mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
Initial checkin: functions on Graph used for path profile pass
llvm-svn: 1806
This commit is contained in:
parent
d3ce435557
commit
b9e67e748a
714
lib/Transforms/Instrumentation/ProfilePaths/GraphAuxiliary.cpp
Normal file
714
lib/Transforms/Instrumentation/ProfilePaths/GraphAuxiliary.cpp
Normal file
@ -0,0 +1,714 @@
|
||||
//===-- GrapAuxillary.cpp- Auxillary functions on graph ----------*- C++ -*--=//
|
||||
//
|
||||
//auxillary function associated with graph: they
|
||||
//all operate on graph, and help in inserting
|
||||
//instrumentation for trace generation
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Graph.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include <algorithm>
|
||||
|
||||
//check if 2 edges are equal (same endpoints and same weight)
|
||||
static bool edgesEqual(Edge ed1, Edge ed2);
|
||||
|
||||
//Get the vector of edges that are to be instrumented in the graph
|
||||
static void getChords(vector<Edge > &chords, Graph g, Graph st);
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
static void removeTreeEdges(Graph g, Graph& t);
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t);
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
static map<Edge, getEdgeCode *>*
|
||||
getCodeInsertions(Graph &g,
|
||||
vector<Edge > &chords,
|
||||
map<Edge,int> &edIncrements);
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
static void moveDummyCode(vector<Edge > stDummy,
|
||||
vector<Edge > exDummy,
|
||||
vector<Edge > be,
|
||||
map<Edge, getEdgeCode *> &insertions);
|
||||
|
||||
|
||||
|
||||
//Do graph processing: to determine minimal edge increments,
|
||||
//appropriate code insertions etc and insert the code at
|
||||
//appropriate locations
|
||||
void processGraph(Graph &g,
|
||||
Instruction *rInst,
|
||||
Instruction *countInst,
|
||||
vector<Edge >& be,
|
||||
vector<Edge >& stDummy,
|
||||
vector<Edge >& exDummy){
|
||||
//Given a graph: with exit->root edge, do the following in seq:
|
||||
//1. get back edges
|
||||
//2. insert dummy edges and remove back edges
|
||||
//3. get edge assignments
|
||||
//4. Get Max spanning tree of graph:
|
||||
// -Make graph g2=g undirectional
|
||||
// -Get Max spanning tree t
|
||||
// -Make t undirectional
|
||||
// -remove edges from t not in graph g
|
||||
//5. Get edge increments
|
||||
//6. Get code insertions
|
||||
//7. move code on dummy edges over to the back edges
|
||||
|
||||
|
||||
//This is used as maximum "weight" for
|
||||
//priority queue
|
||||
//This would hold all
|
||||
//right as long as number of paths in the graph
|
||||
//is less than this
|
||||
const int INFINITY=99999999;
|
||||
|
||||
|
||||
//step 1-3 are already done on the graph when this function is called
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g);
|
||||
#endif
|
||||
//step 4: Get Max spanning tree of graph
|
||||
|
||||
//now insert exit to root edge
|
||||
//if its there earlier, remove it!
|
||||
//assign it weight INFINITY
|
||||
//so that this edge IS ALWAYS IN spanning tree
|
||||
//Note than edges in spanning tree do not get
|
||||
//instrumented: and we do not want the
|
||||
//edge exit->root to get instrumented
|
||||
//as it MAY BE a dummy edge
|
||||
Edge ed(g.getExit(),g.getRoot(),INFINITY);
|
||||
g.addEdge(ed,INFINITY);
|
||||
Graph g2=g;
|
||||
|
||||
//make g2 undirectional: this gives a better
|
||||
//maximal spanning tree
|
||||
g2.makeUnDirectional();
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g2);
|
||||
#endif
|
||||
Graph *t=g2.getMaxSpanningTree();
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(*t);
|
||||
#endif
|
||||
//now edges of tree t have weights reversed
|
||||
//(negative) because the algorithm used
|
||||
//to find max spanning tree is
|
||||
//actually for finding min spanning tree
|
||||
//so get back the original weights
|
||||
t->reverseWts();
|
||||
|
||||
//Ordinarily, the graph is directional
|
||||
//lets converts the graph into an
|
||||
//undirectional graph
|
||||
//This is done by adding an edge
|
||||
//v->u for all existing edges u->v
|
||||
t->makeUnDirectional();
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
removeTreeEdges(g, *t);
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Spanning tree---------\n";
|
||||
printGraph(*t);
|
||||
cerr<<"-------end spanning tree\n";
|
||||
#endif
|
||||
//now remove the exit->root node
|
||||
//and re-add it with weight 0
|
||||
//since infinite weight is kinda confusing
|
||||
g.removeEdge(ed);
|
||||
Edge edNew(g.getExit(), g.getRoot(),0);
|
||||
g.addEdge(edNew,0);
|
||||
if(t->hasEdge(ed)){
|
||||
t->removeEdge(ed);
|
||||
t->addEdge(edNew,0);
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g);
|
||||
printGraph(*t);
|
||||
#endif
|
||||
//step 5: Get edge increments
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
map<Edge, int> increment=getEdgeIncrements(g,*t);
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print edge increments for debugging
|
||||
for(map<Edge, int>::iterator M_I=increment.begin(), M_E=increment.end();
|
||||
M_I!=M_E; ++M_I){
|
||||
printEdge(M_I->first);
|
||||
cerr<<"Increment for above:"<<M_I->second<<endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
//step 6: Get code insertions
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
map<Edge, getEdgeCode *>* codeInsertions;
|
||||
vector<Edge > chords;
|
||||
getChords(chords, g, *t);
|
||||
codeInsertions=getCodeInsertions(g,chords,increment);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print edges with code for debugging
|
||||
cerr<<"Code inserted in following---------------\n";
|
||||
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions->begin(),
|
||||
cd_e=codeInsertions->end(); cd_i!=cd_e; ++cd_i){
|
||||
printEdge(cd_i->first);
|
||||
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<endl;
|
||||
}
|
||||
cerr<<"-----end insertions\n";
|
||||
#endif
|
||||
//step 7: move code on dummy edges over to the back edges
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
moveDummyCode(stDummy, exDummy, be, *codeInsertions);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//debugging info
|
||||
cerr<<"After moving dummy code\n";
|
||||
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions->begin(),
|
||||
cd_e=codeInsertions->end(); cd_i!=cd_e; ++cd_i){
|
||||
printEdge(cd_i->first);
|
||||
cerr<<cd_i->second->getCond()<<":"
|
||||
<<cd_i->second->getInc()<<endl;
|
||||
}
|
||||
cerr<<"Dummy end------------\n";
|
||||
#endif
|
||||
|
||||
//see what it looks like...
|
||||
//now insert code along edges which have codes on them
|
||||
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions->begin(),
|
||||
ME=codeInsertions->end(); MI!=ME; ++MI){
|
||||
Edge ed=MI->first;
|
||||
insertBB(ed, MI->second, rInst, countInst);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//check if 2 edges are equal (same endpoints and same weight)
|
||||
static bool edgesEqual(Edge ed1, Edge ed2){
|
||||
return ((ed1==ed2) && ed1.getWeight()==ed2.getWeight());
|
||||
}
|
||||
|
||||
//Get the vector of edges that are to be instrumented in the graph
|
||||
static void getChords(vector<Edge > &chords, Graph g, Graph st){
|
||||
//make sure the spanning tree is directional
|
||||
//iterate over ALL the edges of the graph
|
||||
list<Node *> allNodes=g.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!(st.hasEdgeAndWt(f)))//addnl
|
||||
chords.push_back(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
static void removeTreeEdges(Graph g, Graph& t){
|
||||
list<Node* > allNodes=t.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList nl=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
|
||||
Edge ed(NLI->element, *NI, NLI->weight);
|
||||
//if(!g.hasEdge(ed)) t.removeEdge(ed);
|
||||
if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge
|
||||
//between any pair of vertices, so no need to delete by edge wt
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Assign a value to all the edges in the graph
|
||||
//such that if we traverse along any path from root to exit, and
|
||||
//add up the edge values, we get a path number that uniquely
|
||||
//refers to the path we travelled
|
||||
int valueAssignmentToEdges(Graph& g){
|
||||
list<Node *> revtop=g.reverseTopologicalSort();
|
||||
map<Node *,int > NumPaths;
|
||||
for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
|
||||
if(g.isLeaf(*RI))
|
||||
NumPaths[*RI]=1;
|
||||
else{
|
||||
NumPaths[*RI]=0;
|
||||
list<Node *> succ=g.getSuccNodes(*RI);
|
||||
for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
|
||||
Edge ed(*RI,*SI,NumPaths[*RI]);
|
||||
g.setWeight(ed);
|
||||
NumPaths[*RI]+=NumPaths[*SI];
|
||||
}
|
||||
}
|
||||
}
|
||||
return NumPaths[g.getRoot()];
|
||||
}
|
||||
|
||||
//This is a helper function to get the edge increments
|
||||
//This is used in conjuntion with inc_DFS
|
||||
//to get the edge increments
|
||||
//Edge increment implies assigning a value to all the edges in the graph
|
||||
//such that if we traverse along any path from root to exit, and
|
||||
//add up the edge values, we get a path number that uniquely
|
||||
//refers to the path we travelled
|
||||
//inc_Dir tells whether 2 edges are in same, or in different directions
|
||||
//if same direction, return 1, else -1
|
||||
static int inc_Dir(Edge e,Edge f){
|
||||
if(e.isNull())
|
||||
return 1;
|
||||
|
||||
//check that the edges must have atleast one common endpoint
|
||||
assert(*(e.getFirst())==*(f.getFirst()) ||
|
||||
*(e.getFirst())==*(f.getSecond()) ||
|
||||
*(e.getSecond())==*(f.getFirst()) ||
|
||||
*(e.getSecond())==*(f.getSecond()));
|
||||
|
||||
if(*(e.getFirst())==*(f.getSecond()) ||
|
||||
*(e.getSecond())==*(f.getFirst()))
|
||||
return 1;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
//used for getting edge increments (read comments above in inc_Dir)
|
||||
//inc_DFS is a modification of DFS
|
||||
static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
|
||||
int events, Node *v, Edge e){
|
||||
|
||||
list<Node *> allNodes=t.getAllNodes();
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!= NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
int wt=1*f.getWeight();
|
||||
inc_DFS(g,t, Increment, dir_count*events+wt, f.getFirst(), f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
int wt=1*f.getWeight();
|
||||
inc_DFS(g,t, Increment, dir_count*events+wt,
|
||||
f.getSecond(), f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
allNodes=g.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
|
||||
*v==*(f.getFirst()))){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
Increment[f]+=dir_count*events;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
|
||||
//get all edges in g-t
|
||||
map<Edge, int> Increment;
|
||||
|
||||
list<Node *> allNodes=g.getAllNodes();
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge ed(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdge(ed))){
|
||||
Increment[ed]=0;;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Edge *ed=new Edge();
|
||||
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
|
||||
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge ed(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdge(ed))){
|
||||
int wt=ed.getWeight();
|
||||
Increment[ed]+=wt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Increment;
|
||||
}
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
static map<Edge, getEdgeCode *>*
|
||||
getCodeInsertions(Graph &g,
|
||||
vector<Edge > &chords,
|
||||
map<Edge,int> &edIncrements){
|
||||
//map of instrumented edges that's returned in the end
|
||||
map<Edge, getEdgeCode *> *instr=
|
||||
new map<Edge, getEdgeCode *>;
|
||||
|
||||
//Register initialization code
|
||||
vector<Node *> ws;
|
||||
ws.push_back(g.getRoot());
|
||||
while(ws.size()>0){
|
||||
Node *v=ws[0];
|
||||
ws.erase(ws.begin());
|
||||
//for each edge v->w
|
||||
Graph::nodeList succs=g.getNodeList(v);
|
||||
|
||||
for(Graph::nodeList::iterator nl=succs.begin(), ne=succs.end();
|
||||
nl!=ne; ++nl){
|
||||
int edgeWt=nl->weight;
|
||||
Node *w=nl->element;
|
||||
//if chords has v->w
|
||||
Edge ed(v,w);
|
||||
|
||||
bool hasEdge=false;
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
|
||||
CI!=CE && !hasEdge;++CI){
|
||||
if(*CI==ed){
|
||||
hasEdge=true;
|
||||
}
|
||||
}
|
||||
if(hasEdge){
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
edCd->setCond(1);
|
||||
edCd->setInc(edIncrements[ed]);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
else if((g.getPredNodes(w)).size()==1){
|
||||
ws.push_back(w);
|
||||
}
|
||||
else{
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
edCd->setCond(2);
|
||||
edCd->setInc(0);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/////Memory increment code
|
||||
ws.push_back(g.getExit());
|
||||
|
||||
while(ws.size()>0){
|
||||
Node *w=ws[0];
|
||||
ws.erase(&ws[0]);
|
||||
|
||||
//for each edge v->w
|
||||
list<Node *> preds=g.getPredNodes(w);
|
||||
for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
|
||||
Node *v=*pd;
|
||||
//if chords has v->w
|
||||
|
||||
Edge ed(v,w);
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
bool hasEdge=false;
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
|
||||
++CI){
|
||||
if(*CI==ed){
|
||||
hasEdge=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(hasEdge){
|
||||
char str[100];
|
||||
if((*instr)[ed]!=NULL && (*instr)[ed]->getCond()==1){
|
||||
(*instr)[ed]->setCond(4);
|
||||
}
|
||||
else{
|
||||
edCd->setCond(5);
|
||||
edCd->setInc(edIncrements[ed]);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
|
||||
}
|
||||
else if(g.getSuccNodes(v).size()==1)
|
||||
ws.push_back(v);
|
||||
else{
|
||||
edCd->setCond(6);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///// Register increment code
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
if((*instr)[*CI]==NULL){
|
||||
edCd->setCond(3);
|
||||
edCd->setInc(edIncrements[*CI]);
|
||||
(*instr)[*CI]=edCd;
|
||||
}
|
||||
}
|
||||
|
||||
return instr;
|
||||
}
|
||||
|
||||
//Add dummy edges corresponding to the back edges
|
||||
//If a->b is a backedge
|
||||
//then incoming dummy edge is root->b
|
||||
//and outgoing dummy edge is a->exit
|
||||
void addDummyEdges(vector<Edge > &stDummy,
|
||||
vector<Edge > &exDummy,
|
||||
Graph &g, vector<Edge > be){
|
||||
for(vector<Edge >::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
|
||||
Edge ed=*VI;
|
||||
Node *first=ed.getFirst();
|
||||
Node *second=ed.getSecond();
|
||||
g.removeEdge(ed);
|
||||
|
||||
if(!(*second==*(g.getRoot()))){
|
||||
Edge *st=new Edge(g.getRoot(), second);
|
||||
|
||||
//check if stDummy doesn't have it already
|
||||
bool hasIt=false;
|
||||
|
||||
if(find(stDummy.begin(), stDummy.end(), *st)!=stDummy.end())
|
||||
hasIt=true;
|
||||
|
||||
/*
|
||||
for(vector<Edge>::iterator DM=stDummy.begin(), DE=stDummy.end(); DM!=DE;
|
||||
++DM){
|
||||
if(*DM==*st){
|
||||
hasIt=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
if(!hasIt){
|
||||
stDummy.push_back(*st);
|
||||
g.addEdgeForce(*st);
|
||||
}
|
||||
}
|
||||
|
||||
if(!(*first==*(g.getExit()))){
|
||||
Edge *ex=new Edge(first, g.getExit());
|
||||
|
||||
bool hasIt=false;
|
||||
if(find(exDummy.begin(), exDummy.end(), *ex)!=exDummy.end())
|
||||
hasIt=true;
|
||||
|
||||
/*
|
||||
for(vector<Edge>::iterator DM=exDummy.begin(), DE=exDummy.end(); DM!=DE;
|
||||
++DM){
|
||||
if(*DM==*ex){
|
||||
hasIt=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
if(!hasIt){
|
||||
exDummy.push_back(*ex);
|
||||
g.addEdgeForce(*ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//print a given edge in the form BB1Label->BB2Label
|
||||
void printEdge(Edge ed){
|
||||
cerr<<((ed.getFirst())->getElement())
|
||||
->getName()<<"->"<<((ed.getSecond())
|
||||
->getElement())->getName()<<
|
||||
":"<<ed.getWeight()<<endl;
|
||||
}
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
static void moveDummyCode(vector<Edge > stDummy,
|
||||
vector<Edge > exDummy,
|
||||
vector<Edge > be,
|
||||
map<Edge, getEdgeCode *> &insertions){
|
||||
typedef vector<Edge >::iterator vec_iter;
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print all back, st and ex dummy
|
||||
cerr<<"BackEdges---------------\n";
|
||||
for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"StEdges---------------\n";
|
||||
for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"ExitEdges---------------\n";
|
||||
for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"------end all edges\n";
|
||||
#endif
|
||||
|
||||
std::vector<Edge > toErase;
|
||||
for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
|
||||
ME=insertions.end(); MI!=ME; ++MI){
|
||||
Edge ed=MI->first;
|
||||
getEdgeCode *edCd=MI->second;
|
||||
bool dummyHasIt=false;
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Current edge considered---\n";
|
||||
printEdge(ed);
|
||||
#endif
|
||||
//now check if stDummy has ed
|
||||
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
|
||||
++VI){
|
||||
if(*VI==ed){
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Edge matched with stDummy\n";
|
||||
#endif
|
||||
dummyHasIt=true;
|
||||
bool dummyInBe=false;
|
||||
//dummy edge with code
|
||||
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe; ++BE){
|
||||
Edge backEdge=*BE;
|
||||
Node *st=backEdge.getSecond();
|
||||
Node *dm=ed.getSecond();
|
||||
if(*dm==*st){
|
||||
//so this is the back edge to use
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Moving to backedge\n";
|
||||
printEdge(backEdge);
|
||||
#endif
|
||||
getEdgeCode *ged=new getEdgeCode();
|
||||
ged->setCdIn(edCd);
|
||||
toErase.push_back(ed);
|
||||
insertions[backEdge]=ged;
|
||||
dummyInBe=true;
|
||||
}
|
||||
}
|
||||
assert(dummyInBe);
|
||||
}
|
||||
}
|
||||
if(!dummyHasIt){
|
||||
//so exDummy may hv it
|
||||
bool inExDummy=false;
|
||||
for(vec_iter VI=exDummy.begin(), VE=exDummy.end(); VI!=VE && !inExDummy;
|
||||
++VI){
|
||||
if(*VI==ed){
|
||||
inExDummy=true;
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Edge matched with exDummy\n";
|
||||
#endif
|
||||
bool dummyInBe2=false;
|
||||
//dummy edge with code
|
||||
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
|
||||
++BE){
|
||||
Edge backEdge=*BE;
|
||||
Node *st=backEdge.getFirst();
|
||||
Node *dm=ed.getFirst();
|
||||
if(*dm==*st){
|
||||
//so this is the back edge to use
|
||||
getEdgeCode *ged;
|
||||
if(insertions[backEdge]==NULL)
|
||||
ged=new getEdgeCode();
|
||||
else
|
||||
ged=insertions[backEdge];
|
||||
toErase.push_back(ed);
|
||||
ged->setCdOut(edCd);
|
||||
insertions[backEdge]=ged;
|
||||
dummyInBe2=true;
|
||||
}
|
||||
}
|
||||
assert(dummyInBe2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"size of deletions: "<<toErase.size()<<endl;
|
||||
#endif
|
||||
|
||||
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
|
||||
++vmi)
|
||||
insertions.erase(*vmi);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//print the graph (for debugging)
|
||||
void printGraph(Graph g){
|
||||
list<Node *> lt=g.getAllNodes();
|
||||
cerr<<"Graph---------------------\n";
|
||||
for(list<Node *>::iterator LI=lt.begin();
|
||||
LI!=lt.end(); ++LI){
|
||||
cerr<<((*LI)->getElement())->getName()<<"->";
|
||||
Graph::nodeList nl=g.getNodeList(*LI);
|
||||
for(Graph::nodeList::iterator NI=nl.begin();
|
||||
NI!=nl.end(); ++NI){
|
||||
cerr<<":"<<"("<<(NI->element->getElement())
|
||||
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
|
||||
}
|
||||
cerr<<"\n";
|
||||
}
|
||||
cerr<<"--------------------Graph\n";
|
||||
}
|
714
lib/Transforms/Instrumentation/ProfilePaths/GraphAuxillary.cpp
Normal file
714
lib/Transforms/Instrumentation/ProfilePaths/GraphAuxillary.cpp
Normal file
@ -0,0 +1,714 @@
|
||||
//===-- GrapAuxillary.cpp- Auxillary functions on graph ----------*- C++ -*--=//
|
||||
//
|
||||
//auxillary function associated with graph: they
|
||||
//all operate on graph, and help in inserting
|
||||
//instrumentation for trace generation
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Graph.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include <algorithm>
|
||||
|
||||
//check if 2 edges are equal (same endpoints and same weight)
|
||||
static bool edgesEqual(Edge ed1, Edge ed2);
|
||||
|
||||
//Get the vector of edges that are to be instrumented in the graph
|
||||
static void getChords(vector<Edge > &chords, Graph g, Graph st);
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
static void removeTreeEdges(Graph g, Graph& t);
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t);
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
static map<Edge, getEdgeCode *>*
|
||||
getCodeInsertions(Graph &g,
|
||||
vector<Edge > &chords,
|
||||
map<Edge,int> &edIncrements);
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
static void moveDummyCode(vector<Edge > stDummy,
|
||||
vector<Edge > exDummy,
|
||||
vector<Edge > be,
|
||||
map<Edge, getEdgeCode *> &insertions);
|
||||
|
||||
|
||||
|
||||
//Do graph processing: to determine minimal edge increments,
|
||||
//appropriate code insertions etc and insert the code at
|
||||
//appropriate locations
|
||||
void processGraph(Graph &g,
|
||||
Instruction *rInst,
|
||||
Instruction *countInst,
|
||||
vector<Edge >& be,
|
||||
vector<Edge >& stDummy,
|
||||
vector<Edge >& exDummy){
|
||||
//Given a graph: with exit->root edge, do the following in seq:
|
||||
//1. get back edges
|
||||
//2. insert dummy edges and remove back edges
|
||||
//3. get edge assignments
|
||||
//4. Get Max spanning tree of graph:
|
||||
// -Make graph g2=g undirectional
|
||||
// -Get Max spanning tree t
|
||||
// -Make t undirectional
|
||||
// -remove edges from t not in graph g
|
||||
//5. Get edge increments
|
||||
//6. Get code insertions
|
||||
//7. move code on dummy edges over to the back edges
|
||||
|
||||
|
||||
//This is used as maximum "weight" for
|
||||
//priority queue
|
||||
//This would hold all
|
||||
//right as long as number of paths in the graph
|
||||
//is less than this
|
||||
const int INFINITY=99999999;
|
||||
|
||||
|
||||
//step 1-3 are already done on the graph when this function is called
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g);
|
||||
#endif
|
||||
//step 4: Get Max spanning tree of graph
|
||||
|
||||
//now insert exit to root edge
|
||||
//if its there earlier, remove it!
|
||||
//assign it weight INFINITY
|
||||
//so that this edge IS ALWAYS IN spanning tree
|
||||
//Note than edges in spanning tree do not get
|
||||
//instrumented: and we do not want the
|
||||
//edge exit->root to get instrumented
|
||||
//as it MAY BE a dummy edge
|
||||
Edge ed(g.getExit(),g.getRoot(),INFINITY);
|
||||
g.addEdge(ed,INFINITY);
|
||||
Graph g2=g;
|
||||
|
||||
//make g2 undirectional: this gives a better
|
||||
//maximal spanning tree
|
||||
g2.makeUnDirectional();
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g2);
|
||||
#endif
|
||||
Graph *t=g2.getMaxSpanningTree();
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(*t);
|
||||
#endif
|
||||
//now edges of tree t have weights reversed
|
||||
//(negative) because the algorithm used
|
||||
//to find max spanning tree is
|
||||
//actually for finding min spanning tree
|
||||
//so get back the original weights
|
||||
t->reverseWts();
|
||||
|
||||
//Ordinarily, the graph is directional
|
||||
//lets converts the graph into an
|
||||
//undirectional graph
|
||||
//This is done by adding an edge
|
||||
//v->u for all existing edges u->v
|
||||
t->makeUnDirectional();
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
removeTreeEdges(g, *t);
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Spanning tree---------\n";
|
||||
printGraph(*t);
|
||||
cerr<<"-------end spanning tree\n";
|
||||
#endif
|
||||
//now remove the exit->root node
|
||||
//and re-add it with weight 0
|
||||
//since infinite weight is kinda confusing
|
||||
g.removeEdge(ed);
|
||||
Edge edNew(g.getExit(), g.getRoot(),0);
|
||||
g.addEdge(edNew,0);
|
||||
if(t->hasEdge(ed)){
|
||||
t->removeEdge(ed);
|
||||
t->addEdge(edNew,0);
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
printGraph(g);
|
||||
printGraph(*t);
|
||||
#endif
|
||||
//step 5: Get edge increments
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
map<Edge, int> increment=getEdgeIncrements(g,*t);
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print edge increments for debugging
|
||||
for(map<Edge, int>::iterator M_I=increment.begin(), M_E=increment.end();
|
||||
M_I!=M_E; ++M_I){
|
||||
printEdge(M_I->first);
|
||||
cerr<<"Increment for above:"<<M_I->second<<endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
//step 6: Get code insertions
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
map<Edge, getEdgeCode *>* codeInsertions;
|
||||
vector<Edge > chords;
|
||||
getChords(chords, g, *t);
|
||||
codeInsertions=getCodeInsertions(g,chords,increment);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print edges with code for debugging
|
||||
cerr<<"Code inserted in following---------------\n";
|
||||
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions->begin(),
|
||||
cd_e=codeInsertions->end(); cd_i!=cd_e; ++cd_i){
|
||||
printEdge(cd_i->first);
|
||||
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<endl;
|
||||
}
|
||||
cerr<<"-----end insertions\n";
|
||||
#endif
|
||||
//step 7: move code on dummy edges over to the back edges
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
moveDummyCode(stDummy, exDummy, be, *codeInsertions);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//debugging info
|
||||
cerr<<"After moving dummy code\n";
|
||||
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions->begin(),
|
||||
cd_e=codeInsertions->end(); cd_i!=cd_e; ++cd_i){
|
||||
printEdge(cd_i->first);
|
||||
cerr<<cd_i->second->getCond()<<":"
|
||||
<<cd_i->second->getInc()<<endl;
|
||||
}
|
||||
cerr<<"Dummy end------------\n";
|
||||
#endif
|
||||
|
||||
//see what it looks like...
|
||||
//now insert code along edges which have codes on them
|
||||
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions->begin(),
|
||||
ME=codeInsertions->end(); MI!=ME; ++MI){
|
||||
Edge ed=MI->first;
|
||||
insertBB(ed, MI->second, rInst, countInst);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
//check if 2 edges are equal (same endpoints and same weight)
|
||||
static bool edgesEqual(Edge ed1, Edge ed2){
|
||||
return ((ed1==ed2) && ed1.getWeight()==ed2.getWeight());
|
||||
}
|
||||
|
||||
//Get the vector of edges that are to be instrumented in the graph
|
||||
static void getChords(vector<Edge > &chords, Graph g, Graph st){
|
||||
//make sure the spanning tree is directional
|
||||
//iterate over ALL the edges of the graph
|
||||
list<Node *> allNodes=g.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!(st.hasEdgeAndWt(f)))//addnl
|
||||
chords.push_back(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Given a tree t, and a "directed graph" g
|
||||
//replace the edges in the tree t with edges that exist in graph
|
||||
//The tree is formed from "undirectional" copy of graph
|
||||
//So whatever edges the tree has, the undirectional graph
|
||||
//would have too. This function corrects some of the directions in
|
||||
//the tree so that now, all edge directions in the tree match
|
||||
//the edge directions of corresponding edges in the directed graph
|
||||
static void removeTreeEdges(Graph g, Graph& t){
|
||||
list<Node* > allNodes=t.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList nl=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
|
||||
Edge ed(NLI->element, *NI, NLI->weight);
|
||||
//if(!g.hasEdge(ed)) t.removeEdge(ed);
|
||||
if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge
|
||||
//between any pair of vertices, so no need to delete by edge wt
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Assign a value to all the edges in the graph
|
||||
//such that if we traverse along any path from root to exit, and
|
||||
//add up the edge values, we get a path number that uniquely
|
||||
//refers to the path we travelled
|
||||
int valueAssignmentToEdges(Graph& g){
|
||||
list<Node *> revtop=g.reverseTopologicalSort();
|
||||
map<Node *,int > NumPaths;
|
||||
for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
|
||||
if(g.isLeaf(*RI))
|
||||
NumPaths[*RI]=1;
|
||||
else{
|
||||
NumPaths[*RI]=0;
|
||||
list<Node *> succ=g.getSuccNodes(*RI);
|
||||
for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
|
||||
Edge ed(*RI,*SI,NumPaths[*RI]);
|
||||
g.setWeight(ed);
|
||||
NumPaths[*RI]+=NumPaths[*SI];
|
||||
}
|
||||
}
|
||||
}
|
||||
return NumPaths[g.getRoot()];
|
||||
}
|
||||
|
||||
//This is a helper function to get the edge increments
|
||||
//This is used in conjuntion with inc_DFS
|
||||
//to get the edge increments
|
||||
//Edge increment implies assigning a value to all the edges in the graph
|
||||
//such that if we traverse along any path from root to exit, and
|
||||
//add up the edge values, we get a path number that uniquely
|
||||
//refers to the path we travelled
|
||||
//inc_Dir tells whether 2 edges are in same, or in different directions
|
||||
//if same direction, return 1, else -1
|
||||
static int inc_Dir(Edge e,Edge f){
|
||||
if(e.isNull())
|
||||
return 1;
|
||||
|
||||
//check that the edges must have atleast one common endpoint
|
||||
assert(*(e.getFirst())==*(f.getFirst()) ||
|
||||
*(e.getFirst())==*(f.getSecond()) ||
|
||||
*(e.getSecond())==*(f.getFirst()) ||
|
||||
*(e.getSecond())==*(f.getSecond()));
|
||||
|
||||
if(*(e.getFirst())==*(f.getSecond()) ||
|
||||
*(e.getSecond())==*(f.getFirst()))
|
||||
return 1;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
//used for getting edge increments (read comments above in inc_Dir)
|
||||
//inc_DFS is a modification of DFS
|
||||
static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
|
||||
int events, Node *v, Edge e){
|
||||
|
||||
list<Node *> allNodes=t.getAllNodes();
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!= NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
int wt=1*f.getWeight();
|
||||
inc_DFS(g,t, Increment, dir_count*events+wt, f.getFirst(), f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=t.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
int wt=1*f.getWeight();
|
||||
inc_DFS(g,t, Increment, dir_count*events+wt,
|
||||
f.getSecond(), f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
allNodes=g.getAllNodes();
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge f(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
|
||||
*v==*(f.getFirst()))){
|
||||
int dir_count=inc_Dir(e,f);
|
||||
Increment[f]+=dir_count*events;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Now we select a subset of all edges
|
||||
//and assign them some values such that
|
||||
//if we consider just this subset, it still represents
|
||||
//the path sum along any path in the graph
|
||||
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
|
||||
//get all edges in g-t
|
||||
map<Edge, int> Increment;
|
||||
|
||||
list<Node *> allNodes=g.getAllNodes();
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge ed(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdge(ed))){
|
||||
Increment[ed]=0;;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Edge *ed=new Edge();
|
||||
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
|
||||
|
||||
|
||||
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
||||
++NI){
|
||||
Graph::nodeList node_list=g.getNodeList(*NI);
|
||||
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
|
||||
NLI!=NLE; ++NLI){
|
||||
Edge ed(*NI, NLI->element,NLI->weight);
|
||||
if(!(t.hasEdge(ed))){
|
||||
int wt=ed.getWeight();
|
||||
Increment[ed]+=wt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Increment;
|
||||
}
|
||||
|
||||
//Based on edgeIncrements (above), now obtain
|
||||
//the kind of code to be inserted along an edge
|
||||
//The idea here is to minimize the computation
|
||||
//by inserting only the needed code
|
||||
static map<Edge, getEdgeCode *>*
|
||||
getCodeInsertions(Graph &g,
|
||||
vector<Edge > &chords,
|
||||
map<Edge,int> &edIncrements){
|
||||
//map of instrumented edges that's returned in the end
|
||||
map<Edge, getEdgeCode *> *instr=
|
||||
new map<Edge, getEdgeCode *>;
|
||||
|
||||
//Register initialization code
|
||||
vector<Node *> ws;
|
||||
ws.push_back(g.getRoot());
|
||||
while(ws.size()>0){
|
||||
Node *v=ws[0];
|
||||
ws.erase(ws.begin());
|
||||
//for each edge v->w
|
||||
Graph::nodeList succs=g.getNodeList(v);
|
||||
|
||||
for(Graph::nodeList::iterator nl=succs.begin(), ne=succs.end();
|
||||
nl!=ne; ++nl){
|
||||
int edgeWt=nl->weight;
|
||||
Node *w=nl->element;
|
||||
//if chords has v->w
|
||||
Edge ed(v,w);
|
||||
|
||||
bool hasEdge=false;
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
|
||||
CI!=CE && !hasEdge;++CI){
|
||||
if(*CI==ed){
|
||||
hasEdge=true;
|
||||
}
|
||||
}
|
||||
if(hasEdge){
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
edCd->setCond(1);
|
||||
edCd->setInc(edIncrements[ed]);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
else if((g.getPredNodes(w)).size()==1){
|
||||
ws.push_back(w);
|
||||
}
|
||||
else{
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
edCd->setCond(2);
|
||||
edCd->setInc(0);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/////Memory increment code
|
||||
ws.push_back(g.getExit());
|
||||
|
||||
while(ws.size()>0){
|
||||
Node *w=ws[0];
|
||||
ws.erase(&ws[0]);
|
||||
|
||||
//for each edge v->w
|
||||
list<Node *> preds=g.getPredNodes(w);
|
||||
for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
|
||||
Node *v=*pd;
|
||||
//if chords has v->w
|
||||
|
||||
Edge ed(v,w);
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
bool hasEdge=false;
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
|
||||
++CI){
|
||||
if(*CI==ed){
|
||||
hasEdge=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(hasEdge){
|
||||
char str[100];
|
||||
if((*instr)[ed]!=NULL && (*instr)[ed]->getCond()==1){
|
||||
(*instr)[ed]->setCond(4);
|
||||
}
|
||||
else{
|
||||
edCd->setCond(5);
|
||||
edCd->setInc(edIncrements[ed]);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
|
||||
}
|
||||
else if(g.getSuccNodes(v).size()==1)
|
||||
ws.push_back(v);
|
||||
else{
|
||||
edCd->setCond(6);
|
||||
(*instr)[ed]=edCd;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///// Register increment code
|
||||
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
|
||||
getEdgeCode *edCd=new getEdgeCode();
|
||||
if((*instr)[*CI]==NULL){
|
||||
edCd->setCond(3);
|
||||
edCd->setInc(edIncrements[*CI]);
|
||||
(*instr)[*CI]=edCd;
|
||||
}
|
||||
}
|
||||
|
||||
return instr;
|
||||
}
|
||||
|
||||
//Add dummy edges corresponding to the back edges
|
||||
//If a->b is a backedge
|
||||
//then incoming dummy edge is root->b
|
||||
//and outgoing dummy edge is a->exit
|
||||
void addDummyEdges(vector<Edge > &stDummy,
|
||||
vector<Edge > &exDummy,
|
||||
Graph &g, vector<Edge > be){
|
||||
for(vector<Edge >::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
|
||||
Edge ed=*VI;
|
||||
Node *first=ed.getFirst();
|
||||
Node *second=ed.getSecond();
|
||||
g.removeEdge(ed);
|
||||
|
||||
if(!(*second==*(g.getRoot()))){
|
||||
Edge *st=new Edge(g.getRoot(), second);
|
||||
|
||||
//check if stDummy doesn't have it already
|
||||
bool hasIt=false;
|
||||
|
||||
if(find(stDummy.begin(), stDummy.end(), *st)!=stDummy.end())
|
||||
hasIt=true;
|
||||
|
||||
/*
|
||||
for(vector<Edge>::iterator DM=stDummy.begin(), DE=stDummy.end(); DM!=DE;
|
||||
++DM){
|
||||
if(*DM==*st){
|
||||
hasIt=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
if(!hasIt){
|
||||
stDummy.push_back(*st);
|
||||
g.addEdgeForce(*st);
|
||||
}
|
||||
}
|
||||
|
||||
if(!(*first==*(g.getExit()))){
|
||||
Edge *ex=new Edge(first, g.getExit());
|
||||
|
||||
bool hasIt=false;
|
||||
if(find(exDummy.begin(), exDummy.end(), *ex)!=exDummy.end())
|
||||
hasIt=true;
|
||||
|
||||
/*
|
||||
for(vector<Edge>::iterator DM=exDummy.begin(), DE=exDummy.end(); DM!=DE;
|
||||
++DM){
|
||||
if(*DM==*ex){
|
||||
hasIt=true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
if(!hasIt){
|
||||
exDummy.push_back(*ex);
|
||||
g.addEdgeForce(*ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//print a given edge in the form BB1Label->BB2Label
|
||||
void printEdge(Edge ed){
|
||||
cerr<<((ed.getFirst())->getElement())
|
||||
->getName()<<"->"<<((ed.getSecond())
|
||||
->getElement())->getName()<<
|
||||
":"<<ed.getWeight()<<endl;
|
||||
}
|
||||
|
||||
//Move the incoming dummy edge code and outgoing dummy
|
||||
//edge code over to the corresponding back edge
|
||||
static void moveDummyCode(vector<Edge > stDummy,
|
||||
vector<Edge > exDummy,
|
||||
vector<Edge > be,
|
||||
map<Edge, getEdgeCode *> &insertions){
|
||||
typedef vector<Edge >::iterator vec_iter;
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
//print all back, st and ex dummy
|
||||
cerr<<"BackEdges---------------\n";
|
||||
for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"StEdges---------------\n";
|
||||
for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"ExitEdges---------------\n";
|
||||
for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
|
||||
printEdge(*VI);
|
||||
cerr<<"------end all edges\n";
|
||||
#endif
|
||||
|
||||
std::vector<Edge > toErase;
|
||||
for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
|
||||
ME=insertions.end(); MI!=ME; ++MI){
|
||||
Edge ed=MI->first;
|
||||
getEdgeCode *edCd=MI->second;
|
||||
bool dummyHasIt=false;
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Current edge considered---\n";
|
||||
printEdge(ed);
|
||||
#endif
|
||||
//now check if stDummy has ed
|
||||
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
|
||||
++VI){
|
||||
if(*VI==ed){
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Edge matched with stDummy\n";
|
||||
#endif
|
||||
dummyHasIt=true;
|
||||
bool dummyInBe=false;
|
||||
//dummy edge with code
|
||||
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe; ++BE){
|
||||
Edge backEdge=*BE;
|
||||
Node *st=backEdge.getSecond();
|
||||
Node *dm=ed.getSecond();
|
||||
if(*dm==*st){
|
||||
//so this is the back edge to use
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Moving to backedge\n";
|
||||
printEdge(backEdge);
|
||||
#endif
|
||||
getEdgeCode *ged=new getEdgeCode();
|
||||
ged->setCdIn(edCd);
|
||||
toErase.push_back(ed);
|
||||
insertions[backEdge]=ged;
|
||||
dummyInBe=true;
|
||||
}
|
||||
}
|
||||
assert(dummyInBe);
|
||||
}
|
||||
}
|
||||
if(!dummyHasIt){
|
||||
//so exDummy may hv it
|
||||
bool inExDummy=false;
|
||||
for(vec_iter VI=exDummy.begin(), VE=exDummy.end(); VI!=VE && !inExDummy;
|
||||
++VI){
|
||||
if(*VI==ed){
|
||||
inExDummy=true;
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"Edge matched with exDummy\n";
|
||||
#endif
|
||||
bool dummyInBe2=false;
|
||||
//dummy edge with code
|
||||
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
|
||||
++BE){
|
||||
Edge backEdge=*BE;
|
||||
Node *st=backEdge.getFirst();
|
||||
Node *dm=ed.getFirst();
|
||||
if(*dm==*st){
|
||||
//so this is the back edge to use
|
||||
getEdgeCode *ged;
|
||||
if(insertions[backEdge]==NULL)
|
||||
ged=new getEdgeCode();
|
||||
else
|
||||
ged=insertions[backEdge];
|
||||
toErase.push_back(ed);
|
||||
ged->setCdOut(edCd);
|
||||
insertions[backEdge]=ged;
|
||||
dummyInBe2=true;
|
||||
}
|
||||
}
|
||||
assert(dummyInBe2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"size of deletions: "<<toErase.size()<<endl;
|
||||
#endif
|
||||
|
||||
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
|
||||
++vmi)
|
||||
insertions.erase(*vmi);
|
||||
|
||||
#ifdef DEBUG_PATH_PROFILES
|
||||
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//print the graph (for debugging)
|
||||
void printGraph(Graph g){
|
||||
list<Node *> lt=g.getAllNodes();
|
||||
cerr<<"Graph---------------------\n";
|
||||
for(list<Node *>::iterator LI=lt.begin();
|
||||
LI!=lt.end(); ++LI){
|
||||
cerr<<((*LI)->getElement())->getName()<<"->";
|
||||
Graph::nodeList nl=g.getNodeList(*LI);
|
||||
for(Graph::nodeList::iterator NI=nl.begin();
|
||||
NI!=nl.end(); ++NI){
|
||||
cerr<<":"<<"("<<(NI->element->getElement())
|
||||
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
|
||||
}
|
||||
cerr<<"\n";
|
||||
}
|
||||
cerr<<"--------------------Graph\n";
|
||||
}
|
Loading…
Reference in New Issue
Block a user