1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00

SimplifyLibCalls: Optimize wcslen

Refactor the strlen optimization code to work for both strlen and wcslen.

This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.

This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.

Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.

The refactoring "accidentally" fixes http://llvm.org/PR32124

Differential Revision: https://reviews.llvm.org/D32839

llvm-svn: 303461
This commit is contained in:
Matthias Braun 2017-05-19 22:37:09 +00:00
parent 207ce95fd3
commit be57ef6b4f
13 changed files with 655 additions and 91 deletions

View File

@ -191,6 +191,14 @@ public:
void setShouldSignExtI32Param(bool Val) {
ShouldSignExtI32Param = Val;
}
/// Returns the size of the wchar_t type in bytes.
unsigned getWCharSize(const Module &M) const;
/// Returns size of the default wchar_t type on target \p T. This is mostly
/// intended to verify that the size in the frontend matches LLVM. All other
/// queries should use getWCharSize() instead.
static unsigned getTargetWCharSize(const Triple &T);
};
/// Provides information about what library functions are available for
@ -307,6 +315,11 @@ public:
return Attribute::None;
}
/// \copydoc TargetLibraryInfoImpl::getWCharSize()
unsigned getWCharSize(const Module &M) const {
return Impl->getWCharSize(M);
}
/// Handle invalidation from the pass manager.
///
/// If we try to invalidate this info, just return false. It cannot become

View File

@ -218,9 +218,38 @@ template <typename T> class ArrayRef;
DL);
}
/// Returns true if the GEP is based on a pointer to a string (array of i8),
/// and is indexing into this string.
bool isGEPBasedOnPointerToString(const GEPOperator *GEP);
/// Returns true if the GEP is based on a pointer to a string (array of
// \p CharSize integers) and is indexing into this string.
bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
unsigned CharSize = 8);
/// Represents offset+length into a ConstantDataArray.
struct ConstantDataArraySlice {
/// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
/// initializer, it just doesn't fit the ConstantDataArray interface).
const ConstantDataArray *Array;
/// Slice starts at this Offset.
uint64_t Offset;
/// Length of the slice.
uint64_t Length;
/// Moves the Offset and adjusts Length accordingly.
void move(uint64_t Delta) {
assert(Delta < Length);
Offset += Delta;
Length -= Delta;
}
/// Convenience accessor for elements in the slice.
uint64_t operator[](unsigned I) const {
return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
}
};
/// Returns true if the value \p V is a pointer into a ContantDataArray.
/// If successfull \p Index will point to a ConstantDataArray info object
/// with an apropriate offset.
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
unsigned ElementSize, uint64_t Offset = 0);
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str. If
@ -233,7 +262,7 @@ template <typename T> class ArrayRef;
/// If we can compute the length of the string pointed to by the specified
/// pointer, return 'len+1'. If we can't, return 0.
uint64_t GetStringLength(const Value *V);
uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
/// This method strips off any GEP address adjustments and pointer casts from
/// the specified value, returning the original object being addressed. Note

View File

@ -634,8 +634,8 @@ public:
/// The size of the elements is known to be a multiple of one byte.
uint64_t getElementByteSize() const;
/// This method returns true if this is an array of i8.
bool isString() const;
/// This method returns true if this is an array of \p CharSize integers.
bool isString(unsigned CharSize = 8) const;
/// This method returns true if the array "isString", ends with a null byte,
/// and does not contains any other null bytes.

View File

@ -121,6 +121,7 @@ private:
Value *optimizeMemCpy(CallInst *CI, IRBuilder<> &B);
Value *optimizeMemMove(CallInst *CI, IRBuilder<> &B);
Value *optimizeMemSet(CallInst *CI, IRBuilder<> &B);
Value *optimizeWcslen(CallInst *CI, IRBuilder<> &B);
// Wrapper for all String/Memory Library Call Optimizations
Value *optimizeStringMemoryLibCall(CallInst *CI, IRBuilder<> &B);
@ -165,6 +166,9 @@ private:
/// hasFloatVersion - Checks if there is a float version of the specified
/// function by checking for an existing function with name FuncName + f
bool hasFloatVersion(StringRef FuncName);
/// Shared code to optimize strlen+wcslen.
Value *optimizeStringLength(CallInst *CI, IRBuilder<> &B, unsigned CharSize);
};
} // End llvm namespace

View File

@ -13,6 +13,7 @@
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
@ -1518,6 +1519,17 @@ TargetLibraryInfoImpl &TargetLibraryAnalysis::lookupInfoImpl(const Triple &T) {
return *Impl;
}
unsigned TargetLibraryInfoImpl::getTargetWCharSize(const Triple &T) {
// See also clang/lib/Basic/Targets.cpp.
return T.isPS4() || T.isOSWindows() || T.getArch() == Triple::xcore ? 2 : 4;
}
unsigned TargetLibraryInfoImpl::getWCharSize(const Module &M) const {
if (auto *ShortWChar = cast_or_null<ConstantAsMetadata>(
M.getModuleFlag("wchar_size")))
return cast<ConstantInt>(ShortWChar->getValue())->getZExtValue();
return getTargetWCharSize(Triple(M.getTargetTriple()));
}
TargetLibraryInfoWrapperPass::TargetLibraryInfoWrapperPass()
: ImmutablePass(ID), TLIImpl(), TLI(TLIImpl) {

View File

@ -26,6 +26,7 @@
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
@ -2953,14 +2954,16 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
return Ptr;
}
bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
unsigned CharSize) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of i8.
// Make sure the index-ee is a pointer to array of \p CharSize integers.
// CharSize.
ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
if (!AT || !AT->getElementType()->isIntegerTy(8))
if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
return false;
// Check to make sure that the first operand of the GEP is an integer and
@ -2972,11 +2975,9 @@ bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
return true;
}
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
bool llvm::getConstantDataArrayInfo(const Value *V,
ConstantDataArraySlice &Slice,
unsigned ElementSize, uint64_t Offset) {
assert(V);
// Look through bitcast instructions and geps.
@ -2987,7 +2988,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// The GEP operator should be based on a pointer to string constant, and is
// indexing into the string constant.
if (!isGEPBasedOnPointerToString(GEP))
if (!isGEPBasedOnPointerToString(GEP, ElementSize))
return false;
// If the second index isn't a ConstantInt, then this is a variable index
@ -2998,8 +2999,8 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
StartIdx = CI->getZExtValue();
else
return false;
return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
TrimAtNul);
return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
StartIdx + Offset);
}
// The GEP instruction, constant or instruction, must reference a global
@ -3009,30 +3010,72 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
// Handle the all-zeros case.
const ConstantDataArray *Array;
ArrayType *ArrayTy;
if (GV->getInitializer()->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
Str = "";
return true;
}
Type *GVTy = GV->getValueType();
if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
// A zeroinitializer for the array; There is no ConstantDataArray.
Array = nullptr;
} else {
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
uint64_t Length = SizeInBytes / (ElementSize / 8);
if (Length <= Offset)
return false;
// This must be a ConstantDataArray.
const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
if (!Array || !Array->isString())
Slice.Array = nullptr;
Slice.Offset = 0;
Slice.Length = Length - Offset;
return true;
}
} else {
// This must be a ConstantDataArray.
Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
if (!Array)
return false;
ArrayTy = Array->getType();
}
if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
return false;
// Get the number of elements in the array.
uint64_t NumElts = Array->getType()->getArrayNumElements();
// Start out with the entire array in the StringRef.
Str = Array->getAsString();
uint64_t NumElts = ArrayTy->getArrayNumElements();
if (Offset > NumElts)
return false;
Slice.Array = Array;
Slice.Offset = Offset;
Slice.Length = NumElts - Offset;
return true;
}
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
return false;
if (Slice.Array == nullptr) {
if (TrimAtNul) {
Str = StringRef();
return true;
}
if (Slice.Length == 1) {
Str = StringRef("", 1);
return true;
}
// We cannot instantiate a StringRef as we do not have an apropriate string
// of 0s at hand.
return false;
}
// Start out with the entire array in the StringRef.
Str = Slice.Array->getAsString();
// Skip over 'offset' bytes.
Str = Str.substr(Offset);
Str = Str.substr(Slice.Offset);
if (TrimAtNul) {
// Trim off the \0 and anything after it. If the array is not nul
@ -3050,7 +3093,8 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(const Value *V,
SmallPtrSetImpl<const PHINode*> &PHIs) {
SmallPtrSetImpl<const PHINode*> &PHIs,
unsigned CharSize) {
// Look through noop bitcast instructions.
V = V->stripPointerCasts();
@ -3063,7 +3107,7 @@ static uint64_t GetStringLengthH(const Value *V,
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (Value *IncValue : PN->incoming_values()) {
uint64_t Len = GetStringLengthH(IncValue, PHIs);
uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
@ -3079,9 +3123,9 @@ static uint64_t GetStringLengthH(const Value *V,
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
@ -3090,20 +3134,30 @@ static uint64_t GetStringLengthH(const Value *V,
}
// Otherwise, see if we can read the string.
StringRef StrData;
if (!getConstantStringInfo(V, StrData))
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, CharSize))
return 0;
return StrData.size()+1;
if (Slice.Array == nullptr)
return 1;
// Search for nul characters
unsigned NullIndex = 0;
for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
break;
}
return NullIndex + 1;
}
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(const Value *V) {
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
if (!V->getType()->isPointerTy()) return 0;
SmallPtrSet<const PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs);
uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
// an empty string as a length.
return Len == ~0ULL ? 1 : Len;

View File

@ -4685,9 +4685,10 @@ static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
const TargetLowering &TLI, StringRef Str) {
const TargetLowering &TLI,
const ConstantDataArraySlice &Slice) {
// Handle vector with all elements zero.
if (Str.empty()) {
if (Slice.Array == nullptr) {
if (VT.isInteger())
return DAG.getConstant(0, dl, VT);
else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
@ -4706,15 +4707,15 @@ static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
assert(!VT.isVector() && "Can't handle vector type here!");
unsigned NumVTBits = VT.getSizeInBits();
unsigned NumVTBytes = NumVTBits / 8;
unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
APInt Val(NumVTBits, 0);
if (DAG.getDataLayout().isLittleEndian()) {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << i*8;
Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
} else {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
}
// If the "cost" of materializing the integer immediate is less than the cost
@ -4731,9 +4732,8 @@ SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
}
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
///
static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
/// Returns true if memcpy source is constant data.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
uint64_t SrcDelta = 0;
GlobalAddressSDNode *G = nullptr;
if (Src.getOpcode() == ISD::GlobalAddress)
@ -4747,8 +4747,8 @@ static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
if (!G)
return false;
return getConstantStringInfo(G->getGlobal(), Str,
SrcDelta + G->getOffset(), false);
return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
SrcDelta + G->getOffset());
}
/// Determines the optimal series of memory ops to replace the memset / memcpy.
@ -4891,15 +4891,15 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
StringRef Str;
bool CopyFromStr = isMemSrcFromString(Src, Str);
bool isZeroStr = CopyFromStr && Str.empty();
ConstantDataArraySlice Slice;
bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align),
(isZeroStr ? 0 : SrcAlign),
false, false, CopyFromStr, true,
(isZeroConstant ? 0 : SrcAlign),
false, false, CopyFromConstant, true,
DstPtrInfo.getAddrSpace(),
SrcPtrInfo.getAddrSpace(),
DAG, TLI))
@ -4943,18 +4943,29 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
DstOff -= VTSize - Size;
}
if (CopyFromStr &&
(isZeroStr || (VT.isInteger() && !VT.isVector()))) {
if (CopyFromConstant &&
(isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
// It's unlikely a store of a vector immediate can be done in a single
// instruction. It would require a load from a constantpool first.
// We only handle zero vectors here.
// FIXME: Handle other cases where store of vector immediate is done in
// a single instruction.
Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
ConstantDataArraySlice SubSlice;
if (SrcOff < Slice.Length) {
SubSlice = Slice;
SubSlice.move(SrcOff);
} else {
// This is an out-of-bounds access and hence UB. Pretend we read zero.
SubSlice.Array = nullptr;
SubSlice.Offset = 0;
SubSlice.Length = VTSize;
}
Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
if (Value.getNode())
Store = DAG.getStore(Chain, dl, Value,
DAG.getMemBasePlusOffset(Dst, DstOff, dl),
DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
DstPtrInfo.getWithOffset(DstOff), Align,
MMOFlags);
}
if (!Store.getNode()) {

View File

@ -2616,8 +2616,8 @@ Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
}
bool ConstantDataSequential::isString() const {
return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
bool ConstantDataSequential::isString(unsigned CharSize) const {
return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
}
bool ConstantDataSequential::isCString() const {

View File

@ -426,57 +426,70 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
return Dst;
}
Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
unsigned CharSize) {
Value *Src = CI->getArgOperand(0);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
if (uint64_t Len = GetStringLength(Src, CharSize))
return ConstantInt::get(CI->getType(), Len - 1);
// If s is a constant pointer pointing to a string literal, we can fold
// strlen(s + x) to strlen(s) - x, when x is known to be in the range
// strlen(s + x) to strlen(s) - x, when x is known to be in the range
// [0, strlen(s)] or the string has a single null terminator '\0' at the end.
// We only try to simplify strlen when the pointer s points to an array
// We only try to simplify strlen when the pointer s points to an array
// of i8. Otherwise, we would need to scale the offset x before doing the
// subtraction. This will make the optimization more complex, and it's not
// very useful because calling strlen for a pointer of other types is
// subtraction. This will make the optimization more complex, and it's not
// very useful because calling strlen for a pointer of other types is
// very uncommon.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
if (!isGEPBasedOnPointerToString(GEP))
if (!isGEPBasedOnPointerToString(GEP, CharSize))
return nullptr;
StringRef Str;
if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
size_t NullTermIdx = Str.find('\0');
// If the string does not have '\0', leave it to strlen to compute
// its length.
if (NullTermIdx == StringRef::npos)
return nullptr;
ConstantDataArraySlice Slice;
if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
uint64_t NullTermIdx;
if (Slice.Array == nullptr) {
NullTermIdx = 0;
} else {
NullTermIdx = ~((uint64_t)0);
for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
NullTermIdx = I;
break;
}
}
// If the string does not have '\0', leave it to strlen to compute
// its length.
if (NullTermIdx == ~((uint64_t)0))
return nullptr;
}
Value *Offset = GEP->getOperand(2);
unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
KnownBits Known(BitWidth);
computeKnownBits(Offset, Known, DL, 0, nullptr, CI, nullptr);
Known.Zero.flipAllBits();
size_t ArrSize =
uint64_t ArrSize =
cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
// KnownZero's bits are flipped, so zeros in KnownZero now represent
// bits known to be zeros in Offset, and ones in KnowZero represent
// KnownZero's bits are flipped, so zeros in KnownZero now represent
// bits known to be zeros in Offset, and ones in KnowZero represent
// bits unknown in Offset. Therefore, Offset is known to be in range
// [0, NullTermIdx] when the flipped KnownZero is non-negative and
// [0, NullTermIdx] when the flipped KnownZero is non-negative and
// unsigned-less-than NullTermIdx.
//
// If Offset is not provably in the range [0, NullTermIdx], we can still
// optimize if we can prove that the program has undefined behavior when
// Offset is outside that range. That is the case when GEP->getOperand(0)
// If Offset is not provably in the range [0, NullTermIdx], we can still
// optimize if we can prove that the program has undefined behavior when
// Offset is outside that range. That is the case when GEP->getOperand(0)
// is a pointer to an object whose memory extent is NullTermIdx+1.
if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
(GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
NullTermIdx == ArrSize - 1))
return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
NullTermIdx == ArrSize - 1)) {
Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
Offset);
}
}
return nullptr;
@ -484,8 +497,8 @@ Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
// strlen(x?"foo":"bars") --> x ? 3 : 4
if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
uint64_t LenTrue = GetStringLength(SI->getTrueValue());
uint64_t LenFalse = GetStringLength(SI->getFalseValue());
uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
if (LenTrue && LenFalse) {
Function *Caller = CI->getParent()->getParent();
emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
@ -505,6 +518,17 @@ Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
return nullptr;
}
Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
return optimizeStringLength(CI, B, 8);
}
Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
Module &M = *CI->getParent()->getParent()->getParent();
unsigned WCharSize = TLI->getWCharSize(M) * 8;
return optimizeStringLength(CI, B, WCharSize);
}
Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
@ -2026,6 +2050,8 @@ Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
return optimizeMemMove(CI, Builder);
case LibFunc_memset:
return optimizeMemSet(CI, Builder);
case LibFunc_wcslen:
return optimizeWcslen(CI, Builder);
default:
break;
}

View File

@ -190,3 +190,12 @@ define i1 @test15(i32 %C) {
%cmp = icmp ne i8* %dst, null
ret i1 %cmp
}
@s = internal constant [1 x i8] [i8 0], align 1
define i8* @pr32124() {
; CHECK-LABEL: @pr32124(
; CHECK-NEXT: ret i8* getelementptr inbounds ([1 x i8], [1 x i8]* @s, i32 0, i32 0)
;
%res = tail call i8* @memchr(i8* getelementptr ([1 x i8], [1 x i8]* @s, i64 0, i64 0), i32 0, i32 1)
ret i8* %res
}

View File

@ -0,0 +1,191 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; Test that the wcslen library call simplifier works correctly.
;
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
declare i64 @wcslen(i32*)
@hello = constant [6 x i32] [i32 104, i32 101, i32 108, i32 108, i32 111, i32 0]
@longer = constant [7 x i32] [i32 108, i32 111, i32 110, i32 103, i32 101, i32 114, i32 0]
@null = constant [1 x i32] zeroinitializer
@null_hello = constant [7 x i32] [i32 0, i32 104, i32 101, i32 108, i32 108, i32 111, i32 0]
@nullstring = constant i32 0
@a = common global [32 x i32] zeroinitializer, align 1
@null_hello_mid = constant [13 x i32] [i32 104, i32 101, i32 108, i32 108, i32 111, i32 32, i32 119, i32 111, i32 114, i32 0, i32 108, i32 100, i32 0]
define i64 @test_simplify1() {
; CHECK-LABEL: @test_simplify1(
; CHECK-NEXT: ret i64 5
;
%hello_p = getelementptr [6 x i32], [6 x i32]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i32* %hello_p)
ret i64 %hello_l
}
define i64 @test_simplify2() {
; CHECK-LABEL: @test_simplify2(
; CHECK-NEXT: ret i64 0
;
%null_p = getelementptr [1 x i32], [1 x i32]* @null, i64 0, i64 0
%null_l = call i64 @wcslen(i32* %null_p)
ret i64 %null_l
}
define i64 @test_simplify3() {
; CHECK-LABEL: @test_simplify3(
; CHECK-NEXT: ret i64 0
;
%null_hello_p = getelementptr [7 x i32], [7 x i32]* @null_hello, i64 0, i64 0
%null_hello_l = call i64 @wcslen(i32* %null_hello_p)
ret i64 %null_hello_l
}
define i64 @test_simplify4() {
; CHECK-LABEL: @test_simplify4(
; CHECK-NEXT: ret i64 0
;
%len = tail call i64 @wcslen(i32* @nullstring) nounwind
ret i64 %len
}
; Check wcslen(x) == 0 --> *x == 0.
define i1 @test_simplify5() {
; CHECK-LABEL: @test_simplify5(
; CHECK-NEXT: ret i1 false
;
%hello_p = getelementptr [6 x i32], [6 x i32]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i32* %hello_p)
%eq_hello = icmp eq i64 %hello_l, 0
ret i1 %eq_hello
}
define i1 @test_simplify6(i32* %str_p) {
; CHECK-LABEL: @test_simplify6(
; CHECK-NEXT: [[STRLENFIRST:%.*]] = load i32, i32* [[STR_P:%.*]], align 4
; CHECK-NEXT: [[EQ_NULL:%.*]] = icmp eq i32 [[STRLENFIRST]], 0
; CHECK-NEXT: ret i1 [[EQ_NULL]]
;
%str_l = call i64 @wcslen(i32* %str_p)
%eq_null = icmp eq i64 %str_l, 0
ret i1 %eq_null
}
; Check wcslen(x) != 0 --> *x != 0.
define i1 @test_simplify7() {
; CHECK-LABEL: @test_simplify7(
; CHECK-NEXT: ret i1 true
;
%hello_p = getelementptr [6 x i32], [6 x i32]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i32* %hello_p)
%ne_hello = icmp ne i64 %hello_l, 0
ret i1 %ne_hello
}
define i1 @test_simplify8(i32* %str_p) {
; CHECK-LABEL: @test_simplify8(
; CHECK-NEXT: [[STRLENFIRST:%.*]] = load i32, i32* [[STR_P:%.*]], align 4
; CHECK-NEXT: [[NE_NULL:%.*]] = icmp ne i32 [[STRLENFIRST]], 0
; CHECK-NEXT: ret i1 [[NE_NULL]]
;
%str_l = call i64 @wcslen(i32* %str_p)
%ne_null = icmp ne i64 %str_l, 0
ret i1 %ne_null
}
define i64 @test_simplify9(i1 %x) {
; CHECK-LABEL: @test_simplify9(
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[X:%.*]], i64 5, i64 6
; CHECK-NEXT: ret i64 [[TMP1]]
;
%hello = getelementptr [6 x i32], [6 x i32]* @hello, i64 0, i64 0
%longer = getelementptr [7 x i32], [7 x i32]* @longer, i64 0, i64 0
%s = select i1 %x, i32* %hello, i32* %longer
%l = call i64 @wcslen(i32* %s)
ret i64 %l
}
; Check the case that should be simplified to a sub instruction.
; wcslen(@hello + x) --> 5 - x
define i64 @test_simplify10(i32 %x) {
; CHECK-LABEL: @test_simplify10(
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sub nsw i64 5, [[TMP1]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%hello_p = getelementptr inbounds [6 x i32], [6 x i32]* @hello, i32 0, i32 %x
%hello_l = call i64 @wcslen(i32* %hello_p)
ret i64 %hello_l
}
; wcslen(@null_hello_mid + (x & 7)) --> 9 - (x & 7)
define i64 @test_simplify11(i32 %x) {
; CHECK-LABEL: @test_simplify11(
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 7
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[AND]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sub nsw i64 9, [[TMP1]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%and = and i32 %x, 7
%hello_p = getelementptr inbounds [13 x i32], [13 x i32]* @null_hello_mid, i32 0, i32 %and
%hello_l = call i64 @wcslen(i32* %hello_p)
ret i64 %hello_l
}
; Check cases that shouldn't be simplified.
define i64 @test_no_simplify1() {
; CHECK-LABEL: @test_no_simplify1(
; CHECK-NEXT: [[A_L:%.*]] = call i64 @wcslen(i32* getelementptr inbounds ([32 x i32], [32 x i32]* @a, i64 0, i64 0))
; CHECK-NEXT: ret i64 [[A_L]]
;
%a_p = getelementptr [32 x i32], [32 x i32]* @a, i64 0, i64 0
%a_l = call i64 @wcslen(i32* %a_p)
ret i64 %a_l
}
; wcslen(@null_hello + x) should not be simplified to a sub instruction.
define i64 @test_no_simplify2(i32 %x) {
; CHECK-LABEL: @test_no_simplify2(
; CHECK-NEXT: [[TMP1:%.*]] = sext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[HELLO_P:%.*]] = getelementptr inbounds [7 x i32], [7 x i32]* @null_hello, i64 0, i64 [[TMP1]]
; CHECK-NEXT: [[HELLO_L:%.*]] = call i64 @wcslen(i32* [[HELLO_P]])
; CHECK-NEXT: ret i64 [[HELLO_L]]
;
%hello_p = getelementptr inbounds [7 x i32], [7 x i32]* @null_hello, i32 0, i32 %x
%hello_l = call i64 @wcslen(i32* %hello_p)
ret i64 %hello_l
}
; wcslen(@null_hello_mid + (x & 15)) should not be simplified to a sub instruction.
define i64 @test_no_simplify3(i32 %x) {
; CHECK-LABEL: @test_no_simplify3(
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 15
; CHECK-NEXT: [[TMP1:%.*]] = zext i32 [[AND]] to i64
; CHECK-NEXT: [[HELLO_P:%.*]] = getelementptr inbounds [13 x i32], [13 x i32]* @null_hello_mid, i64 0, i64 [[TMP1]]
; CHECK-NEXT: [[HELLO_L:%.*]] = call i64 @wcslen(i32* [[HELLO_P]])
; CHECK-NEXT: ret i64 [[HELLO_L]]
;
%and = and i32 %x, 15
%hello_p = getelementptr inbounds [13 x i32], [13 x i32]* @null_hello_mid, i32 0, i32 %and
%hello_l = call i64 @wcslen(i32* %hello_p)
ret i64 %hello_l
}
@str16 = constant [1 x i16] [i16 0]
define i64 @test_no_simplify4() {
; CHECK-LABEL: @test_no_simplify4(
; CHECK-NEXT: [[L:%.*]] = call i64 @wcslen(i32* bitcast ([1 x i16]* @str16 to i32*))
; CHECK-NEXT: ret i64 [[L]]
;
%l = call i64 @wcslen(i32* bitcast ([1 x i16]* @str16 to i32*))
ret i64 %l
}

View File

@ -0,0 +1,18 @@
; Test that the wcslen library call simplifier works correctly.
;
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
@hello = constant [6 x i32] [i32 104, i32 101, i32 108, i32 108, i32 111, i32 0]
declare i64 @wcslen(i32*, i32)
define i64 @test_no_simplify1() {
; CHECK-LABEL: @test_no_simplify1(
%hello_p = getelementptr [6 x i32], [6 x i32]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i32* %hello_p, i32 187)
; CHECK-NEXT: %hello_l = call i64 @wcslen
ret i64 %hello_l
; CHECK-NEXT: ret i64 %hello_l
}

View File

@ -0,0 +1,197 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; Test that the wcslen library call simplifier works correctly.
;
; RUN: opt < %s -instcombine -S | FileCheck %s
; Test behavior for wchar_size==2
!llvm.module.flags = !{!0}
!0 = !{i32 1, !"wchar_size", i32 2}
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
declare i64 @wcslen(i16*)
@hello = constant [6 x i16] [i16 104, i16 101, i16 108, i16 108, i16 111, i16 0]
@longer = constant [7 x i16] [i16 108, i16 111, i16 110, i16 103, i16 101, i16 114, i16 0]
@null = constant [1 x i16] zeroinitializer
@null_hello = constant [7 x i16] [i16 0, i16 104, i16 101, i16 108, i16 108, i16 111, i16 0]
@nullstring = constant i16 0
@a = common global [32 x i16] zeroinitializer, align 1
@null_hello_mid = constant [13 x i16] [i16 104, i16 101, i16 108, i16 108, i16 111, i16 32, i16 119, i16 111, i16 114, i16 0, i16 108, i16 100, i16 0]
define i64 @test_simplify1() {
; CHECK-LABEL: @test_simplify1(
; CHECK-NEXT: ret i64 5
;
%hello_p = getelementptr [6 x i16], [6 x i16]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i16* %hello_p)
ret i64 %hello_l
}
define i64 @test_simplify2() {
; CHECK-LABEL: @test_simplify2(
; CHECK-NEXT: ret i64 0
;
%null_p = getelementptr [1 x i16], [1 x i16]* @null, i64 0, i64 0
%null_l = call i64 @wcslen(i16* %null_p)
ret i64 %null_l
}
define i64 @test_simplify3() {
; CHECK-LABEL: @test_simplify3(
; CHECK-NEXT: ret i64 0
;
%null_hello_p = getelementptr [7 x i16], [7 x i16]* @null_hello, i64 0, i64 0
%null_hello_l = call i64 @wcslen(i16* %null_hello_p)
ret i64 %null_hello_l
}
define i64 @test_simplify4() {
; CHECK-LABEL: @test_simplify4(
; CHECK-NEXT: ret i64 0
;
%len = tail call i64 @wcslen(i16* @nullstring) nounwind
ret i64 %len
}
; Check wcslen(x) == 0 --> *x == 0.
define i1 @test_simplify5() {
; CHECK-LABEL: @test_simplify5(
; CHECK-NEXT: ret i1 false
;
%hello_p = getelementptr [6 x i16], [6 x i16]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i16* %hello_p)
%eq_hello = icmp eq i64 %hello_l, 0
ret i1 %eq_hello
}
define i1 @test_simplify6(i16* %str_p) {
; CHECK-LABEL: @test_simplify6(
; CHECK-NEXT: [[STRLENFIRST:%.*]] = load i16, i16* [[STR_P:%.*]], align 2
; CHECK-NEXT: [[EQ_NULL:%.*]] = icmp eq i16 [[STRLENFIRST]], 0
; CHECK-NEXT: ret i1 [[EQ_NULL]]
;
%str_l = call i64 @wcslen(i16* %str_p)
%eq_null = icmp eq i64 %str_l, 0
ret i1 %eq_null
}
; Check wcslen(x) != 0 --> *x != 0.
define i1 @test_simplify7() {
; CHECK-LABEL: @test_simplify7(
; CHECK-NEXT: ret i1 true
;
%hello_p = getelementptr [6 x i16], [6 x i16]* @hello, i64 0, i64 0
%hello_l = call i64 @wcslen(i16* %hello_p)
%ne_hello = icmp ne i64 %hello_l, 0
ret i1 %ne_hello
}
define i1 @test_simplify8(i16* %str_p) {
; CHECK-LABEL: @test_simplify8(
; CHECK-NEXT: [[STRLENFIRST:%.*]] = load i16, i16* [[STR_P:%.*]], align 2
; CHECK-NEXT: [[NE_NULL:%.*]] = icmp ne i16 [[STRLENFIRST]], 0
; CHECK-NEXT: ret i1 [[NE_NULL]]
;
%str_l = call i64 @wcslen(i16* %str_p)
%ne_null = icmp ne i64 %str_l, 0
ret i1 %ne_null
}
define i64 @test_simplify9(i1 %x) {
; CHECK-LABEL: @test_simplify9(
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[X:%.*]], i64 5, i64 6
; CHECK-NEXT: ret i64 [[TMP1]]
;
%hello = getelementptr [6 x i16], [6 x i16]* @hello, i64 0, i64 0
%longer = getelementptr [7 x i16], [7 x i16]* @longer, i64 0, i64 0
%s = select i1 %x, i16* %hello, i16* %longer
%l = call i64 @wcslen(i16* %s)
ret i64 %l
}
; Check the case that should be simplified to a sub instruction.
; wcslen(@hello + x) --> 5 - x
define i64 @test_simplify10(i16 %x) {
; CHECK-LABEL: @test_simplify10(
; CHECK-NEXT: [[TMP1:%.*]] = sext i16 [[X:%.*]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sub nsw i64 5, [[TMP1]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%hello_p = getelementptr inbounds [6 x i16], [6 x i16]* @hello, i16 0, i16 %x
%hello_l = call i64 @wcslen(i16* %hello_p)
ret i64 %hello_l
}
; wcslen(@null_hello_mid + (x & 7)) --> 9 - (x & 7)
define i64 @test_simplify11(i16 %x) {
; CHECK-LABEL: @test_simplify11(
; CHECK-NEXT: [[AND:%.*]] = and i16 [[X:%.*]], 7
; CHECK-NEXT: [[TMP1:%.*]] = zext i16 [[AND]] to i64
; CHECK-NEXT: [[TMP2:%.*]] = sub nsw i64 9, [[TMP1]]
; CHECK-NEXT: ret i64 [[TMP2]]
;
%and = and i16 %x, 7
%hello_p = getelementptr inbounds [13 x i16], [13 x i16]* @null_hello_mid, i16 0, i16 %and
%hello_l = call i64 @wcslen(i16* %hello_p)
ret i64 %hello_l
}
; Check cases that shouldn't be simplified.
define i64 @test_no_simplify1() {
; CHECK-LABEL: @test_no_simplify1(
; CHECK-NEXT: [[A_L:%.*]] = call i64 @wcslen(i16* getelementptr inbounds ([32 x i16], [32 x i16]* @a, i64 0, i64 0))
; CHECK-NEXT: ret i64 [[A_L]]
;
%a_p = getelementptr [32 x i16], [32 x i16]* @a, i64 0, i64 0
%a_l = call i64 @wcslen(i16* %a_p)
ret i64 %a_l
}
; wcslen(@null_hello + x) should not be simplified to a sub instruction.
define i64 @test_no_simplify2(i16 %x) {
; CHECK-LABEL: @test_no_simplify2(
; CHECK-NEXT: [[TMP1:%.*]] = sext i16 [[X:%.*]] to i64
; CHECK-NEXT: [[HELLO_P:%.*]] = getelementptr inbounds [7 x i16], [7 x i16]* @null_hello, i64 0, i64 [[TMP1]]
; CHECK-NEXT: [[HELLO_L:%.*]] = call i64 @wcslen(i16* [[HELLO_P]])
; CHECK-NEXT: ret i64 [[HELLO_L]]
;
%hello_p = getelementptr inbounds [7 x i16], [7 x i16]* @null_hello, i16 0, i16 %x
%hello_l = call i64 @wcslen(i16* %hello_p)
ret i64 %hello_l
}
; wcslen(@null_hello_mid + (x & 15)) should not be simplified to a sub instruction.
define i64 @test_no_simplify3(i16 %x) {
; CHECK-LABEL: @test_no_simplify3(
; CHECK-NEXT: [[AND:%.*]] = and i16 [[X:%.*]], 15
; CHECK-NEXT: [[TMP1:%.*]] = zext i16 [[AND]] to i64
; CHECK-NEXT: [[HELLO_P:%.*]] = getelementptr inbounds [13 x i16], [13 x i16]* @null_hello_mid, i64 0, i64 [[TMP1]]
; CHECK-NEXT: [[HELLO_L:%.*]] = call i64 @wcslen(i16* [[HELLO_P]])
; CHECK-NEXT: ret i64 [[HELLO_L]]
;
%and = and i16 %x, 15
%hello_p = getelementptr inbounds [13 x i16], [13 x i16]* @null_hello_mid, i16 0, i16 %and
%hello_l = call i64 @wcslen(i16* %hello_p)
ret i64 %hello_l
}
@str32 = constant [1 x i32] [i32 0]
; This could in principle be simplified, but the current implementation bails on
; type mismatches.
define i64 @test_no_simplify4() {
; CHECK-LABEL: @test_no_simplify4(
; CHECK-NEXT: [[L:%.*]] = call i64 @wcslen(i16* bitcast ([1 x i32]* @str32 to i16*))
; CHECK-NEXT: ret i64 [[L]]
;
%l = call i64 @wcslen(i16* bitcast ([1 x i32]* @str32 to i16*))
ret i64 %l
}