1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

[SyntheticCounts] Rewrite the code using only graph traits.

Summary:
The intent of this is to allow the code to be used with ThinLTO. In
Thinlink phase, a traditional Callgraph can not be computed even though
all the necessary information (nodes and edges of a call graph) is
available. This is due to the fact that CallGraph class is closely tied
to the IR. This patch first extends GraphTraits to add a CallGraphTraits
graph. This is then used to implement a version of counts propagation
on a generic callgraph.

Reviewers: davidxl

Subscribers: mehdi_amini, tejohnson, llvm-commits

Differential Revision: https://reviews.llvm.org/D42311

llvm-svn: 323475
This commit is contained in:
Easwaran Raman 2018-01-25 22:02:29 +00:00
parent 4cec19ffa9
commit bd3a1aab59
4 changed files with 157 additions and 86 deletions

View File

@ -495,6 +495,56 @@ struct GraphTraits<const CallGraph *> : public GraphTraits<
}
};
// FIXME: The traits here are not limited to callgraphs and can be moved
// elsewhere including GraphTraits. They are left here because only algorithms
// that operate on Callgraphs currently use them. If other algorithms operating
// on a general graph need edge traversals, these can be moved.
template <class CallGraphType>
struct CallGraphTraits : public GraphTraits<CallGraphType> {
// Elements to provide:
// typedef EdgeRef - Type of Edge token in the graph, which should
// be cheap to copy.
// typedef CallEdgeIteratorType - Type used to iterate over children edges in
// graph, dereference to a EdgeRef.
// static CallEdgeIteratorType call_edge_begin(NodeRef)
// static CallEdgeIteratorType call_edge_end (NodeRef)
// Return iterators that point to the beginning and ending of the call
// edges list for the given callgraph node.
//
// static NodeRef edge_dest(EdgeRef)
// Return the destination node of an edge.
// If anyone tries to use this class without having an appropriate
// specialization, make an error. If you get this error, it's because you
// need to include the appropriate specialization of GraphTraits<> for your
// graph, or you need to define it for a new graph type. Either that or
// your argument to XXX_begin(...) is unknown or needs to have the proper .h
// file #include'd.
using CallEdgeIteratorType =
typename CallGraphType::UnknownCallGraphTypeError;
};
template <class GraphType>
iterator_range<typename CallGraphTraits<GraphType>::CallEdgeIteratorType>
call_edges(const typename CallGraphTraits<GraphType>::NodeRef &G) {
return make_range(CallGraphTraits<GraphType>::call_edge_begin(G),
CallGraphTraits<GraphType>::call_edge_end(G));
}
template <>
struct CallGraphTraits<const CallGraph *>
: public GraphTraits<const CallGraph *> {
using EdgeRef = const CallGraphNode::CallRecord &;
using CallEdgeIteratorType = CallGraphNode::const_iterator;
static CallEdgeIteratorType call_edge_begin(NodeRef N) { return N->begin(); }
static CallEdgeIteratorType call_edge_end(NodeRef N) { return N->end(); }
static NodeRef edge_dest(EdgeRef E) { return E.second; }
};
} // end namespace llvm
#endif // LLVM_ANALYSIS_CALLGRAPH_H

View File

@ -15,7 +15,7 @@
#define LLVM_ANALYSIS_SYNTHETIC_COUNTS_UTILS_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Support/ScaledNumber.h"
namespace llvm {
@ -23,11 +23,30 @@ namespace llvm {
class CallGraph;
class Function;
using Scaled64 = ScaledNumber<uint64_t>;
void propagateSyntheticCounts(
const CallGraph &CG, function_ref<Scaled64(CallSite CS)> GetCallSiteRelFreq,
function_ref<uint64_t(Function *F)> GetCount,
function_ref<void(Function *F, uint64_t)> AddToCount);
/// Class with methods to propagate synthetic entry counts.
///
/// This class is templated on the type of the call graph and designed to work
/// with the traditional per-module callgraph and the summary callgraphs used in
/// ThinLTO. This contains only static methods and alias templates.
template <typename CallGraphType> class SyntheticCountsUtils {
public:
using Scaled64 = ScaledNumber<uint64_t>;
using CGT = CallGraphTraits<CallGraphType>;
using NodeRef = typename CGT::NodeRef;
using EdgeRef = typename CGT::EdgeRef;
using SccTy = std::vector<NodeRef>;
using GetRelBBFreqTy = function_ref<Optional<Scaled64>(EdgeRef)>;
using GetCountTy = function_ref<uint64_t(NodeRef)>;
using AddCountTy = function_ref<void(NodeRef, uint64_t)>;
static void propagate(const CallGraphType &CG, GetRelBBFreqTy GetRelBBFreq,
GetCountTy GetCount, AddCountTy AddCount);
private:
static void propagateFromSCC(const SccTy &SCC, GetRelBBFreqTy GetRelBBFreq,
GetCountTy GetCount, AddCountTy AddCount);
};
} // namespace llvm
#endif

View File

@ -23,100 +23,91 @@
using namespace llvm;
// Given a set of functions in an SCC, propagate entry counts to functions
// called by the SCC.
static void
propagateFromSCC(const SmallPtrSetImpl<Function *> &SCCFunctions,
function_ref<Scaled64(CallSite CS)> GetCallSiteRelFreq,
function_ref<uint64_t(Function *F)> GetCount,
function_ref<void(Function *F, uint64_t)> AddToCount) {
// Given an SCC, propagate entry counts along the edge of the SCC nodes.
template <typename CallGraphType>
void SyntheticCountsUtils<CallGraphType>::propagateFromSCC(
const SccTy &SCC, GetRelBBFreqTy GetRelBBFreq, GetCountTy GetCount,
AddCountTy AddCount) {
SmallVector<CallSite, 16> CallSites;
SmallPtrSet<NodeRef, 8> SCCNodes;
SmallVector<std::pair<NodeRef, EdgeRef>, 8> SCCEdges, NonSCCEdges;
// Gather all callsites in the SCC.
auto GatherCallSites = [&]() {
for (auto *F : SCCFunctions) {
assert(F && !F->isDeclaration());
for (auto &I : instructions(F)) {
if (auto CS = CallSite(&I)) {
CallSites.push_back(CS);
}
}
for (auto &Node : SCC)
SCCNodes.insert(Node);
// Partition the edges coming out of the SCC into those whose destination is
// in the SCC and the rest.
for (const auto &Node : SCCNodes) {
for (auto &E : call_edges<CallGraphType>(Node)) {
if (SCCNodes.count(CGT::edge_dest(E)))
SCCEdges.emplace_back(Node, E);
else
NonSCCEdges.emplace_back(Node, E);
}
};
}
GatherCallSites();
// Partition callsites so that the callsites that call functions in the same
// SCC come first.
auto Mid = partition(CallSites, [&](CallSite &CS) {
auto *Callee = CS.getCalledFunction();
if (Callee)
return SCCFunctions.count(Callee);
// FIXME: Use the !callees metadata to propagate counts through indirect
// calls.
return 0U;
});
// For functions in the same SCC, update the counts in two steps:
// 1. Compute the additional count for each function by propagating the counts
// along all incoming edges to the function that originate from the same SCC
// and summing them up.
// 2. Add the additional counts to the functions in the SCC.
// For nodes in the same SCC, update the counts in two steps:
// 1. Compute the additional count for each node by propagating the counts
// along all incoming edges to the node that originate from within the same
// SCC and summing them up.
// 2. Add the additional counts to the nodes in the SCC.
// This ensures that the order of
// traversal of functions within the SCC doesn't change the final result.
// traversal of nodes within the SCC doesn't affect the final result.
DenseMap<Function *, uint64_t> AdditionalCounts;
for (auto It = CallSites.begin(); It != Mid; It++) {
auto &CS = *It;
auto RelFreq = GetCallSiteRelFreq(CS);
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
DenseMap<NodeRef, uint64_t> AdditionalCounts;
for (auto &E : SCCEdges) {
auto OptRelFreq = GetRelBBFreq(E.second);
if (!OptRelFreq)
continue;
Scaled64 RelFreq = OptRelFreq.getValue();
auto Caller = E.first;
auto Callee = CGT::edge_dest(E.second);
RelFreq *= Scaled64(GetCount(Caller), 0);
uint64_t AdditionalCount = RelFreq.toInt<uint64_t>();
AdditionalCounts[Callee] += AdditionalCount;
}
// Update the counts for the functions in the SCC.
// Update the counts for the nodes in the SCC.
for (auto &Entry : AdditionalCounts)
AddToCount(Entry.first, Entry.second);
AddCount(Entry.first, Entry.second);
// Now update the counts for functions not in SCC.
for (auto It = Mid; It != CallSites.end(); It++) {
auto &CS = *It;
auto Weight = GetCallSiteRelFreq(CS);
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
Weight *= Scaled64(GetCount(Caller), 0);
AddToCount(Callee, Weight.toInt<uint64_t>());
// Now update the counts for nodes outside the SCC.
for (auto &E : NonSCCEdges) {
auto OptRelFreq = GetRelBBFreq(E.second);
if (!OptRelFreq)
continue;
Scaled64 RelFreq = OptRelFreq.getValue();
auto Caller = E.first;
auto Callee = CGT::edge_dest(E.second);
RelFreq *= Scaled64(GetCount(Caller), 0);
AddCount(Callee, RelFreq.toInt<uint64_t>());
}
}
/// Propgate synthetic entry counts on a callgraph.
/// Propgate synthetic entry counts on a callgraph \p CG.
///
/// This performs a reverse post-order traversal of the callgraph SCC. For each
/// SCC, it first propagates the entry counts to the functions within the SCC
/// SCC, it first propagates the entry counts to the nodes within the SCC
/// through call edges and updates them in one shot. Then the entry counts are
/// propagated to functions outside the SCC.
void llvm::propagateSyntheticCounts(
const CallGraph &CG, function_ref<Scaled64(CallSite CS)> GetCallSiteRelFreq,
function_ref<uint64_t(Function *F)> GetCount,
function_ref<void(Function *F, uint64_t)> AddToCount) {
/// propagated to nodes outside the SCC. This requires \p CallGraphTraits
/// to have a specialization for \p CallGraphType.
SmallVector<SmallPtrSet<Function *, 8>, 16> SCCs;
for (auto I = scc_begin(&CG); !I.isAtEnd(); ++I) {
auto SCC = *I;
template <typename CallGraphType>
void SyntheticCountsUtils<CallGraphType>::propagate(const CallGraphType &CG,
GetRelBBFreqTy GetRelBBFreq,
GetCountTy GetCount,
AddCountTy AddCount) {
std::vector<SccTy> SCCs;
SmallPtrSet<Function *, 8> SCCFunctions;
for (auto *Node : SCC) {
Function *F = Node->getFunction();
if (F && !F->isDeclaration()) {
SCCFunctions.insert(F);
}
}
SCCs.push_back(SCCFunctions);
}
// Collect all the SCCs.
for (auto I = scc_begin(CG); !I.isAtEnd(); ++I)
SCCs.push_back(*I);
for (auto &SCCFunctions : reverse(SCCs))
propagateFromSCC(SCCFunctions, GetCallSiteRelFreq, GetCount, AddToCount);
// The callgraph-scc needs to be visited in top-down order for propagation.
// The scc iterator returns the scc in bottom-up order, so reverse the SCCs
// and call propagateFromSCC.
for (auto &SCC : reverse(SCCs))
propagateFromSCC(SCC, GetRelBBFreq, GetCount, AddCount);
}
template class llvm::SyntheticCountsUtils<const CallGraph *>;

View File

@ -102,23 +102,34 @@ PreservedAnalyses SyntheticCountsPropagation::run(Module &M,
// Set initial entry counts.
initializeCounts(M, [&](Function *F, uint64_t Count) { Counts[F] = Count; });
// Compute the relative block frequency for a callsite. Use scaled numbers
// Compute the relative block frequency for a call edge. Use scaled numbers
// and not integers since the relative block frequency could be less than 1.
auto GetCallSiteRelFreq = [&](CallSite CS) {
auto GetCallSiteRelFreq = [&](const CallGraphNode::CallRecord &Edge) {
Optional<Scaled64> Res = None;
if (!Edge.first)
return Res;
assert(isa<Instruction>(Edge.first));
CallSite CS(cast<Instruction>(Edge.first));
Function *Caller = CS.getCaller();
auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(*Caller);
BasicBlock *CSBB = CS.getInstruction()->getParent();
Scaled64 EntryFreq(BFI.getEntryFreq(), 0);
Scaled64 BBFreq(BFI.getBlockFreq(CSBB).getFrequency(), 0);
BBFreq /= EntryFreq;
return BBFreq;
return Optional<Scaled64>(BBFreq);
};
CallGraph CG(M);
// Propgate the entry counts on the callgraph.
propagateSyntheticCounts(
CG, GetCallSiteRelFreq, [&](Function *F) { return Counts[F]; },
[&](Function *F, uint64_t New) { Counts[F] += New; });
SyntheticCountsUtils<const CallGraph *>::propagate(
&CG, GetCallSiteRelFreq,
[&](const CallGraphNode *N) { return Counts[N->getFunction()]; },
[&](const CallGraphNode *N, uint64_t New) {
auto F = N->getFunction();
if (!F || F->isDeclaration())
return;
Counts[F] += New;
});
// Set the counts as metadata.
for (auto Entry : Counts)