mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
[AArch64] Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm'.
If and only if the value being inserted sets only known zero bits. This combine transforms things like and w8, w0, #0xfffffff0 movz w9, #5 orr w0, w8, w9 into movz w8, #5 bfxil w0, w8, #0, #4 The combine is tuned to make sure we always reduce the number of instructions. We avoid churning code for what is expected to be performance neutral changes (e.g., converted AND+OR to OR+BFI). Differential Revision: http://reviews.llvm.org/D20387 llvm-svn: 270846
This commit is contained in:
parent
e388c6f6a2
commit
be99101f8a
@ -1981,6 +1981,97 @@ static bool isShiftedMask(uint64_t Mask, EVT VT) {
|
||||
return isShiftedMask_64(Mask);
|
||||
}
|
||||
|
||||
// Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
|
||||
// inserted only sets known zero bits.
|
||||
static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
|
||||
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
|
||||
|
||||
EVT VT = N->getValueType(0);
|
||||
if (VT != MVT::i32 && VT != MVT::i64)
|
||||
return false;
|
||||
|
||||
unsigned BitWidth = VT.getSizeInBits();
|
||||
|
||||
uint64_t OrImm;
|
||||
if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
|
||||
return false;
|
||||
|
||||
// Skip this transformation if the ORR immediate can be encoded in the ORR.
|
||||
// Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
|
||||
// performance neutral.
|
||||
if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
|
||||
return false;
|
||||
|
||||
uint64_t MaskImm;
|
||||
SDValue And = N->getOperand(0);
|
||||
// Must be a single use AND with an immediate operand.
|
||||
if (!And.hasOneUse() ||
|
||||
!isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
|
||||
return false;
|
||||
|
||||
// Compute the Known Zero for the AND as this allows us to catch more general
|
||||
// cases than just looking for AND with imm.
|
||||
APInt KnownZero, KnownOne;
|
||||
CurDAG->computeKnownBits(And, KnownZero, KnownOne);
|
||||
|
||||
// Non-zero in the sense that they're not provably zero, which is the key
|
||||
// point if we want to use this value.
|
||||
uint64_t NotKnownZero = (~KnownZero).getZExtValue();
|
||||
|
||||
// The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
|
||||
if (!isShiftedMask(KnownZero.getZExtValue(), VT))
|
||||
return false;
|
||||
|
||||
// The bits being inserted must only set those bits that are known to be zero.
|
||||
if ((OrImm & NotKnownZero) != 0) {
|
||||
// FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
|
||||
// currently handle this case.
|
||||
return false;
|
||||
}
|
||||
|
||||
// BFI/BFXIL dst, src, #lsb, #width.
|
||||
int LSB = countTrailingOnes(NotKnownZero);
|
||||
int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
|
||||
|
||||
// BFI/BFXIL is an alias of BFM, so translate to BFM operands.
|
||||
unsigned ImmR = (BitWidth - LSB) % BitWidth;
|
||||
unsigned ImmS = Width - 1;
|
||||
|
||||
// If we're creating a BFI instruction avoid cases where we need more
|
||||
// instructions to materialize the BFI constant as compared to the original
|
||||
// ORR. A BFXIL will use the same constant as the original ORR, so the code
|
||||
// should be no worse in this case.
|
||||
bool IsBFI = LSB != 0;
|
||||
uint64_t BFIImm = OrImm >> LSB;
|
||||
if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
|
||||
// We have a BFI instruction and we know the constant can't be materialized
|
||||
// with a ORR-immediate with the zero register.
|
||||
unsigned OrChunks = 0, BFIChunks = 0;
|
||||
for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
|
||||
if (((OrImm >> Shift) & 0xFFFF) != 0)
|
||||
++OrChunks;
|
||||
if (((BFIImm >> Shift) & 0xFFFF) != 0)
|
||||
++BFIChunks;
|
||||
}
|
||||
if (BFIChunks > OrChunks)
|
||||
return false;
|
||||
}
|
||||
|
||||
// Materialize the constant to be inserted.
|
||||
SDLoc DL(N);
|
||||
unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
|
||||
SDNode *MOVI = CurDAG->getMachineNode(
|
||||
MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
|
||||
|
||||
// Create the BFI/BFXIL instruction.
|
||||
SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
|
||||
CurDAG->getTargetConstant(ImmR, DL, VT),
|
||||
CurDAG->getTargetConstant(ImmS, DL, VT)};
|
||||
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
|
||||
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
|
||||
SelectionDAG *CurDAG) {
|
||||
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
|
||||
@ -2159,7 +2250,10 @@ bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG);
|
||||
if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
|
||||
return true;
|
||||
|
||||
return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
|
||||
}
|
||||
|
||||
/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
|
||||
|
@ -378,3 +378,88 @@ entry:
|
||||
%or = or i32 %and, %and1
|
||||
ret i32 %or
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @test1
|
||||
; CHECK: movz [[REG:w[0-9]+]], #5
|
||||
; CHECK: bfxil w0, [[REG]], #0, #4
|
||||
define i32 @test1(i32 %a) {
|
||||
%1 = and i32 %a, -16 ; 0xfffffff0
|
||||
%2 = or i32 %1, 5 ; 0x00000005
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @test2
|
||||
; CHECK: movz [[REG:w[0-9]+]], #10
|
||||
; CHECK: bfi w0, [[REG]], #22, #4
|
||||
define i32 @test2(i32 %a) {
|
||||
%1 = and i32 %a, -62914561 ; 0xfc3fffff
|
||||
%2 = or i32 %1, 41943040 ; 0x06400000
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @test3
|
||||
; CHECK: movz [[REG:x[0-9]+]], #5
|
||||
; CHECK: bfxil x0, [[REG]], #0, #3
|
||||
define i64 @test3(i64 %a) {
|
||||
%1 = and i64 %a, -8 ; 0xfffffffffffffff8
|
||||
%2 = or i64 %1, 5 ; 0x0000000000000005
|
||||
ret i64 %2
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @test4
|
||||
; CHECK: movz [[REG:x[0-9]+]], #9
|
||||
; CHECK: bfi x0, [[REG]], #1, #7
|
||||
define i64 @test4(i64 %a) {
|
||||
%1 = and i64 %a, -255 ; 0xffffffffffffff01
|
||||
%2 = or i64 %1, 18 ; 0x0000000000000012
|
||||
ret i64 %2
|
||||
}
|
||||
|
||||
; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR.
|
||||
; CHECK-LABEL: @test5
|
||||
; CHECK: and [[REG:w[0-9]+]], w0, #0xfffffff0
|
||||
; CHECK: orr w0, [[REG]], #0x6
|
||||
define i32 @test5(i32 %a) {
|
||||
%1 = and i32 %a, 4294967280 ; 0xfffffff0
|
||||
%2 = or i32 %1, 6 ; 0x00000006
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
; BFXIL will use the same constant as the ORR, so we don't care how the constant
|
||||
; is materialized (it's an equal cost either way).
|
||||
; CHECK-LABEL: @test6
|
||||
; CHECK: movz [[REG:w[0-9]+]], #11, lsl #16
|
||||
; CHECK: movk [[REG]], #23250
|
||||
; CHECK: bfxil w0, [[REG]], #0, #20
|
||||
define i32 @test6(i32 %a) {
|
||||
%1 = and i32 %a, 4293918720 ; 0xfff00000
|
||||
%2 = or i32 %1, 744146 ; 0x000b5ad2
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
; BFIs that require the same number of instruction to materialize the constant
|
||||
; as the original ORR are okay.
|
||||
; CHECK-LABEL: @test7
|
||||
; CHECK: movz [[REG:w[0-9]+]], #5, lsl #16
|
||||
; CHECK: movk [[REG]], #44393
|
||||
; CHECK: bfi w0, [[REG]], #1, #19
|
||||
define i32 @test7(i32 %a) {
|
||||
%1 = and i32 %a, 4293918721 ; 0xfff00001
|
||||
%2 = or i32 %1, 744146 ; 0x000b5ad2
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
; BFIs that require more instructions to materialize the constant as compared
|
||||
; to the original ORR are not okay. In this case we would be replacing the
|
||||
; 'and' with a 'movk', which would decrease ILP while using the same number of
|
||||
; instructions.
|
||||
; CHECK: @test8
|
||||
; CHECK: movz [[REG2:x[0-9]+]], #36694, lsl #32
|
||||
; CHECK: and [[REG1:x[0-9]+]], x0, #0xff000000000000ff
|
||||
; CHECK: movk [[REG2]], #31059, lsl #16
|
||||
; CHECK: orr x0, [[REG1]], [[REG2]]
|
||||
define i64 @test8(i64 %a) {
|
||||
%1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff
|
||||
%2 = or i64 %1, 157601565442048 ; 0x00008f5679530000
|
||||
ret i64 %2
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user