1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00

Fixes to the reassociate pass to make it respect dominance properties

Huge thanks go to Casey Carter for writing this fix, reassociate is now
reoperational!

llvm-svn: 4471
This commit is contained in:
Chris Lattner 2002-10-31 17:12:59 +00:00
parent 31bbb65ef8
commit b913f4e785

View File

@ -14,6 +14,9 @@
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
// This code was originally written by Chris Lattner, and was then cleaned up
// and perfected by Casey Carter.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
@ -86,24 +89,6 @@ unsigned Reassociate::getRank(Value *V) {
}
// isCommutativeOperator - Return true if the specified instruction is
// commutative and associative. If the instruction is not commutative and
// associative, we can not reorder its operands!
//
static inline BinaryOperator *isCommutativeOperator(Instruction *I) {
// Floating point operations do not commute!
if (I->getType()->isFloatingPoint()) return 0;
if (I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::And ||
I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::Xor)
return cast<BinaryOperator>(I);
return 0;
}
bool Reassociate::ReassociateExpr(BinaryOperator *I) {
Value *LHS = I->getOperand(0);
Value *RHS = I->getOperand(1);
@ -114,7 +99,9 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
// Make sure the LHS of the operand always has the greater rank...
if (LHSRank < RHSRank) {
I->swapOperands();
bool Success = !I->swapOperands();
assert(Success && "swapOperands failed");
std::swap(LHS, RHS);
std::swap(LHSRank, RHSRank);
Changed = true;
@ -137,15 +124,28 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
// Convert ((a + 12) + 10) into (a + (12 + 10))
I->setOperand(0, LHSI->getOperand(TakeOp));
LHSI->setOperand(TakeOp, RHS);
I->setOperand(1, LHSI);
// Move the LHS expression forward, to ensure that it is dominated by
// its operands.
std::string Name = LHSI->getName();
LHSI->setName("");
BinaryOperator *NewLHS =
BinaryOperator::create(LHSI->getOpcode(),
LHSI->getOperand(0), LHSI->getOperand(1),
Name, I);
NewLHS->setOperand(TakeOp, RHS);
I->setOperand(1, NewLHS);
assert(LHSI->use_size() == 0 && "References to LHS shouldn't exist!");
LHSI->getParent()->getInstList().erase(LHSI);
++NumChanged;
DEBUG(std::cerr << "Reassociated: " << I << " Result BB: "
<< I->getParent());
// Since we modified the RHS instruction, make sure that we recheck it.
ReassociateExpr(LHSI);
ReassociateExpr(NewLHS);
return true;
}
}
@ -159,7 +159,7 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
@ -171,8 +171,8 @@ static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
Value *RHS = NegateValue(I->getOperand(1), BB, BI);
Value *LHS = NegateValue(I->getOperand(0), BB, BI);
Value *RHS = NegateValue(I->getOperand(1), BI);
Value *LHS = NegateValue(I->getOperand(0), BI);
// We must actually insert a new add instruction here, because the neg
// instructions do not dominate the old add instruction in general. By
@ -187,12 +187,7 @@ static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) {
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
//
Instruction *Neg =
BinaryOperator::create(Instruction::Sub,
Constant::getNullValue(V->getType()), V,
V->getName()+".neg", BI);
--BI;
return Neg;
return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
}
@ -200,10 +195,37 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) {
bool Changed = false;
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
//
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
//
std::string Name = BI->getName();
BI->setName("");
Instruction *New =
BinaryOperator::create(Instruction::Add, BI->getOperand(0),
BI->getOperand(1), Name, BI);
// Everyone now refers to the add instruction...
BI->replaceAllUsesWith(New);
// Put the new add in the place of the subtract... deleting the subtract
BB->getInstList().erase(BI);
BI = New;
New->setOperand(1, NegateValue(New->getOperand(1), BI));
Changed = true;
DEBUG(std::cerr << "Negated: " << New << " Result BB: " << BB);
}
// If this instruction is a commutative binary operator, and the ranks of
// the two operands are sorted incorrectly, fix it now.
//
if (BinaryOperator *I = isCommutativeOperator(BI)) {
if (BI->isAssociative()) {
BinaryOperator *I = cast<BinaryOperator>(&*BI);
if (!I->use_empty()) {
// Make sure that we don't have a tree-shaped computation. If we do,
// linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D
@ -234,31 +256,6 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) {
//
Changed |= ReassociateExpr(I);
}
} else if (BI->getOpcode() == Instruction::Sub &&
BI->getOperand(0) != Constant::getNullValue(BI->getType())) {
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
//
Instruction *New = BinaryOperator::create(Instruction::Add,
BI->getOperand(0),
BI->getOperand(1),
BI->getName());
Value *NegatedValue = BI->getOperand(1);
// Everyone now refers to the add instruction...
BI->replaceAllUsesWith(New);
// Put the new add in the place of the subtract... deleting the subtract
BI = BB->getInstList().erase(BI);
BI = ++BB->getInstList().insert(BI, New);
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
New->setOperand(1, NegateValue(NegatedValue, BB, BI));
--BI;
Changed = true;
DEBUG(std::cerr << "Negated: " << New << " Result BB: " << BB);
}
}