96,10 @@ public:
|
||||
}
|
||||
|
||||
/// Forward dereference to the underlying iterator.
|
||||
auto operator*() -> decltype(*std::declval<Underlying>()) { return *I; }
|
||||
decltype(auto) operator*() { return *I; }
|
||||
|
||||
/// Forward const dereference to the underlying iterator.
|
||||
auto operator*() const -> decltype(*std::declval<const Underlying>()) {
|
||||
return *I;
|
||||
}
|
||||
decltype(auto) operator*() const { return *I; }
|
||||
|
||||
/// Forward structure dereference to the underlying iterator (if the
|
||||
/// underlying iterator supports it).
|
||||
|
@ -17,13 +17,11 @@
|
||||
#include "llvm/Support/Casting.h"
|
||||
|
||||
#define FORWARD_SYMBOL_METHOD(MethodName) \
|
||||
auto MethodName() const->decltype(RawSymbol->MethodName()) { \
|
||||
return RawSymbol->MethodName(); \
|
||||
}
|
||||
decltype(auto) MethodName() const { return RawSymbol->MethodName(); }
|
||||
|
||||
#define FORWARD_CONCRETE_SYMBOL_ID_METHOD_WITH_NAME(ConcreteType, PrivateName, \
|
||||
PublicName) \
|
||||
auto PublicName##Id() const->decltype(RawSymbol->PrivateName##Id()) { \
|
||||
decltype(auto) PublicName##Id() const { \
|
||||
return RawSymbol->PrivateName##Id(); \
|
||||
} \
|
||||
std::unique_ptr<ConcreteType> PublicName() const { \
|
||||
|
@ -1079,7 +1079,7 @@ public:
|
||||
std::shared_ptr<SymbolStringPool> getSymbolStringPool() const { return SSP; }
|
||||
|
||||
/// Run the given lambda with the session mutex locked.
|
||||
template <typename Func> auto runSessionLocked(Func &&F) -> decltype(F()) {
|
||||
template <typename Func> decltype(auto) runSessionLocked(Func &&F) {
|
||||
std::lock_guard<std::recursive_mutex> Lock(SessionMutex);
|
||||
return F();
|
||||
}
|
||||
|
@ -130,8 +130,7 @@ public:
|
||||
|
||||
/// Locks the associated ThreadSafeContext and calls the given function
|
||||
/// on the contained Module.
|
||||
template <typename Func>
|
||||
auto withModuleDo(Func &&F) -> decltype(F(std::declval<Module &>())) {
|
||||
template <typename Func> decltype(auto) withModuleDo(Func &&F) {
|
||||
assert(M && "Can not call on null module");
|
||||
auto Lock = TSCtx.getLock();
|
||||
return F(*M);
|
||||
@ -139,9 +138,7 @@ public:
|
||||
|
||||
/// Locks the associated ThreadSafeContext and calls the given function
|
||||
/// on the contained Module.
|
||||
template <typename Func>
|
||||
auto withModuleDo(Func &&F) const
|
||||
-> decltype(F(std::declval<const Module &>())) {
|
||||
template <typename Func> decltype(auto) withModuleDo(Func &&F) const {
|
||||
auto Lock = TSCtx.getLock();
|
||||
return F(*M);
|
||||
}
|
||||
|
@ -382,8 +382,7 @@ LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
|
||||
}
|
||||
|
||||
template <class X, class Y>
|
||||
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
|
||||
-> decltype(cast<X>(Val)) {
|
||||
LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
|
||||
return unique_dyn_cast<X, Y>(Val);
|
||||
}
|
||||
|
||||
@ -398,8 +397,7 @@ LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
|
||||
}
|
||||
|
||||
template <class X, class Y>
|
||||
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
|
||||
-> decltype(cast<X>(Val)) {
|
||||
LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
|
||||
return unique_dyn_cast_or_null<X, Y>(Val);
|
||||
}
|
||||
|
||||
|
@ -30,8 +30,8 @@ std::string StrError();
|
||||
std::string StrError(int errnum);
|
||||
|
||||
template <typename FailT, typename Fun, typename... Args>
|
||||
inline auto RetryAfterSignal(const FailT &Fail, const Fun &F,
|
||||
const Args &... As) -> decltype(F(As...)) {
|
||||
inline decltype(auto) RetryAfterSignal(const FailT &Fail, const Fun &F,
|
||||
const Args &... As) {
|
||||
decltype(F(As...)) Res;
|
||||
do {
|
||||
errno = 0;
|
||||
|
@ -177,8 +177,7 @@ size_t randomIndex(size_t Max) {
|
||||
return Distribution(randomGenerator());
|
||||
}
|
||||
|
||||
template <typename C>
|
||||
static auto randomElement(const C &Container) -> decltype(Container[0]) {
|
||||
template <typename C> static decltype(auto) randomElement(const C &Container) {
|
||||
assert(!Container.empty() &&
|
||||
"Can't pick a random element from an empty container)");
|
||||
return Container[randomIndex(Container.size() - 1)];
|
||||
|
@ -221,9 +221,7 @@ class apply_variadic {
|
||||
static StringRef apply_one(StringRef S) { return S.drop_back(); }
|
||||
|
||||
public:
|
||||
template <typename... Ts>
|
||||
auto operator()(Ts &&... Items)
|
||||
-> decltype(std::make_tuple(apply_one(Items)...)) {
|
||||
template <typename... Ts> auto operator()(Ts &&... Items) {
|
||||
return std::make_tuple(apply_one(Items)...);
|
||||
}
|
||||
};
|
||||
|
@ -487,9 +487,7 @@ struct format_tuple {
|
||||
const char *Fmt;
|
||||
explicit format_tuple(const char *Fmt) : Fmt(Fmt) {}
|
||||
|
||||
template <typename... Ts>
|
||||
auto operator()(Ts &&... Values) const
|
||||
-> decltype(formatv(Fmt, std::forward<Ts>(Values)...)) {
|
||||
template <typename... Ts> auto operator()(Ts &&... Values) const {
|
||||
return formatv(Fmt, std::forward<Ts>(Values)...);
|
||||
}
|
||||
};
|
||||
|
@ -31,8 +31,7 @@ template <typename T, typename Enable = void> struct StreamSwitch {
|
||||
|
||||
// printable() returns a version of its argument that can be streamed into a
|
||||
// std::ostream. This may be the argument itself, or some other representation.
|
||||
template <typename T>
|
||||
auto printable(const T &V) -> decltype(StreamSwitch<T>::printable(V)) {
|
||||
template <typename T> decltype(auto) printable(const T &V) {
|
||||
// We delegate to the trait, to allow partial specialization.
|
||||
return StreamSwitch<T>::printable(V);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user