1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00

[AArch64] NFC: Make some AArch64-SVE LoopVectorize tests generic.

This change moves most of `sve-inductions.ll` to non-AArch64 specific
LV tests using the `-target-supports-scalable-vectors` flag, because they're
not explicitly AArch64-specific. One test builds on AArch64-specific
knowledge regarding masked loads/stores, and remains in sve-inductions.ll.
This commit is contained in:
Sander de Smalen 2021-07-26 20:17:22 +01:00
parent 2e5bfee63f
commit bb39cd345a
2 changed files with 195 additions and 183 deletions

View File

@ -1,176 +1,6 @@
; RUN: opt -mtriple aarch64-linux-gnu -mattr=+sve -loop-vectorize -scalable-vectorization=on -force-target-instruction-cost=1 -dce -instcombine < %s -S | FileCheck %s ; RUN: opt -loop-vectorize -scalable-vectorization=on -force-target-instruction-cost=1 -dce -instcombine < %s -S | FileCheck %s
; Test that we can add on the induction variable target triple = "aarch64-linux-gnu"
; for (long long i = 0; i < n; i++) {
; a[i] = b[i] + i;
; }
; with an unroll factor (interleave count) of 2.
define void @add_ind64_unrolled(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add_ind64_unrolled(
; CHECK-NEXT: entry:
; CHECK: vector.body:
; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ]
; CHECK-NEXT: %[[STEPVEC:.*]] = call <vscale x 2 x i64> @llvm.experimental.stepvector.nxv2i64()
; CHECK-NEXT: %[[TMP1:.*]] = insertelement <vscale x 2 x i64> poison, i64 %[[INDEX]], i32 0
; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector <vscale x 2 x i64> %[[TMP1]], <vscale x 2 x i64> poison, <vscale x 2 x i32> zeroinitializer
; CHECK-NEXT: %[[VECIND1:.*]] = add <vscale x 2 x i64> %[[IDXSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VSCALE:.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: %[[EC:.*]] = shl i64 %[[VSCALE]], 1
; CHECK-NEXT: %[[TMP2:.*]] = insertelement <vscale x 2 x i64> poison, i64 %[[EC]], i32 0
; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector <vscale x 2 x i64> %[[TMP2]], <vscale x 2 x i64> poison, <vscale x 2 x i32> zeroinitializer
; CHECK-NEXT: %[[TMP3:.*]] = add <vscale x 2 x i64> %[[ECSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VECIND2:.*]] = add <vscale x 2 x i64> %[[IDXSPLT]], %[[TMP3]]
; CHECK: %[[LOAD1:.*]] = load <vscale x 2 x i64>
; CHECK: %[[LOAD2:.*]] = load <vscale x 2 x i64>
; CHECK: %[[STOREVAL1:.*]] = add nsw <vscale x 2 x i64> %[[LOAD1]], %[[VECIND1]]
; CHECK: %[[STOREVAL2:.*]] = add nsw <vscale x 2 x i64> %[[LOAD2]], %[[VECIND2]]
; CHECK: store <vscale x 2 x i64> %[[STOREVAL1]]
; CHECK: store <vscale x 2 x i64> %[[STOREVAL2]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08
%0 = load i64, i64* %arrayidx, align 8
%add = add nsw i64 %0, %i.08
%arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08
store i64 %add, i64* %arrayidx1, align 8
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !0
exit: ; preds = %for.body
ret void
}
; Same as above, except we test with a vectorisation factor of (1, scalable)
define void @add_ind64_unrolled_nxv1i64(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add_ind64_unrolled_nxv1i64(
; CHECK-NEXT: entry:
; CHECK: vector.body:
; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ]
; CHECK-NEXT: %[[STEPVEC:.*]] = call <vscale x 1 x i64> @llvm.experimental.stepvector.nxv1i64()
; CHECK-NEXT: %[[TMP1:.*]] = insertelement <vscale x 1 x i64> poison, i64 %[[INDEX]], i32 0
; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector <vscale x 1 x i64> %[[TMP1]], <vscale x 1 x i64> poison, <vscale x 1 x i32> zeroinitializer
; CHECK-NEXT: %[[VECIND1:.*]] = add <vscale x 1 x i64> %[[IDXSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[EC:.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: %[[TMP2:.*]] = insertelement <vscale x 1 x i64> poison, i64 %[[EC]], i32 0
; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector <vscale x 1 x i64> %[[TMP2]], <vscale x 1 x i64> poison, <vscale x 1 x i32> zeroinitializer
; CHECK-NEXT: %[[TMP3:.*]] = add <vscale x 1 x i64> %[[ECSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VECIND2:.*]] = add <vscale x 1 x i64> %[[IDXSPLT]], %[[TMP3]]
; CHECK: %[[LOAD1:.*]] = load <vscale x 1 x i64>
; CHECK: %[[LOAD2:.*]] = load <vscale x 1 x i64>
; CHECK: %[[STOREVAL1:.*]] = add nsw <vscale x 1 x i64> %[[LOAD1]], %[[VECIND1]]
; CHECK: %[[STOREVAL2:.*]] = add nsw <vscale x 1 x i64> %[[LOAD2]], %[[VECIND2]]
; CHECK: store <vscale x 1 x i64> %[[STOREVAL1]]
; CHECK: store <vscale x 1 x i64> %[[STOREVAL2]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08
%0 = load i64, i64* %arrayidx, align 8
%add = add nsw i64 %0, %i.08
%arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08
store i64 %add, i64* %arrayidx1, align 8
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !9
exit: ; preds = %for.body
ret void
}
; Test that we can vectorize a separate induction variable (not used for the branch)
; int r = 0;
; for (long long i = 0; i < n; i++) {
; a[i] = r;
; r += 2;
; }
; with an unroll factor (interleave count) of 1.
define void @add_unique_ind32(i32* noalias nocapture %a, i64 %n) {
; CHECK-LABEL: @add_unique_ind32(
; CHECK: vector.ph:
; CHECK: %[[STEPVEC:.*]] = call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
; CHECK-NEXT: %[[INDINIT:.*]] = shl <vscale x 4 x i32> %[[STEPVEC]], shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> undef, i32 1, i32 0), <vscale x 4 x i32> undef, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: %[[INC:.*]] = shl i32 %[[VSCALE]], 3
; CHECK-NEXT: %[[TMP:.*]] = insertelement <vscale x 4 x i32> poison, i32 %[[INC]], i32 0
; CHECK-NEXT: %[[VECINC:.*]] = shufflevector <vscale x 4 x i32> %[[TMP]], <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer
; CHECK: vector.body:
; CHECK: %[[VECIND:.*]] = phi <vscale x 4 x i32> [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ]
; CHECK: store <vscale x 4 x i32> %[[VECIND]]
; CHECK: %[[VECINDNXT]] = add <vscale x 4 x i32> %[[VECIND]], %[[VECINC]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%r.07 = phi i32 [ %add, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %i.08
store i32 %r.07, i32* %arrayidx, align 4
%add = add nuw nsw i32 %r.07, 2
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6
exit: ; preds = %for.body
ret void
}
; Test that we can vectorize a separate FP induction variable (not used for the branch)
; float r = 0;
; for (long long i = 0; i < n; i++) {
; a[i] = r;
; r += 2;
; }
; with an unroll factor (interleave count) of 1.
define void @add_unique_indf32(float* noalias nocapture %a, i64 %n) {
; CHECK-LABEL: @add_unique_indf32(
; CHECK: vector.ph:
; CHECK: %[[STEPVEC:.*]] = call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
; CHECK-NEXT: %[[TMP1:.*]] = uitofp <vscale x 4 x i32> %[[STEPVEC]] to <vscale x 4 x float>
; CHECK-NEXT: %[[TMP2:.*]] = fmul <vscale x 4 x float> %[[TMP1]], shufflevector (<vscale x 4 x float> insertelement (<vscale x 4 x float> poison, float 2.000000e+00, i32 0), <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[INDINIT:.*]] = fadd <vscale x 4 x float> %[[TMP2]], shufflevector (<vscale x 4 x float> insertelement (<vscale x 4 x float> poison, float 0.000000e+00, i32 0), <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: %[[TMP3:.*]] = shl i32 %8, 2
; CHECK-NEXT: %[[TMP4:.*]] = sitofp i32 %[[TMP3]] to float
; CHECK-NEXT: %[[INC:.*]] = fmul float %[[TMP4]], 2.000000e+00
; CHECK-NEXT: %[[TMP5:.*]] = insertelement <vscale x 4 x float> poison, float %[[INC]], i32 0
; CHECK-NEXT: %[[VECINC:.*]] = shufflevector <vscale x 4 x float> %[[TMP5]], <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer
; CHECK: vector.body:
; CHECK: %[[VECIND:.*]] = phi <vscale x 4 x float> [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ]
; CHECK: store <vscale x 4 x float> %[[VECIND]]
; CHECK: %[[VECINDNXT]] = fadd <vscale x 4 x float> %[[VECIND]], %[[VECINC]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%r.07 = phi float [ %add, %for.body ], [ 0.000000e+00, %entry ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %i.08
store float %r.07, float* %arrayidx, align 4
%add = fadd float %r.07, 2.000000e+00
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6
exit: ; preds = %for.body
ret void
}
; Test a case where the vectorised induction variable is used to ; Test a case where the vectorised induction variable is used to
; generate a mask: ; generate a mask:
@ -179,7 +9,7 @@ exit: ; preds = %for.body
; a[i] = b[i]; ; a[i] = b[i];
; } ; }
define void @cond_ind64(i32* noalias nocapture %a, i32* noalias nocapture readonly %b, i64 %n) { define void @cond_ind64(i32* noalias nocapture %a, i32* noalias nocapture readonly %b, i64 %n) #0 {
; CHECK-LABEL: @cond_ind64( ; CHECK-LABEL: @cond_ind64(
; CHECK: vector.body: ; CHECK: vector.body:
; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ] ; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ]
@ -209,20 +39,17 @@ if.then: ; preds = %for.body
for.inc: ; preds = %for.body, %if.then for.inc: ; preds = %for.body, %if.then
%inc = add nuw nsw i64 %i.08, 1 %inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n %exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6 br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !0
exit: ; preds = %for.inc exit: ; preds = %for.inc
ret void ret void
} }
attributes #0 = { "target-features"="+sve" }
!0 = distinct !{!0, !1, !2, !3, !4, !5} !0 = distinct !{!0, !1, !2, !3, !4, !5}
!1 = !{!"llvm.loop.mustprogress"} !1 = !{!"llvm.loop.mustprogress"}
!2 = !{!"llvm.loop.vectorize.width", i32 2} !2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true} !3 = !{!"llvm.loop.vectorize.enable", i1 true}
!4 = !{!"llvm.loop.interleave.count", i32 2} !4 = !{!"llvm.loop.vectorize.width", i32 4}
!5 = !{!"llvm.loop.vectorize.enable", i1 true} !5 = !{!"llvm.loop.interleave.count", i32 1}
!6 = distinct !{!6, !1, !7, !3, !8, !5}
!7 = !{!"llvm.loop.vectorize.width", i32 4}
!8 = !{!"llvm.loop.interleave.count", i32 1}
!9 = distinct !{!9, !1, !10, !3, !4, !5}
!10 = !{!"llvm.loop.vectorize.width", i32 1}

View File

@ -0,0 +1,185 @@
; RUN: opt -loop-vectorize -scalable-vectorization=on -force-target-instruction-cost=1 -force-target-supports-scalable-vectors -dce -instcombine < %s -S | FileCheck %s
; Test that we can add on the induction variable
; for (long long i = 0; i < n; i++) {
; a[i] = b[i] + i;
; }
; with an unroll factor (interleave count) of 2.
define void @add_ind64_unrolled(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add_ind64_unrolled(
; CHECK-NEXT: entry:
; CHECK: vector.body:
; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ]
; CHECK-NEXT: %[[STEPVEC:.*]] = call <vscale x 2 x i64> @llvm.experimental.stepvector.nxv2i64()
; CHECK-NEXT: %[[TMP1:.*]] = insertelement <vscale x 2 x i64> poison, i64 %[[INDEX]], i32 0
; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector <vscale x 2 x i64> %[[TMP1]], <vscale x 2 x i64> poison, <vscale x 2 x i32> zeroinitializer
; CHECK-NEXT: %[[VECIND1:.*]] = add <vscale x 2 x i64> %[[IDXSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VSCALE:.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: %[[EC:.*]] = shl i64 %[[VSCALE]], 1
; CHECK-NEXT: %[[TMP2:.*]] = insertelement <vscale x 2 x i64> poison, i64 %[[EC]], i32 0
; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector <vscale x 2 x i64> %[[TMP2]], <vscale x 2 x i64> poison, <vscale x 2 x i32> zeroinitializer
; CHECK-NEXT: %[[TMP3:.*]] = add <vscale x 2 x i64> %[[ECSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VECIND2:.*]] = add <vscale x 2 x i64> %[[IDXSPLT]], %[[TMP3]]
; CHECK: %[[LOAD1:.*]] = load <vscale x 2 x i64>
; CHECK: %[[LOAD2:.*]] = load <vscale x 2 x i64>
; CHECK: %[[STOREVAL1:.*]] = add nsw <vscale x 2 x i64> %[[LOAD1]], %[[VECIND1]]
; CHECK: %[[STOREVAL2:.*]] = add nsw <vscale x 2 x i64> %[[LOAD2]], %[[VECIND2]]
; CHECK: store <vscale x 2 x i64> %[[STOREVAL1]]
; CHECK: store <vscale x 2 x i64> %[[STOREVAL2]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08
%0 = load i64, i64* %arrayidx, align 8
%add = add nsw i64 %0, %i.08
%arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08
store i64 %add, i64* %arrayidx1, align 8
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !0
exit: ; preds = %for.body
ret void
}
; Same as above, except we test with a vectorisation factor of (1, scalable)
define void @add_ind64_unrolled_nxv1i64(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add_ind64_unrolled_nxv1i64(
; CHECK-NEXT: entry:
; CHECK: vector.body:
; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ]
; CHECK-NEXT: %[[STEPVEC:.*]] = call <vscale x 1 x i64> @llvm.experimental.stepvector.nxv1i64()
; CHECK-NEXT: %[[TMP1:.*]] = insertelement <vscale x 1 x i64> poison, i64 %[[INDEX]], i32 0
; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector <vscale x 1 x i64> %[[TMP1]], <vscale x 1 x i64> poison, <vscale x 1 x i32> zeroinitializer
; CHECK-NEXT: %[[VECIND1:.*]] = add <vscale x 1 x i64> %[[IDXSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[EC:.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: %[[TMP2:.*]] = insertelement <vscale x 1 x i64> poison, i64 %[[EC]], i32 0
; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector <vscale x 1 x i64> %[[TMP2]], <vscale x 1 x i64> poison, <vscale x 1 x i32> zeroinitializer
; CHECK-NEXT: %[[TMP3:.*]] = add <vscale x 1 x i64> %[[ECSPLT]], %[[STEPVEC]]
; CHECK-NEXT: %[[VECIND2:.*]] = add <vscale x 1 x i64> %[[IDXSPLT]], %[[TMP3]]
; CHECK: %[[LOAD1:.*]] = load <vscale x 1 x i64>
; CHECK: %[[LOAD2:.*]] = load <vscale x 1 x i64>
; CHECK: %[[STOREVAL1:.*]] = add nsw <vscale x 1 x i64> %[[LOAD1]], %[[VECIND1]]
; CHECK: %[[STOREVAL2:.*]] = add nsw <vscale x 1 x i64> %[[LOAD2]], %[[VECIND2]]
; CHECK: store <vscale x 1 x i64> %[[STOREVAL1]]
; CHECK: store <vscale x 1 x i64> %[[STOREVAL2]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08
%0 = load i64, i64* %arrayidx, align 8
%add = add nsw i64 %0, %i.08
%arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08
store i64 %add, i64* %arrayidx1, align 8
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !9
exit: ; preds = %for.body
ret void
}
; Test that we can vectorize a separate induction variable (not used for the branch)
; int r = 0;
; for (long long i = 0; i < n; i++) {
; a[i] = r;
; r += 2;
; }
; with an unroll factor (interleave count) of 1.
define void @add_unique_ind32(i32* noalias nocapture %a, i64 %n) {
; CHECK-LABEL: @add_unique_ind32(
; CHECK: vector.ph:
; CHECK: %[[STEPVEC:.*]] = call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
; CHECK-NEXT: %[[INDINIT:.*]] = shl <vscale x 4 x i32> %[[STEPVEC]], shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> undef, i32 1, i32 0), <vscale x 4 x i32> undef, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: %[[INC:.*]] = shl i32 %[[VSCALE]], 3
; CHECK-NEXT: %[[TMP:.*]] = insertelement <vscale x 4 x i32> poison, i32 %[[INC]], i32 0
; CHECK-NEXT: %[[VECINC:.*]] = shufflevector <vscale x 4 x i32> %[[TMP]], <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer
; CHECK: vector.body:
; CHECK: %[[VECIND:.*]] = phi <vscale x 4 x i32> [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ]
; CHECK: store <vscale x 4 x i32> %[[VECIND]]
; CHECK: %[[VECINDNXT]] = add <vscale x 4 x i32> %[[VECIND]], %[[VECINC]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%r.07 = phi i32 [ %add, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %i.08
store i32 %r.07, i32* %arrayidx, align 4
%add = add nuw nsw i32 %r.07, 2
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6
exit: ; preds = %for.body
ret void
}
; Test that we can vectorize a separate FP induction variable (not used for the branch)
; float r = 0;
; for (long long i = 0; i < n; i++) {
; a[i] = r;
; r += 2;
; }
; with an unroll factor (interleave count) of 1.
define void @add_unique_indf32(float* noalias nocapture %a, i64 %n) {
; CHECK-LABEL: @add_unique_indf32(
; CHECK: vector.ph:
; CHECK: %[[STEPVEC:.*]] = call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
; CHECK-NEXT: %[[TMP1:.*]] = uitofp <vscale x 4 x i32> %[[STEPVEC]] to <vscale x 4 x float>
; CHECK-NEXT: %[[TMP2:.*]] = fmul <vscale x 4 x float> %[[TMP1]], shufflevector (<vscale x 4 x float> insertelement (<vscale x 4 x float> poison, float 2.000000e+00, i32 0), <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[INDINIT:.*]] = fadd <vscale x 4 x float> %[[TMP2]], shufflevector (<vscale x 4 x float> insertelement (<vscale x 4 x float> poison, float 0.000000e+00, i32 0), <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32()
; CHECK-NEXT: %[[TMP3:.*]] = shl i32 %8, 2
; CHECK-NEXT: %[[TMP4:.*]] = sitofp i32 %[[TMP3]] to float
; CHECK-NEXT: %[[INC:.*]] = fmul float %[[TMP4]], 2.000000e+00
; CHECK-NEXT: %[[TMP5:.*]] = insertelement <vscale x 4 x float> poison, float %[[INC]], i32 0
; CHECK-NEXT: %[[VECINC:.*]] = shufflevector <vscale x 4 x float> %[[TMP5]], <vscale x 4 x float> poison, <vscale x 4 x i32> zeroinitializer
; CHECK: vector.body:
; CHECK: %[[VECIND:.*]] = phi <vscale x 4 x float> [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ]
; CHECK: store <vscale x 4 x float> %[[VECIND]]
; CHECK: %[[VECINDNXT]] = fadd <vscale x 4 x float> %[[VECIND]], %[[VECINC]]
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%r.07 = phi float [ %add, %for.body ], [ 0.000000e+00, %entry ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %i.08
store float %r.07, float* %arrayidx, align 4
%add = fadd float %r.07, 2.000000e+00
%inc = add nuw nsw i64 %i.08, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6
exit: ; preds = %for.body
ret void
}
!0 = distinct !{!0, !1, !2, !3, !4, !5}
!1 = !{!"llvm.loop.mustprogress"}
!2 = !{!"llvm.loop.vectorize.width", i32 2}
!3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!4 = !{!"llvm.loop.interleave.count", i32 2}
!5 = !{!"llvm.loop.vectorize.enable", i1 true}
!6 = distinct !{!6, !1, !7, !3, !8, !5}
!7 = !{!"llvm.loop.vectorize.width", i32 4}
!8 = !{!"llvm.loop.interleave.count", i32 1}
!9 = distinct !{!9, !1, !10, !3, !4, !5}
!10 = !{!"llvm.loop.vectorize.width", i32 1}