mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 12:41:49 +01:00
Add additional patterns for @llvm.assume in ValueTracking
This builds on r217342, which added the infrastructure to compute known bits using assumptions (@llvm.assume calls). That original commit added only a few patterns (to catch common cases related to determining pointer alignment); this change adds several other patterns for simple cases. r217342 contained that, for assume(v & b = a), bits in the mask that are known to be one, we can propagate known bits from the a to v. It also had a known-bits transfer for assume(a = b). This patch adds: assume(~(v & b) = a) : For those bits in the mask that are known to be one, we can propagate inverted known bits from the a to v. assume(v | b = a) : For those bits in b that are known to be zero, we can propagate known bits from the a to v. assume(~(v | b) = a): For those bits in b that are known to be zero, we can propagate inverted known bits from the a to v. assume(v ^ b = a) : For those bits in b that are known to be zero, we can propagate known bits from the a to v. For those bits in b that are known to be one, we can propagate inverted known bits from the a to v. assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can propagate inverted known bits from the a to v. For those bits in b that are known to be one, we can propagate known bits from the a to v. assume(v << c = a) : For those bits in a that are known, we can propagate them to known bits in v shifted to the right by c. assume(~(v << c) = a) : For those bits in a that are known, we can propagate them inverted to known bits in v shifted to the right by c. assume(v >> c = a) : For those bits in a that are known, we can propagate them to known bits in v shifted to the right by c. assume(~(v >> c) = a) : For those bits in a that are known, we can propagate them inverted to known bits in v shifted to the right by c. assume(v >=_s c) where c is non-negative: The sign bit of v is zero assume(v >_s c) where c is at least -1: The sign bit of v is zero assume(v <=_s c) where c is negative: The sign bit of v is one assume(v <_s c) where c is non-positive: The sign bit of v is one assume(v <=_u c): Transfer the known high zero bits assume(v <_u c): Transfer the known high zero bits (if c is know to be a power of 2, transfer one more) A small addition to InstCombine was necessary for some of the test cases. The problem is that when InstCombine was simplifying and, or, etc. it would fail to check the 'do I know all of the bits' condition before checking less specific conditions and would not fully constant-fold the result. I'm not sure how to trigger this aside from using assumptions, so I've just included the change here. llvm-svn: 217343
This commit is contained in:
parent
f8bb9b78cf
commit
be0364002a
@ -458,6 +458,20 @@ m_c_And(const LHS &L, const RHS &R) {
|
||||
return m_CombineOr(m_And(L, R), m_And(R, L));
|
||||
}
|
||||
|
||||
template<typename LHS, typename RHS>
|
||||
inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
|
||||
BinaryOp_match<RHS, LHS, Instruction::Or>>
|
||||
m_c_Or(const LHS &L, const RHS &R) {
|
||||
return m_CombineOr(m_Or(L, R), m_Or(R, L));
|
||||
}
|
||||
|
||||
template<typename LHS, typename RHS>
|
||||
inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
|
||||
BinaryOp_match<RHS, LHS, Instruction::Xor>>
|
||||
m_c_Xor(const LHS &L, const RHS &R) {
|
||||
return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
|
||||
}
|
||||
|
||||
static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
|
||||
APInt &KnownOne,
|
||||
const DataLayout *DL,
|
||||
@ -489,6 +503,7 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
|
||||
m_BitCast(m_Specific(V))));
|
||||
|
||||
CmpInst::Predicate Pred;
|
||||
ConstantInt *C;
|
||||
// assume(v = a)
|
||||
if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
@ -510,6 +525,203 @@ static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
|
||||
// known bits from the RHS to V.
|
||||
KnownZero |= RHSKnownZero & MaskKnownOne;
|
||||
KnownOne |= RHSKnownOne & MaskKnownOne;
|
||||
// assume(~(v & b) = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// For those bits in the mask that are known to be one, we can propagate
|
||||
// inverted known bits from the RHS to V.
|
||||
KnownZero |= RHSKnownOne & MaskKnownOne;
|
||||
KnownOne |= RHSKnownZero & MaskKnownOne;
|
||||
// assume(v | b = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate known
|
||||
// bits from the RHS to V.
|
||||
KnownZero |= RHSKnownZero & BKnownZero;
|
||||
KnownOne |= RHSKnownOne & BKnownZero;
|
||||
// assume(~(v | b) = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate
|
||||
// inverted known bits from the RHS to V.
|
||||
KnownZero |= RHSKnownOne & BKnownZero;
|
||||
KnownOne |= RHSKnownZero & BKnownZero;
|
||||
// assume(v ^ b = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate known
|
||||
// bits from the RHS to V. For those bits in B that are known to be one,
|
||||
// we can propagate inverted known bits from the RHS to V.
|
||||
KnownZero |= RHSKnownZero & BKnownZero;
|
||||
KnownOne |= RHSKnownOne & BKnownZero;
|
||||
KnownZero |= RHSKnownOne & BKnownOne;
|
||||
KnownOne |= RHSKnownZero & BKnownOne;
|
||||
// assume(~(v ^ b) = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
|
||||
computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// For those bits in B that are known to be zero, we can propagate
|
||||
// inverted known bits from the RHS to V. For those bits in B that are
|
||||
// known to be one, we can propagate known bits from the RHS to V.
|
||||
KnownZero |= RHSKnownOne & BKnownZero;
|
||||
KnownOne |= RHSKnownZero & BKnownZero;
|
||||
KnownZero |= RHSKnownZero & BKnownOne;
|
||||
KnownOne |= RHSKnownOne & BKnownOne;
|
||||
// assume(v << c = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
// For those bits in RHS that are known, we can propagate them to known
|
||||
// bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
|
||||
KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
|
||||
// assume(~(v << c) = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
// For those bits in RHS that are known, we can propagate them inverted
|
||||
// to known bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
|
||||
KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
|
||||
// assume(v >> c = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
|
||||
m_AShr(m_V,
|
||||
m_ConstantInt(C))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
// For those bits in RHS that are known, we can propagate them to known
|
||||
// bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownZero << C->getZExtValue();
|
||||
KnownOne |= RHSKnownOne << C->getZExtValue();
|
||||
// assume(~(v >> c) = a)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_c_ICmp(Pred, m_Not(m_CombineOr(
|
||||
m_LShr(m_V, m_ConstantInt(C)),
|
||||
m_AShr(m_V, m_ConstantInt(C)))),
|
||||
m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
// For those bits in RHS that are known, we can propagate them inverted
|
||||
// to known bits in V shifted to the right by C.
|
||||
KnownZero |= RHSKnownOne << C->getZExtValue();
|
||||
KnownOne |= RHSKnownZero << C->getZExtValue();
|
||||
// assume(v >=_s c) where c is non-negative
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_SGE &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
if (RHSKnownZero.isNegative()) {
|
||||
// We know that the sign bit is zero.
|
||||
KnownZero |= APInt::getSignBit(BitWidth);
|
||||
}
|
||||
// assume(v >_s c) where c is at least -1.
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_SGT &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
|
||||
// We know that the sign bit is zero.
|
||||
KnownZero |= APInt::getSignBit(BitWidth);
|
||||
}
|
||||
// assume(v <=_s c) where c is negative
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_SLE &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
if (RHSKnownOne.isNegative()) {
|
||||
// We know that the sign bit is one.
|
||||
KnownOne |= APInt::getSignBit(BitWidth);
|
||||
}
|
||||
// assume(v <_s c) where c is non-positive
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_SLT &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
|
||||
// We know that the sign bit is one.
|
||||
KnownOne |= APInt::getSignBit(BitWidth);
|
||||
}
|
||||
// assume(v <=_u c)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_ULE &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// Whatever high bits in c are zero are known to be zero.
|
||||
KnownZero |=
|
||||
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
|
||||
// assume(v <_u c)
|
||||
} else if (match(I, m_Intrinsic<Intrinsic::assume>(
|
||||
m_ICmp(Pred, m_V, m_Value(A)))) &&
|
||||
Pred == ICmpInst::ICMP_ULT &&
|
||||
isValidAssumeForContext(I, Q, DL)) {
|
||||
APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
|
||||
|
||||
// Whatever high bits in c are zero are known to be zero (if c is a power
|
||||
// of 2, then one more).
|
||||
if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I)))
|
||||
KnownZero |=
|
||||
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
|
||||
else
|
||||
KnownZero |=
|
||||
APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -264,6 +264,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
|
||||
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
|
||||
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
|
||||
|
||||
// If the client is only demanding bits that we know, return the known
|
||||
// constant.
|
||||
if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
|
||||
(RHSKnownOne & LHSKnownOne))) == DemandedMask)
|
||||
return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
|
||||
|
||||
// If all of the demanded bits are known 1 on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'and'.
|
||||
if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
|
||||
@ -296,6 +302,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
|
||||
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
|
||||
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
|
||||
|
||||
// If the client is only demanding bits that we know, return the known
|
||||
// constant.
|
||||
if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
|
||||
(RHSKnownOne | LHSKnownOne))) == DemandedMask)
|
||||
return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
|
||||
|
||||
// If all of the demanded bits are known zero on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'or'.
|
||||
if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
|
||||
@ -332,6 +344,18 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
|
||||
assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
|
||||
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
|
||||
|
||||
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
||||
APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
|
||||
(RHSKnownOne & LHSKnownOne);
|
||||
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
||||
APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
|
||||
(RHSKnownOne & LHSKnownZero);
|
||||
|
||||
// If the client is only demanding bits that we know, return the known
|
||||
// constant.
|
||||
if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
|
||||
return Constant::getIntegerValue(VTy, IKnownOne);
|
||||
|
||||
// If all of the demanded bits are known zero on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'xor'.
|
||||
if ((DemandedMask & RHSKnownZero) == DemandedMask)
|
||||
|
174
test/Transforms/InstCombine/assume2.ll
Normal file
174
test/Transforms/InstCombine/assume2.ll
Normal file
@ -0,0 +1,174 @@
|
||||
; RUN: opt < %s -instcombine -S | FileCheck %s
|
||||
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; Function Attrs: nounwind
|
||||
declare void @llvm.assume(i1) #1
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test1(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test1
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%and = and i32 %a, 15
|
||||
%cmp = icmp eq i32 %and, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 7
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test2(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test2
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 2
|
||||
|
||||
%and = and i32 %a, 15
|
||||
%nand = xor i32 %and, -1
|
||||
%cmp = icmp eq i32 %nand, 4294967285
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 7
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test3(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test3
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%v = or i32 %a, 4294967280
|
||||
%cmp = icmp eq i32 %v, 4294967285
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 7
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test4(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test4
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 2
|
||||
|
||||
%v = or i32 %a, 4294967280
|
||||
%nv = xor i32 %v, -1
|
||||
%cmp = icmp eq i32 %nv, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 7
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test5(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test5
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 4
|
||||
|
||||
%v = xor i32 %a, 1
|
||||
%cmp = icmp eq i32 %v, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 7
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test6(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test6
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 5
|
||||
|
||||
%v = shl i32 %a, 2
|
||||
%cmp = icmp eq i32 %v, 20
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 63
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test7(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test7
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 20
|
||||
|
||||
%v = lshr i32 %a, 2
|
||||
%cmp = icmp eq i32 %v, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 252
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test8(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test8
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 20
|
||||
|
||||
%v = lshr i32 %a, 2
|
||||
%cmp = icmp eq i32 %v, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 252
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test9(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test9
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 0
|
||||
|
||||
%cmp = icmp sgt i32 %a, 5
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 2147483648
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test10(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test10
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 -2147483648
|
||||
|
||||
%cmp = icmp sle i32 %a, -2
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 2147483648
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
; Function Attrs: nounwind uwtable
|
||||
define i32 @test11(i32 %a) #0 {
|
||||
entry:
|
||||
; CHECK-LABEL: @test11
|
||||
; CHECK: call void @llvm.assume
|
||||
; CHECK: ret i32 0
|
||||
|
||||
%cmp = icmp ule i32 %a, 256
|
||||
tail call void @llvm.assume(i1 %cmp)
|
||||
|
||||
%and1 = and i32 %a, 3072
|
||||
ret i32 %and1
|
||||
}
|
||||
|
||||
attributes #0 = { nounwind uwtable }
|
||||
attributes #1 = { nounwind }
|
||||
|
Loading…
x
Reference in New Issue
Block a user