mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 12:41:49 +01:00
[LoopUnroll] Implement profile-based loop peeling
This implements PGO-driven loop peeling. The basic idea is that when the average dynamic trip-count of a loop is known, based on PGO, to be low, we can expect a performance win by peeling off the first several iterations of that loop. Unlike unrolling based on a known trip count, or a trip count multiple, this doesn't save us the conditional check and branch on each iteration. However, it does allow us to simplify the straight-line code we get (constant-folding, etc.). This is important given that we know that we will usually only hit this code, and not the actual loop. This is currently disabled by default. Differential Revision: https://reviews.llvm.org/D25963 llvm-svn: 288274
This commit is contained in:
parent
46fc26080c
commit
c222d94c24
@ -265,6 +265,11 @@ public:
|
||||
/// transformation will select an unrolling factor based on the current cost
|
||||
/// threshold and other factors.
|
||||
unsigned Count;
|
||||
/// A forced peeling factor (the number of bodied of the original loop
|
||||
/// that should be peeled off before the loop body). When set to 0, the
|
||||
/// unrolling transformation will select a peeling factor based on profile
|
||||
/// information and other factors.
|
||||
unsigned PeelCount;
|
||||
/// Default unroll count for loops with run-time trip count.
|
||||
unsigned DefaultUnrollRuntimeCount;
|
||||
// Set the maximum unrolling factor. The unrolling factor may be selected
|
||||
@ -298,6 +303,8 @@ public:
|
||||
bool Force;
|
||||
/// Allow using trip count upper bound to unroll loops.
|
||||
bool UpperBound;
|
||||
/// Allow peeling off loop iterations for loops with low dynamic tripcount.
|
||||
bool AllowPeeling;
|
||||
};
|
||||
|
||||
/// \brief Get target-customized preferences for the generic loop unrolling
|
||||
|
@ -16,6 +16,9 @@
|
||||
#ifndef LLVM_TRANSFORMS_UTILS_UNROLLLOOP_H
|
||||
#define LLVM_TRANSFORMS_UTILS_UNROLLLOOP_H
|
||||
|
||||
// Needed because we can't forward-declare the nested struct
|
||||
// TargetTransformInfo::UnrollingPreferences
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
@ -33,8 +36,8 @@ class ScalarEvolution;
|
||||
bool UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
bool AllowRuntime, bool AllowExpensiveTripCount,
|
||||
bool PreserveCondBr, bool PreserveOnlyFirst,
|
||||
unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
|
||||
DominatorTree *DT, AssumptionCache *AC,
|
||||
unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI,
|
||||
ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
|
||||
OptimizationRemarkEmitter *ORE, bool PreserveLCSSA);
|
||||
|
||||
bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
|
||||
@ -43,6 +46,12 @@ bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
|
||||
ScalarEvolution *SE, DominatorTree *DT,
|
||||
bool PreserveLCSSA);
|
||||
|
||||
void computePeelCount(Loop *L, unsigned LoopSize,
|
||||
TargetTransformInfo::UnrollingPreferences &UP);
|
||||
|
||||
bool peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, ScalarEvolution *SE,
|
||||
DominatorTree *DT, bool PreserveLCSSA);
|
||||
|
||||
MDNode *GetUnrollMetadata(MDNode *LoopID, StringRef Name);
|
||||
}
|
||||
|
||||
|
@ -24,7 +24,6 @@
|
||||
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/DataLayout.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/InstVisitor.h"
|
||||
@ -108,6 +107,11 @@ static cl::opt<unsigned> FlatLoopTripCountThreshold(
|
||||
"threshold, the loop is considered as flat and will be less "
|
||||
"aggressively unrolled."));
|
||||
|
||||
static cl::opt<bool>
|
||||
UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden,
|
||||
cl::desc("Allows loops to be peeled when the dynamic "
|
||||
"trip count is known to be low."));
|
||||
|
||||
/// A magic value for use with the Threshold parameter to indicate
|
||||
/// that the loop unroll should be performed regardless of how much
|
||||
/// code expansion would result.
|
||||
@ -129,6 +133,7 @@ static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
|
||||
UP.PartialThreshold = UP.Threshold;
|
||||
UP.PartialOptSizeThreshold = 0;
|
||||
UP.Count = 0;
|
||||
UP.PeelCount = 0;
|
||||
UP.DefaultUnrollRuntimeCount = 8;
|
||||
UP.MaxCount = UINT_MAX;
|
||||
UP.FullUnrollMaxCount = UINT_MAX;
|
||||
@ -139,6 +144,7 @@ static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
|
||||
UP.AllowExpensiveTripCount = false;
|
||||
UP.Force = false;
|
||||
UP.UpperBound = false;
|
||||
UP.AllowPeeling = false;
|
||||
|
||||
// Override with any target specific settings
|
||||
TTI.getUnrollingPreferences(L, UP);
|
||||
@ -171,6 +177,8 @@ static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
|
||||
UP.Runtime = UnrollRuntime;
|
||||
if (UnrollMaxUpperBound == 0)
|
||||
UP.UpperBound = false;
|
||||
if (UnrollAllowPeeling.getNumOccurrences() > 0)
|
||||
UP.AllowPeeling = UnrollAllowPeeling;
|
||||
|
||||
// Apply user values provided by argument
|
||||
if (UserThreshold.hasValue()) {
|
||||
@ -754,16 +762,6 @@ static bool computeUnrollCount(
|
||||
bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
|
||||
PragmaEnableUnroll || UserUnrollCount;
|
||||
|
||||
// Check if the runtime trip count is too small when profile is available.
|
||||
if (L->getHeader()->getParent()->getEntryCount() && TripCount == 0) {
|
||||
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
|
||||
if (*ProfileTripCount < FlatLoopTripCountThreshold)
|
||||
return false;
|
||||
else
|
||||
UP.AllowExpensiveTripCount = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ExplicitUnroll && TripCount != 0) {
|
||||
// If the loop has an unrolling pragma, we want to be more aggressive with
|
||||
// unrolling limits. Set thresholds to at least the PragmaThreshold value
|
||||
@ -878,12 +876,31 @@ static bool computeUnrollCount(
|
||||
<< "Unable to fully unroll loop as directed by unroll(full) pragma "
|
||||
"because loop has a runtime trip count.");
|
||||
|
||||
// 5th priority is runtime unrolling.
|
||||
// 5th priority is loop peeling
|
||||
computePeelCount(L, LoopSize, UP);
|
||||
if (UP.PeelCount) {
|
||||
UP.Runtime = false;
|
||||
UP.Count = 1;
|
||||
return ExplicitUnroll;
|
||||
}
|
||||
|
||||
// 6th priority is runtime unrolling.
|
||||
// Don't unroll a runtime trip count loop when it is disabled.
|
||||
if (HasRuntimeUnrollDisablePragma(L)) {
|
||||
UP.Count = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if the runtime trip count is too small when profile is available.
|
||||
if (L->getHeader()->getParent()->getEntryCount()) {
|
||||
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
|
||||
if (*ProfileTripCount < FlatLoopTripCountThreshold)
|
||||
return false;
|
||||
else
|
||||
UP.AllowExpensiveTripCount = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce count based on the type of unrolling and the threshold values.
|
||||
UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
|
||||
if (!UP.Runtime) {
|
||||
@ -1042,13 +1059,17 @@ static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
|
||||
// Unroll the loop.
|
||||
if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
|
||||
UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero,
|
||||
TripMultiple, LI, SE, &DT, &AC, &ORE, PreserveLCSSA))
|
||||
TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE,
|
||||
PreserveLCSSA))
|
||||
return false;
|
||||
|
||||
// If loop has an unroll count pragma or unrolled by explicitly set count
|
||||
// mark loop as unrolled to prevent unrolling beyond that requested.
|
||||
if (IsCountSetExplicitly)
|
||||
// If the loop was peeled, we already "used up" the profile information
|
||||
// we had, so we don't want to unroll or peel again.
|
||||
if (IsCountSetExplicitly || UP.PeelCount)
|
||||
SetLoopAlreadyUnrolled(L);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -26,6 +26,7 @@ add_llvm_library(LLVMTransformUtils
|
||||
Local.cpp
|
||||
LoopSimplify.cpp
|
||||
LoopUnroll.cpp
|
||||
LoopUnrollPeel.cpp
|
||||
LoopUnrollRuntime.cpp
|
||||
LoopUtils.cpp
|
||||
LoopVersioning.cpp
|
||||
|
@ -202,6 +202,9 @@ static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
|
||||
/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
|
||||
/// AllowExpensiveTripCount is false.
|
||||
///
|
||||
/// If we want to perform PGO-based loop peeling, PeelCount is set to the
|
||||
/// number of iterations we want to peel off.
|
||||
///
|
||||
/// The LoopInfo Analysis that is passed will be kept consistent.
|
||||
///
|
||||
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
|
||||
@ -209,9 +212,11 @@ static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
|
||||
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
bool AllowRuntime, bool AllowExpensiveTripCount,
|
||||
bool PreserveCondBr, bool PreserveOnlyFirst,
|
||||
unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
|
||||
DominatorTree *DT, AssumptionCache *AC,
|
||||
OptimizationRemarkEmitter *ORE, bool PreserveLCSSA) {
|
||||
unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI,
|
||||
ScalarEvolution *SE, DominatorTree *DT,
|
||||
AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
|
||||
bool PreserveLCSSA) {
|
||||
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
if (!Preheader) {
|
||||
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
|
||||
@ -257,9 +262,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
if (TripCount != 0 && Count > TripCount)
|
||||
Count = TripCount;
|
||||
|
||||
// Don't enter the unroll code if there is nothing to do. This way we don't
|
||||
// need to support "partial unrolling by 1".
|
||||
if (TripCount == 0 && Count < 2)
|
||||
// Don't enter the unroll code if there is nothing to do.
|
||||
if (TripCount == 0 && Count < 2 && PeelCount == 0)
|
||||
return false;
|
||||
|
||||
assert(Count > 0);
|
||||
@ -288,6 +292,13 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
// flag is specified.
|
||||
bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
|
||||
|
||||
assert((!RuntimeTripCount || !PeelCount) &&
|
||||
"Did not expect runtime trip-count unrolling "
|
||||
"and peeling for the same loop");
|
||||
|
||||
if (PeelCount)
|
||||
peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA);
|
||||
|
||||
// Loops containing convergent instructions must have a count that divides
|
||||
// their TripMultiple.
|
||||
DEBUG(
|
||||
@ -301,9 +312,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
"Unroll count must divide trip multiple if loop contains a "
|
||||
"convergent operation.");
|
||||
});
|
||||
// Don't output the runtime loop remainder if Count is a multiple of
|
||||
// TripMultiple. Such a remainder is never needed, and is unsafe if the loop
|
||||
// contains a convergent instruction.
|
||||
|
||||
if (RuntimeTripCount && TripMultiple % Count != 0 &&
|
||||
!UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
|
||||
UnrollRuntimeEpilog, LI, SE, DT,
|
||||
@ -339,6 +348,13 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
L->getHeader())
|
||||
<< "completely unrolled loop with "
|
||||
<< NV("UnrollCount", TripCount) << " iterations");
|
||||
} else if (PeelCount) {
|
||||
DEBUG(dbgs() << "PEELING loop %" << Header->getName()
|
||||
<< " with iteration count " << PeelCount << "!\n");
|
||||
ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
|
||||
L->getHeader())
|
||||
<< " peeled loop by " << NV("PeelCount", PeelCount)
|
||||
<< " iterations");
|
||||
} else {
|
||||
OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
|
||||
L->getHeader());
|
||||
@ -628,7 +644,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
|
||||
DEBUG(DT->verifyDomTree());
|
||||
|
||||
// Simplify any new induction variables in the partially unrolled loop.
|
||||
if (SE && !CompletelyUnroll) {
|
||||
if (SE && !CompletelyUnroll && Count > 1) {
|
||||
SmallVector<WeakVH, 16> DeadInsts;
|
||||
simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
|
||||
|
||||
|
405
lib/Transforms/Utils/LoopUnrollPeel.cpp
Normal file
405
lib/Transforms/Utils/LoopUnrollPeel.cpp
Normal file
@ -0,0 +1,405 @@
|
||||
//===-- UnrollLoopPeel.cpp - Loop peeling utilities -----------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements some loop unrolling utilities for peeling loops
|
||||
// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
|
||||
// unrolling loops with compile-time constant trip counts.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/LoopIterator.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/MDBuilder.h"
|
||||
#include "llvm/IR/Metadata.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
||||
#include <algorithm>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "loop-unroll"
|
||||
STATISTIC(NumPeeled, "Number of loops peeled");
|
||||
|
||||
static cl::opt<unsigned> UnrollPeelMaxCount(
|
||||
"unroll-peel-max-count", cl::init(7), cl::Hidden,
|
||||
cl::desc("Max average trip count which will cause loop peeling."));
|
||||
|
||||
static cl::opt<unsigned> UnrollForcePeelCount(
|
||||
"unroll-force-peel-count", cl::init(0), cl::Hidden,
|
||||
cl::desc("Force a peel count regardless of profiling information."));
|
||||
|
||||
// Check whether we are capable of peeling this loop.
|
||||
static bool canPeel(Loop *L) {
|
||||
// Make sure the loop is in simplified form
|
||||
if (!L->isLoopSimplifyForm())
|
||||
return false;
|
||||
|
||||
// Only peel loops that contain a single exit
|
||||
if (!L->getExitingBlock() || !L->getUniqueExitBlock())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return the number of iterations we want to peel off.
|
||||
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
|
||||
TargetTransformInfo::UnrollingPreferences &UP) {
|
||||
UP.PeelCount = 0;
|
||||
if (!canPeel(L))
|
||||
return;
|
||||
|
||||
// Only try to peel innermost loops.
|
||||
if (!L->empty())
|
||||
return;
|
||||
|
||||
// If the user provided a peel count, use that.
|
||||
bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
|
||||
if (UserPeelCount) {
|
||||
DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
|
||||
<< " iterations.\n");
|
||||
UP.PeelCount = UnrollForcePeelCount;
|
||||
return;
|
||||
}
|
||||
|
||||
// If we don't know the trip count, but have reason to believe the average
|
||||
// trip count is low, peeling should be beneficial, since we will usually
|
||||
// hit the peeled section.
|
||||
// We only do this in the presence of profile information, since otherwise
|
||||
// our estimates of the trip count are not reliable enough.
|
||||
if (UP.AllowPeeling && L->getHeader()->getParent()->getEntryCount()) {
|
||||
Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
|
||||
if (!PeelCount)
|
||||
return;
|
||||
|
||||
DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
|
||||
<< "\n");
|
||||
|
||||
if (*PeelCount) {
|
||||
if ((*PeelCount <= UnrollPeelMaxCount) &&
|
||||
(LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
|
||||
DEBUG(dbgs() << "Peeling first " << *PeelCount << " iterations.\n");
|
||||
UP.PeelCount = *PeelCount;
|
||||
return;
|
||||
}
|
||||
DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
|
||||
DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
|
||||
DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) << "\n");
|
||||
DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/// \brief Update the branch weights of the latch of a peeled-off loop
|
||||
/// iteration.
|
||||
/// This sets the branch weights for the latch of the recently peeled off loop
|
||||
/// iteration correctly.
|
||||
/// Our goal is to make sure that:
|
||||
/// a) The total weight of all the copies of the loop body is preserved.
|
||||
/// b) The total weight of the loop exit is preserved.
|
||||
/// c) The body weight is reasonably distributed between the peeled iterations.
|
||||
///
|
||||
/// \param Header The copy of the header block that belongs to next iteration.
|
||||
/// \param LatchBR The copy of the latch branch that belongs to this iteration.
|
||||
/// \param IterNumber The serial number of the iteration that was just
|
||||
/// peeled off.
|
||||
/// \param AvgIters The average number of iterations we expect the loop to have.
|
||||
/// \param[in,out] PeeledHeaderWeight The total number of dynamic loop
|
||||
/// iterations that are unaccounted for. As an input, it represents the number
|
||||
/// of times we expect to enter the header of the iteration currently being
|
||||
/// peeled off. The output is the number of times we expect to enter the
|
||||
/// header of the next iteration.
|
||||
static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
|
||||
unsigned IterNumber, unsigned AvgIters,
|
||||
uint64_t &PeeledHeaderWeight) {
|
||||
|
||||
// FIXME: Pick a more realistic distribution.
|
||||
// Currently the proportion of weight we assign to the fall-through
|
||||
// side of the branch drops linearly with the iteration number, and we use
|
||||
// a 0.9 fudge factor to make the drop-off less sharp...
|
||||
if (PeeledHeaderWeight) {
|
||||
uint64_t FallThruWeight =
|
||||
PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9);
|
||||
uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight;
|
||||
PeeledHeaderWeight -= ExitWeight;
|
||||
|
||||
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
|
||||
MDBuilder MDB(LatchBR->getContext());
|
||||
MDNode *WeightNode =
|
||||
HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight)
|
||||
: MDB.createBranchWeights(FallThruWeight, ExitWeight);
|
||||
LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Clones the body of the loop L, putting it between \p InsertTop and \p
|
||||
/// InsertBot.
|
||||
/// \param IterNumber The serial number of the iteration currently being
|
||||
/// peeled off.
|
||||
/// \param Exit The exit block of the original loop.
|
||||
/// \param[out] NewBlocks A list of the the blocks in the newly created clone
|
||||
/// \param[out] VMap The value map between the loop and the new clone.
|
||||
/// \param LoopBlocks A helper for DFS-traversal of the loop.
|
||||
/// \param LVMap A value-map that maps instructions from the original loop to
|
||||
/// instructions in the last peeled-off iteration.
|
||||
static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop,
|
||||
BasicBlock *InsertBot, BasicBlock *Exit,
|
||||
SmallVectorImpl<BasicBlock *> &NewBlocks,
|
||||
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
|
||||
ValueToValueMapTy &LVMap, LoopInfo *LI) {
|
||||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
BasicBlock *PreHeader = L->getLoopPreheader();
|
||||
|
||||
Function *F = Header->getParent();
|
||||
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
|
||||
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
|
||||
Loop *ParentLoop = L->getParentLoop();
|
||||
|
||||
// For each block in the original loop, create a new copy,
|
||||
// and update the value map with the newly created values.
|
||||
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
||||
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
|
||||
NewBlocks.push_back(NewBB);
|
||||
|
||||
if (ParentLoop)
|
||||
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
|
||||
|
||||
VMap[*BB] = NewBB;
|
||||
}
|
||||
|
||||
// Hook-up the control flow for the newly inserted blocks.
|
||||
// The new header is hooked up directly to the "top", which is either
|
||||
// the original loop preheader (for the first iteration) or the previous
|
||||
// iteration's exiting block (for every other iteration)
|
||||
InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
|
||||
|
||||
// Similarly, for the latch:
|
||||
// The original exiting edge is still hooked up to the loop exit.
|
||||
// The backedge now goes to the "bottom", which is either the loop's real
|
||||
// header (for the last peeled iteration) or the copied header of the next
|
||||
// iteration (for every other iteration)
|
||||
BranchInst *LatchBR =
|
||||
cast<BranchInst>(cast<BasicBlock>(VMap[Latch])->getTerminator());
|
||||
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
|
||||
LatchBR->setSuccessor(HeaderIdx, InsertBot);
|
||||
LatchBR->setSuccessor(1 - HeaderIdx, Exit);
|
||||
|
||||
// The new copy of the loop body starts with a bunch of PHI nodes
|
||||
// that pick an incoming value from either the preheader, or the previous
|
||||
// loop iteration. Since this copy is no longer part of the loop, we
|
||||
// resolve this statically:
|
||||
// For the first iteration, we use the value from the preheader directly.
|
||||
// For any other iteration, we replace the phi with the value generated by
|
||||
// the immediately preceding clone of the loop body (which represents
|
||||
// the previous iteration).
|
||||
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
||||
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
|
||||
if (IterNumber == 0) {
|
||||
VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
|
||||
} else {
|
||||
Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
|
||||
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
|
||||
if (LatchInst && L->contains(LatchInst))
|
||||
VMap[&*I] = LVMap[LatchInst];
|
||||
else
|
||||
VMap[&*I] = LatchVal;
|
||||
}
|
||||
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
|
||||
}
|
||||
|
||||
// Fix up the outgoing values - we need to add a value for the iteration
|
||||
// we've just created. Note that this must happen *after* the incoming
|
||||
// values are adjusted, since the value going out of the latch may also be
|
||||
// a value coming into the header.
|
||||
for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) {
|
||||
PHINode *PHI = cast<PHINode>(I);
|
||||
Value *LatchVal = PHI->getIncomingValueForBlock(Latch);
|
||||
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
|
||||
if (LatchInst && L->contains(LatchInst))
|
||||
LatchVal = VMap[LatchVal];
|
||||
PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch]));
|
||||
}
|
||||
|
||||
// LastValueMap is updated with the values for the current loop
|
||||
// which are used the next time this function is called.
|
||||
for (const auto &KV : VMap)
|
||||
LVMap[KV.first] = KV.second;
|
||||
}
|
||||
|
||||
/// \brief Peel off the first \p PeelCount iterations of loop \p L.
|
||||
///
|
||||
/// Note that this does not peel them off as a single straight-line block.
|
||||
/// Rather, each iteration is peeled off separately, and needs to check the
|
||||
/// exit condition.
|
||||
/// For loops that dynamically execute \p PeelCount iterations or less
|
||||
/// this provides a benefit, since the peeled off iterations, which account
|
||||
/// for the bulk of dynamic execution, can be further simplified by scalar
|
||||
/// optimizations.
|
||||
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
|
||||
ScalarEvolution *SE, DominatorTree *DT,
|
||||
bool PreserveLCSSA) {
|
||||
if (!canPeel(L))
|
||||
return false;
|
||||
|
||||
LoopBlocksDFS LoopBlocks(L);
|
||||
LoopBlocks.perform(LI);
|
||||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *PreHeader = L->getLoopPreheader();
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
BasicBlock *Exit = L->getUniqueExitBlock();
|
||||
|
||||
Function *F = Header->getParent();
|
||||
|
||||
// Set up all the necessary basic blocks. It is convenient to split the
|
||||
// preheader into 3 parts - two blocks to anchor the peeled copy of the loop
|
||||
// body, and a new preheader for the "real" loop.
|
||||
|
||||
// Peeling the first iteration transforms.
|
||||
//
|
||||
// PreHeader:
|
||||
// ...
|
||||
// Header:
|
||||
// LoopBody
|
||||
// If (cond) goto Header
|
||||
// Exit:
|
||||
//
|
||||
// into
|
||||
//
|
||||
// InsertTop:
|
||||
// LoopBody
|
||||
// If (!cond) goto Exit
|
||||
// InsertBot:
|
||||
// NewPreHeader:
|
||||
// ...
|
||||
// Header:
|
||||
// LoopBody
|
||||
// If (cond) goto Header
|
||||
// Exit:
|
||||
//
|
||||
// Each following iteration will split the current bottom anchor in two,
|
||||
// and put the new copy of the loop body between these two blocks. That is,
|
||||
// after peeling another iteration from the example above, we'll split
|
||||
// InsertBot, and get:
|
||||
//
|
||||
// InsertTop:
|
||||
// LoopBody
|
||||
// If (!cond) goto Exit
|
||||
// InsertBot:
|
||||
// LoopBody
|
||||
// If (!cond) goto Exit
|
||||
// InsertBot.next:
|
||||
// NewPreHeader:
|
||||
// ...
|
||||
// Header:
|
||||
// LoopBody
|
||||
// If (cond) goto Header
|
||||
// Exit:
|
||||
|
||||
BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
|
||||
BasicBlock *InsertBot =
|
||||
SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
|
||||
BasicBlock *NewPreHeader =
|
||||
SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
|
||||
|
||||
InsertTop->setName(Header->getName() + ".peel.begin");
|
||||
InsertBot->setName(Header->getName() + ".peel.next");
|
||||
NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
|
||||
|
||||
ValueToValueMapTy LVMap;
|
||||
|
||||
// If we have branch weight information, we'll want to update it for the
|
||||
// newly created branches.
|
||||
BranchInst *LatchBR =
|
||||
cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
|
||||
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
|
||||
|
||||
uint64_t TrueWeight, FalseWeight;
|
||||
uint64_t ExitWeight = 0, BackEdgeWeight = 0;
|
||||
if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
|
||||
ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
|
||||
BackEdgeWeight = HeaderIdx ? FalseWeight : TrueWeight;
|
||||
}
|
||||
|
||||
// For each peeled-off iteration, make a copy of the loop.
|
||||
for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
|
||||
SmallVector<BasicBlock *, 8> NewBlocks;
|
||||
ValueToValueMapTy VMap;
|
||||
|
||||
// The exit weight of the previous iteration is the header entry weight
|
||||
// of the current iteration. So this is exactly how many dynamic iterations
|
||||
// the current peeled-off static iteration uses up.
|
||||
// FIXME: due to the way the distribution is constructed, we need a
|
||||
// guard here to make sure we don't end up with non-positive weights.
|
||||
if (ExitWeight < BackEdgeWeight)
|
||||
BackEdgeWeight -= ExitWeight;
|
||||
else
|
||||
BackEdgeWeight = 1;
|
||||
|
||||
cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit,
|
||||
NewBlocks, LoopBlocks, VMap, LVMap, LI);
|
||||
updateBranchWeights(InsertBot, cast<BranchInst>(VMap[LatchBR]), Iter,
|
||||
PeelCount, ExitWeight);
|
||||
|
||||
InsertTop = InsertBot;
|
||||
InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
|
||||
InsertBot->setName(Header->getName() + ".peel.next");
|
||||
|
||||
F->getBasicBlockList().splice(InsertTop->getIterator(),
|
||||
F->getBasicBlockList(),
|
||||
NewBlocks[0]->getIterator(), F->end());
|
||||
|
||||
// Remap to use values from the current iteration instead of the
|
||||
// previous one.
|
||||
remapInstructionsInBlocks(NewBlocks, VMap);
|
||||
}
|
||||
|
||||
// Now adjust the phi nodes in the loop header to get their initial values
|
||||
// from the last peeled-off iteration instead of the preheader.
|
||||
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
||||
PHINode *PHI = cast<PHINode>(I);
|
||||
Value *NewVal = PHI->getIncomingValueForBlock(Latch);
|
||||
Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
|
||||
if (LatchInst && L->contains(LatchInst))
|
||||
NewVal = LVMap[LatchInst];
|
||||
|
||||
PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal);
|
||||
}
|
||||
|
||||
// Adjust the branch weights on the loop exit.
|
||||
if (ExitWeight) {
|
||||
MDBuilder MDB(LatchBR->getContext());
|
||||
MDNode *WeightNode =
|
||||
HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
|
||||
: MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
|
||||
LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
|
||||
}
|
||||
|
||||
// If the loop is nested, we changed the parent loop, update SE.
|
||||
if (Loop *ParentLoop = L->getParentLoop())
|
||||
SE->forgetLoop(ParentLoop);
|
||||
|
||||
NumPeeled++;
|
||||
|
||||
return true;
|
||||
}
|
@ -1090,16 +1090,16 @@ Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
|
||||
// from the raw counts to provide a better probability estimate. Remove
|
||||
// the adjustment by subtracting 1 from both weights.
|
||||
uint64_t TrueVal, FalseVal;
|
||||
if (!LatchBR->extractProfMetadata(TrueVal, FalseVal) || (TrueVal <= 1) ||
|
||||
(FalseVal <= 1))
|
||||
if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
|
||||
return None;
|
||||
|
||||
TrueVal -= 1;
|
||||
FalseVal -= 1;
|
||||
if (!TrueVal || !FalseVal)
|
||||
return 0;
|
||||
|
||||
// Divide the count of the backedge by the count of the edge exiting the loop.
|
||||
// Divide the count of the backedge by the count of the edge exiting the loop,
|
||||
// rounding to nearest.
|
||||
if (LatchBR->getSuccessor(0) == L->getHeader())
|
||||
return TrueVal / FalseVal;
|
||||
return (TrueVal + (FalseVal / 2)) / FalseVal;
|
||||
else
|
||||
return FalseVal / TrueVal;
|
||||
return (FalseVal + (TrueVal / 2)) / TrueVal;
|
||||
}
|
||||
|
47
test/Transforms/LoopUnroll/peel-loop-pgo.ll
Normal file
47
test/Transforms/LoopUnroll/peel-loop-pgo.ll
Normal file
@ -0,0 +1,47 @@
|
||||
; RUN: opt < %s -S -debug-only=loop-unroll -loop-unroll -unroll-allow-peeling 2>&1 | FileCheck %s
|
||||
; REQUIRES: asserts
|
||||
|
||||
; Make sure we use the profile information correctly to peel-off 3 iterations
|
||||
; from the loop, and update the branch weights for the peeled loop properly.
|
||||
; CHECK: PEELING loop %for.body with iteration count 3!
|
||||
; CHECK-LABEL: @basic
|
||||
; CHECK: br i1 %{{.*}}, label %[[NEXT0:.*]], label %for.cond.for.end_crit_edge, !prof !1
|
||||
; CHECK: [[NEXT0]]:
|
||||
; CHECK: br i1 %{{.*}}, label %[[NEXT1:.*]], label %for.cond.for.end_crit_edge, !prof !2
|
||||
; CHECK: [[NEXT1]]:
|
||||
; CHECK: br i1 %{{.*}}, label %[[NEXT2:.*]], label %for.cond.for.end_crit_edge, !prof !3
|
||||
; CHECK: [[NEXT2]]:
|
||||
; CHECK: br i1 %{{.*}}, label %for.body, label %{{.*}}, !prof !4
|
||||
|
||||
define void @basic(i32* %p, i32 %k) #0 !prof !0 {
|
||||
entry:
|
||||
%cmp3 = icmp slt i32 0, %k
|
||||
br i1 %cmp3, label %for.body.lr.ph, label %for.end
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph, %for.body
|
||||
%i.05 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
|
||||
%p.addr.04 = phi i32* [ %p, %for.body.lr.ph ], [ %incdec.ptr, %for.body ]
|
||||
%incdec.ptr = getelementptr inbounds i32, i32* %p.addr.04, i32 1
|
||||
store i32 %i.05, i32* %p.addr.04, align 4
|
||||
%inc = add nsw i32 %i.05, 1
|
||||
%cmp = icmp slt i32 %inc, %k
|
||||
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge, !prof !1
|
||||
|
||||
for.cond.for.end_crit_edge: ; preds = %for.body
|
||||
br label %for.end
|
||||
|
||||
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
!0 = !{!"function_entry_count", i64 1}
|
||||
!1 = !{!"branch_weights", i32 3001, i32 1001}
|
||||
|
||||
;CHECK: !1 = !{!"branch_weights", i32 900, i32 101}
|
||||
;CHECK: !2 = !{!"branch_weights", i32 540, i32 360}
|
||||
;CHECK: !3 = !{!"branch_weights", i32 162, i32 378}
|
||||
;CHECK: !4 = !{!"branch_weights", i32 560, i32 162}
|
||||
|
96
test/Transforms/LoopUnroll/peel-loop.ll
Normal file
96
test/Transforms/LoopUnroll/peel-loop.ll
Normal file
@ -0,0 +1,96 @@
|
||||
; RUN: opt < %s -S -loop-unroll -unroll-force-peel-count=3 -simplifycfg -instcombine | FileCheck %s
|
||||
|
||||
; Basic loop peeling - check that we can peel-off the first 3 loop iterations
|
||||
; when explicitly requested.
|
||||
; CHECK-LABEL: @basic
|
||||
; CHECK: %[[CMP0:.*]] = icmp sgt i32 %k, 0
|
||||
; CHECK: br i1 %[[CMP0]], label %[[NEXT0:.*]], label %for.end
|
||||
; CHECK: [[NEXT0]]:
|
||||
; CHECK: store i32 0, i32* %p, align 4
|
||||
; CHECK: %[[CMP1:.*]] = icmp eq i32 %k, 1
|
||||
; CHECK: br i1 %[[CMP1]], label %for.end, label %[[NEXT1:.*]]
|
||||
; CHECK: [[NEXT1]]:
|
||||
; CHECK: %[[INC1:.*]] = getelementptr inbounds i32, i32* %p, i64 1
|
||||
; CHECK: store i32 1, i32* %[[INC1]], align 4
|
||||
; CHECK: %[[CMP2:.*]] = icmp sgt i32 %k, 2
|
||||
; CHECK: br i1 %[[CMP2]], label %[[NEXT2:.*]], label %for.end
|
||||
; CHECK: [[NEXT2]]:
|
||||
; CHECK: %[[INC2:.*]] = getelementptr inbounds i32, i32* %p, i64 2
|
||||
; CHECK: store i32 2, i32* %[[INC2]], align 4
|
||||
; CHECK: %[[CMP3:.*]] = icmp eq i32 %k, 3
|
||||
; CHECK: br i1 %[[CMP3]], label %for.end, label %[[LOOP:.*]]
|
||||
; CHECK: [[LOOP]]:
|
||||
; CHECK: %[[IV:.*]] = phi i32 [ {{.*}}, %[[LOOP]] ], [ 3, %[[NEXT2]] ]
|
||||
|
||||
define void @basic(i32* %p, i32 %k) #0 {
|
||||
entry:
|
||||
%cmp3 = icmp slt i32 0, %k
|
||||
br i1 %cmp3, label %for.body.lr.ph, label %for.end
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph, %for.body
|
||||
%i.05 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
|
||||
%p.addr.04 = phi i32* [ %p, %for.body.lr.ph ], [ %incdec.ptr, %for.body ]
|
||||
%incdec.ptr = getelementptr inbounds i32, i32* %p.addr.04, i32 1
|
||||
store i32 %i.05, i32* %p.addr.04, align 4
|
||||
%inc = add nsw i32 %i.05, 1
|
||||
%cmp = icmp slt i32 %inc, %k
|
||||
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
|
||||
|
||||
for.cond.for.end_crit_edge: ; preds = %for.body
|
||||
br label %for.end
|
||||
|
||||
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
; Make sure peeling works correctly when a value defined in a loop is used
|
||||
; in later code - we need to correctly plumb the phi depending on which
|
||||
; iteration is actually used.
|
||||
; CHECK-LABEL: @output
|
||||
; CHECK: %[[CMP0:.*]] = icmp sgt i32 %k, 0
|
||||
; CHECK: br i1 %[[CMP0]], label %[[NEXT0:.*]], label %for.end
|
||||
; CHECK: [[NEXT0]]:
|
||||
; CHECK: store i32 0, i32* %p, align 4
|
||||
; CHECK: %[[CMP1:.*]] = icmp eq i32 %k, 1
|
||||
; CHECK: br i1 %[[CMP1]], label %for.end, label %[[NEXT1:.*]]
|
||||
; CHECK: [[NEXT1]]:
|
||||
; CHECK: %[[INC1:.*]] = getelementptr inbounds i32, i32* %p, i64 1
|
||||
; CHECK: store i32 1, i32* %[[INC1]], align 4
|
||||
; CHECK: %[[CMP2:.*]] = icmp sgt i32 %k, 2
|
||||
; CHECK: br i1 %[[CMP2]], label %[[NEXT2:.*]], label %for.end
|
||||
; CHECK: [[NEXT2]]:
|
||||
; CHECK: %[[INC2:.*]] = getelementptr inbounds i32, i32* %p, i64 2
|
||||
; CHECK: store i32 2, i32* %[[INC2]], align 4
|
||||
; CHECK: %[[CMP3:.*]] = icmp eq i32 %k, 3
|
||||
; CHECK: br i1 %[[CMP3]], label %for.end, label %[[LOOP:.*]]
|
||||
; CHECK: [[LOOP]]:
|
||||
; CHECK: %[[IV:.*]] = phi i32 [ %[[IV:.*]], %[[LOOP]] ], [ 3, %[[NEXT2]] ]
|
||||
; CHECK: %ret = phi i32 [ 0, %entry ], [ 1, %[[NEXT0]] ], [ 2, %[[NEXT1]] ], [ 3, %[[NEXT2]] ], [ %[[IV]], %[[LOOP]] ]
|
||||
; CHECK: ret i32 %ret
|
||||
define i32 @output(i32* %p, i32 %k) #0 {
|
||||
entry:
|
||||
%cmp3 = icmp slt i32 0, %k
|
||||
br i1 %cmp3, label %for.body.lr.ph, label %for.end
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph, %for.body
|
||||
%i.05 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
|
||||
%p.addr.04 = phi i32* [ %p, %for.body.lr.ph ], [ %incdec.ptr, %for.body ]
|
||||
%incdec.ptr = getelementptr inbounds i32, i32* %p.addr.04, i32 1
|
||||
store i32 %i.05, i32* %p.addr.04, align 4
|
||||
%inc = add nsw i32 %i.05, 1
|
||||
%cmp = icmp slt i32 %inc, %k
|
||||
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
|
||||
|
||||
for.cond.for.end_crit_edge: ; preds = %for.body
|
||||
br label %for.end
|
||||
|
||||
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
|
||||
%ret = phi i32 [ 0, %entry], [ %inc, %for.cond.for.end_crit_edge ]
|
||||
ret i32 %ret
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user