1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00

AMDGPU: Fix handling of 16-bit immediates

Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.

Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.

The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.

llvm-svn: 289306
This commit is contained in:
Matt Arsenault 2016-12-10 00:39:12 +00:00
parent 365f8ab107
commit c2c2a10170
35 changed files with 2029 additions and 259 deletions

View File

@ -215,6 +215,10 @@ public:
return isRegKind() || isInlinableImm(type);
}
bool isRegOrImmWithInt16InputMods() const {
return isRegOrImmWithInputMods(MVT::i16);
}
bool isRegOrImmWithInt32InputMods() const {
return isRegOrImmWithInputMods(MVT::i32);
}
@ -223,6 +227,10 @@ public:
return isRegOrImmWithInputMods(MVT::i64);
}
bool isRegOrImmWithFP16InputMods() const {
return isRegOrImmWithInputMods(MVT::f16);
}
bool isRegOrImmWithFP32InputMods() const {
return isRegOrImmWithInputMods(MVT::f32);
}
@ -282,6 +290,10 @@ public:
bool isRegClass(unsigned RCID) const;
bool isSCSrcB16() const {
return isRegClass(AMDGPU::SReg_32RegClassID) || isInlinableImm(MVT::i16);
}
bool isSCSrcB32() const {
return isRegClass(AMDGPU::SReg_32RegClassID) || isInlinableImm(MVT::i32);
}
@ -290,6 +302,10 @@ public:
return isRegClass(AMDGPU::SReg_64RegClassID) || isInlinableImm(MVT::i64);
}
bool isSCSrcF16() const {
return isRegClass(AMDGPU::SReg_32RegClassID) || isInlinableImm(MVT::f16);
}
bool isSCSrcF32() const {
return isRegClass(AMDGPU::SReg_32RegClassID) || isInlinableImm(MVT::f32);
}
@ -302,6 +318,10 @@ public:
return isSCSrcB32() || isLiteralImm(MVT::i32) || isExpr();
}
bool isSSrcB16() const {
return isSCSrcB16() || isLiteralImm(MVT::i16);
}
bool isSSrcB64() const {
// TODO: Find out how SALU supports extension of 32-bit literals to 64 bits.
// See isVSrc64().
@ -316,6 +336,10 @@ public:
return isSCSrcB64() || isLiteralImm(MVT::f64);
}
bool isSSrcF16() const {
return isSCSrcB16() || isLiteralImm(MVT::f16);
}
bool isVCSrcB32() const {
return isRegClass(AMDGPU::VS_32RegClassID) || isInlinableImm(MVT::i32);
}
@ -324,6 +348,10 @@ public:
return isRegClass(AMDGPU::VS_64RegClassID) || isInlinableImm(MVT::i64);
}
bool isVCSrcB16() const {
return isRegClass(AMDGPU::VS_32RegClassID) || isInlinableImm(MVT::i16);
}
bool isVCSrcF32() const {
return isRegClass(AMDGPU::VS_32RegClassID) || isInlinableImm(MVT::f32);
}
@ -332,6 +360,10 @@ public:
return isRegClass(AMDGPU::VS_64RegClassID) || isInlinableImm(MVT::f64);
}
bool isVCSrcF16() const {
return isRegClass(AMDGPU::VS_32RegClassID) || isInlinableImm(MVT::f16);
}
bool isVSrcB32() const {
return isVCSrcF32() || isLiteralImm(MVT::i32);
}
@ -340,6 +372,10 @@ public:
return isVCSrcF64() || isLiteralImm(MVT::i64);
}
bool isVSrcB16() const {
return isVCSrcF16() || isLiteralImm(MVT::i16);
}
bool isVSrcF32() const {
return isVCSrcF32() || isLiteralImm(MVT::f32);
}
@ -348,10 +384,18 @@ public:
return isVCSrcF64() || isLiteralImm(MVT::f64);
}
bool isVSrcF16() const {
return isVCSrcF16() || isLiteralImm(MVT::f16);
}
bool isKImmFP32() const {
return isLiteralImm(MVT::f32);
}
bool isKImmFP16() const {
return isLiteralImm(MVT::f16);
}
bool isMem() const override {
return false;
}
@ -439,7 +483,16 @@ public:
void addLiteralImmOperand(MCInst &Inst, int64_t Val) const;
void addKImmFP32Operands(MCInst &Inst, unsigned N) const;
template <unsigned Bitwidth>
void addKImmFPOperands(MCInst &Inst, unsigned N) const;
void addKImmFP16Operands(MCInst &Inst, unsigned N) const {
addKImmFPOperands<16>(Inst, N);
}
void addKImmFP32Operands(MCInst &Inst, unsigned N) const {
addKImmFPOperands<32>(Inst, N);
}
void addRegOperands(MCInst &Inst, unsigned N) const;
@ -826,19 +879,23 @@ struct OptionalOperand {
} // end anonymous namespace
// May be called with integer type with equivalent bitwidth.
static const fltSemantics *getFltSemantics(MVT VT) {
switch (VT.getSizeInBits()) {
case 32:
static const fltSemantics *getFltSemantics(unsigned Size) {
switch (Size) {
case 4:
return &APFloat::IEEEsingle;
case 64:
case 8:
return &APFloat::IEEEdouble;
case 16:
case 2:
return &APFloat::IEEEhalf;
default:
llvm_unreachable("unsupported fp type");
}
}
static const fltSemantics *getFltSemantics(MVT VT) {
return getFltSemantics(VT.getSizeInBits() / 8);
}
//===----------------------------------------------------------------------===//
// Operand
//===----------------------------------------------------------------------===//
@ -895,6 +952,12 @@ bool AMDGPUOperand::isInlinableImm(MVT type) const {
AsmParser->hasInv2PiInlineImm());
}
if (type.getScalarSizeInBits() == 16) {
return AMDGPU::isInlinableLiteral16(
static_cast<int16_t>(Literal.getLoBits(16).getSExtValue()),
AsmParser->hasInv2PiInlineImm());
}
return AMDGPU::isInlinableLiteral32(
static_cast<int32_t>(Literal.getLoBits(32).getZExtValue()),
AsmParser->hasInv2PiInlineImm());
@ -909,9 +972,13 @@ bool AMDGPUOperand::isLiteralImm(MVT type) const {
if (!Imm.IsFPImm) {
// We got int literal token.
unsigned Size = type.getSizeInBits();
if (Size == 64)
Size = 32;
// FIXME: 64-bit operands can zero extend, sign extend, or pad zeroes for FP
// types.
return isUInt<32>(Imm.Val) || isInt<32>(Imm.Val);
return isUIntN(Size, Imm.Val) || isIntN(Size, Imm.Val);
}
// We got fp literal token
@ -947,7 +1014,8 @@ void AMDGPUOperand::addImmOperands(MCInst &Inst, unsigned N, bool ApplyModifiers
}
}
if (AMDGPU::isSISrcOperand(AsmParser->getMII()->get(Inst.getOpcode()), Inst.getNumOperands())) {
if (AMDGPU::isSISrcOperand(AsmParser->getMII()->get(Inst.getOpcode()),
Inst.getNumOperands())) {
addLiteralImmOperand(Inst, Val);
} else {
Inst.addOperand(MCOperand::createImm(Val));
@ -960,69 +1028,112 @@ void AMDGPUOperand::addLiteralImmOperand(MCInst &Inst, int64_t Val) const {
// Check that this operand accepts literals
assert(AMDGPU::isSISrcOperand(InstDesc, OpNum));
APInt Literal(64, Val);
auto OpSize = AMDGPU::getRegOperandSize(AsmParser->getMRI(), InstDesc, OpNum); // expected operand size
auto OpSize = AMDGPU::getOperandSize(InstDesc, OpNum); // expected operand size
if (Imm.IsFPImm) { // We got fp literal token
if (OpSize == 8) { // Expected 64-bit operand
// Check if literal is inlinable
APInt Literal(64, Val);
switch (OpSize) {
case 8: {
if (AMDGPU::isInlinableLiteral64(Literal.getZExtValue(),
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(Literal.getZExtValue()));
} else if (AMDGPU::isSISrcFPOperand(InstDesc, OpNum)) { // Expected 64-bit fp operand
return;
}
// Non-inlineable
if (AMDGPU::isSISrcFPOperand(InstDesc, OpNum)) { // Expected 64-bit fp operand
// For fp operands we check if low 32 bits are zeros
if (Literal.getLoBits(32) != 0) {
const_cast<AMDGPUAsmParser *>(AsmParser)->Warning(Inst.getLoc(),
"Can't encode literal as exact 64-bit"
" floating-point operand. Low 32-bits will be"
" set to zero");
"Can't encode literal as exact 64-bit floating-point operand. "
"Low 32-bits will be set to zero");
}
Inst.addOperand(MCOperand::createImm(Literal.lshr(32).getZExtValue()));
} else {
// We don't allow fp literals in 64-bit integer instructions. It is
// unclear how we should encode them. This case should be checked earlier
// in predicate methods (isLiteralImm())
llvm_unreachable("fp literal in 64-bit integer instruction.");
return;
}
} else { // Expected 32-bit operand
// We don't allow fp literals in 64-bit integer instructions. It is
// unclear how we should encode them. This case should be checked earlier
// in predicate methods (isLiteralImm())
llvm_unreachable("fp literal in 64-bit integer instruction.");
}
case 4:
case 2: {
bool lost;
APFloat FPLiteral(APFloat::IEEEdouble, Literal);
// Convert literal to single precision
FPLiteral.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
FPLiteral.convert(*getFltSemantics(OpSize),
APFloat::rmNearestTiesToEven, &lost);
// We allow precision lost but not overflow or underflow. This should be
// checked earlier in isLiteralImm()
Inst.addOperand(MCOperand::createImm(FPLiteral.bitcastToAPInt().getZExtValue()));
return;
}
} else { // We got int literal token
if (OpSize == 8) { // Expected 64-bit operand
auto LiteralVal = Literal.getZExtValue();
if (AMDGPU::isInlinableLiteral64(LiteralVal,
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(LiteralVal));
return;
}
} else { // Expected 32-bit operand
auto LiteralVal = static_cast<int32_t>(Literal.getLoBits(32).getZExtValue());
if (AMDGPU::isInlinableLiteral32(LiteralVal,
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(LiteralVal));
return;
}
default:
llvm_unreachable("invalid operand size");
}
Inst.addOperand(MCOperand::createImm(Literal.getLoBits(32).getZExtValue()));
return;
}
// We got int literal token.
// Only sign extend inline immediates.
// FIXME: No errors on truncation
switch (OpSize) {
case 4: {
if (isInt<32>(Val) &&
AMDGPU::isInlinableLiteral32(static_cast<int32_t>(Val),
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(Val));
return;
}
Inst.addOperand(MCOperand::createImm(Val & 0xffffffff));
return;
}
case 8: {
if (AMDGPU::isInlinableLiteral64(Val,
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(Val));
return;
}
Inst.addOperand(MCOperand::createImm(Lo_32(Val)));
return;
}
case 2: {
if (isInt<16>(Val) &&
AMDGPU::isInlinableLiteral16(static_cast<int16_t>(Val),
AsmParser->hasInv2PiInlineImm())) {
Inst.addOperand(MCOperand::createImm(Val));
return;
}
Inst.addOperand(MCOperand::createImm(Val & 0xffff));
return;
}
default:
llvm_unreachable("invalid operand size");
}
}
void AMDGPUOperand::addKImmFP32Operands(MCInst &Inst, unsigned N) const {
template <unsigned Bitwidth>
void AMDGPUOperand::addKImmFPOperands(MCInst &Inst, unsigned N) const {
APInt Literal(64, Imm.Val);
if (Imm.IsFPImm) { // We got fp literal
bool lost;
APFloat FPLiteral(APFloat::IEEEdouble, Literal);
FPLiteral.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
Inst.addOperand(MCOperand::createImm(FPLiteral.bitcastToAPInt().getZExtValue()));
} else { // We got int literal token
Inst.addOperand(MCOperand::createImm(Literal.getLoBits(32).getZExtValue()));
if (!Imm.IsFPImm) {
// We got int literal token.
Inst.addOperand(MCOperand::createImm(Literal.getLoBits(Bitwidth).getZExtValue()));
return;
}
bool Lost;
APFloat FPLiteral(APFloat::IEEEdouble, Literal);
FPLiteral.convert(*getFltSemantics(Bitwidth / 8),
APFloat::rmNearestTiesToEven, &Lost);
Inst.addOperand(MCOperand::createImm(FPLiteral.bitcastToAPInt().getZExtValue()));
}
void AMDGPUOperand::addRegOperands(MCInst &Inst, unsigned N) const {

View File

@ -88,6 +88,15 @@ DECODE_OPERAND(SReg_128)
DECODE_OPERAND(SReg_256)
DECODE_OPERAND(SReg_512)
static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
}
#define GET_SUBTARGETINFO_ENUM
#include "AMDGPUGenSubtargetInfo.inc"
#undef GET_SUBTARGETINFO_ENUM
@ -250,6 +259,10 @@ MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
return decodeSrcOp(OPW16, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
// Some instructions have operand restrictions beyond what the encoding
// allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
@ -324,28 +337,96 @@ MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
// Cast prevents negative overflow.
}
MCOperand AMDGPUDisassembler::decodeFPImmed(bool Is32, unsigned Imm) {
static int64_t getInlineImmVal32(unsigned Imm) {
switch (Imm) {
case 240:
return FloatToBits(0.5f);
case 241:
return FloatToBits(-0.5f);
case 242:
return FloatToBits(1.0f);
case 243:
return FloatToBits(-1.0f);
case 244:
return FloatToBits(2.0f);
case 245:
return FloatToBits(-2.0f);
case 246:
return FloatToBits(4.0f);
case 247:
return FloatToBits(-4.0f);
case 248: // 1 / (2 * PI)
return 0x3e22f983;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal64(unsigned Imm) {
switch (Imm) {
case 240:
return DoubleToBits(0.5);
case 241:
return DoubleToBits(-0.5);
case 242:
return DoubleToBits(1.0);
case 243:
return DoubleToBits(-1.0);
case 244:
return DoubleToBits(2.0);
case 245:
return DoubleToBits(-2.0);
case 246:
return DoubleToBits(4.0);
case 247:
return DoubleToBits(-4.0);
case 248: // 1 / (2 * PI)
return 0x3fc45f306dc9c882;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal16(unsigned Imm) {
switch (Imm) {
case 240:
return 0x3800;
case 241:
return 0xB800;
case 242:
return 0x3C00;
case 243:
return 0xBC00;
case 244:
return 0x4000;
case 245:
return 0xC000;
case 246:
return 0x4400;
case 247:
return 0xC400;
case 248: // 1 / (2 * PI)
return 0x3118;
default:
llvm_unreachable("invalid fp inline imm");
}
}
MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
// ToDo: AMDGPUInstPrinter does not support 1/(2*PI). It consider 1/(2*PI) as
// literal constant.
float V = 0.0f;
switch (Imm) {
case 240: V = 0.5f; break;
case 241: V = -0.5f; break;
case 242: V = 1.0f; break;
case 243: V = -1.0f; break;
case 244: V = 2.0f; break;
case 245: V = -2.0f; break;
case 246: V = 4.0f; break;
case 247: V = -4.0f; break;
case 248: return MCOperand::createImm(Is32 ? // 1/(2*PI)
0x3e22f983 :
0x3fc45f306dc9c882);
default: break;
switch (Width) {
case OPW32:
return MCOperand::createImm(getInlineImmVal32(Imm));
case OPW64:
return MCOperand::createImm(getInlineImmVal64(Imm));
case OPW16:
return MCOperand::createImm(getInlineImmVal16(Imm));
default:
llvm_unreachable("implement me");
}
return MCOperand::createImm(Is32? FloatToBits(V) : DoubleToBits(V));
}
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
@ -353,7 +434,9 @@ unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32: return VGPR_32RegClassID;
case OPW32:
case OPW16:
return VGPR_32RegClassID;
case OPW64: return VReg_64RegClassID;
case OPW128: return VReg_128RegClassID;
}
@ -364,7 +447,9 @@ unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32: return SGPR_32RegClassID;
case OPW32:
case OPW16:
return SGPR_32RegClassID;
case OPW64: return SGPR_64RegClassID;
case OPW128: return SGPR_128RegClassID;
}
@ -375,7 +460,9 @@ unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32: return TTMP_32RegClassID;
case OPW32:
case OPW16:
return TTMP_32RegClassID;
case OPW64: return TTMP_64RegClassID;
case OPW128: return TTMP_128RegClassID;
}
@ -396,19 +483,26 @@ MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) c
return createSRegOperand(getTtmpClassId(Width), Val - TTMP_MIN);
}
assert(Width == OPW32 || Width == OPW64);
const bool Is32 = (Width == OPW32);
assert(Width == OPW16 || Width == OPW32 || Width == OPW64);
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(Val);
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(Is32, Val);
return decodeFPImmed(Width, Val);
if (Val == LITERAL_CONST)
return decodeLiteralConstant();
return Is32 ? decodeSpecialReg32(Val) : decodeSpecialReg64(Val);
switch (Width) {
case OPW32:
case OPW16:
return decodeSpecialReg32(Val);
case OPW64:
return decodeSpecialReg64(Val);
default:
llvm_unreachable("unexpected immediate type");
}
}
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {

View File

@ -66,6 +66,7 @@ public:
MCOperand decodeOperand_VGPR_32(unsigned Val) const;
MCOperand decodeOperand_VS_32(unsigned Val) const;
MCOperand decodeOperand_VS_64(unsigned Val) const;
MCOperand decodeOperand_VSrc16(unsigned Val) const;
MCOperand decodeOperand_VReg_64(unsigned Val) const;
MCOperand decodeOperand_VReg_96(unsigned Val) const;
@ -83,6 +84,7 @@ public:
OPW32,
OPW64,
OPW128,
OPW16,
OPW_LAST_,
OPW_FIRST_ = OPW32
};
@ -92,7 +94,7 @@ public:
unsigned getTtmpClassId(const OpWidthTy Width) const;
static MCOperand decodeIntImmed(unsigned Imm);
static MCOperand decodeFPImmed(bool Is32, unsigned Imm);
static MCOperand decodeFPImmed(OpWidthTy Width, unsigned Imm);
MCOperand decodeLiteralConstant() const;
MCOperand decodeSrcOp(const OpWidthTy Width, unsigned Val) const;

View File

@ -47,7 +47,13 @@ void AMDGPUInstPrinter::printU8ImmOperand(const MCInst *MI, unsigned OpNo,
void AMDGPUInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
O << formatHex(MI->getOperand(OpNo).getImm() & 0xffff);
// It's possible to end up with a 32-bit literal used with a 16-bit operand
// with ignored high bits. Print as 32-bit anyway in that case.
int64_t Imm = MI->getOperand(OpNo).getImm();
if (isInt<16>(Imm) || isUInt<16>(Imm))
O << formatHex(static_cast<uint64_t>(Imm & 0xffff));
else
printU32ImmOperand(MI, OpNo, STI, O);
}
void AMDGPUInstPrinter::printU4ImmDecOperand(const MCInst *MI, unsigned OpNo,
@ -336,6 +342,38 @@ void AMDGPUInstPrinter::printVOPDst(const MCInst *MI, unsigned OpNo,
printOperand(MI, OpNo, STI, O);
}
void AMDGPUInstPrinter::printImmediate16(uint32_t Imm,
const MCSubtargetInfo &STI,
raw_ostream &O) {
int16_t SImm = static_cast<int16_t>(Imm);
if (SImm >= -16 && SImm <= 64) {
O << SImm;
return;
}
if (Imm == 0x3C00)
O<< "1.0";
else if (Imm == 0xBC00)
O<< "-1.0";
else if (Imm == 0x3800)
O<< "0.5";
else if (Imm == 0xB800)
O<< "-0.5";
else if (Imm == 0x4000)
O<< "2.0";
else if (Imm == 0xC000)
O<< "-2.0";
else if (Imm == 0x4400)
O<< "4.0";
else if (Imm == 0xC400)
O<< "-4.0";
else if (Imm == 0x3118) {
assert(STI.getFeatureBits()[AMDGPU::FeatureInv2PiInlineImm]);
O << "0.15915494";
} else
O << formatHex(static_cast<uint64_t>(Imm));
}
void AMDGPUInstPrinter::printImmediate32(uint32_t Imm,
const MCSubtargetInfo &STI,
raw_ostream &O) {
@ -431,22 +469,39 @@ void AMDGPUInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
}
} else if (Op.isImm()) {
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
int RCID = Desc.OpInfo[OpNo].RegClass;
if (RCID != -1) {
unsigned RCBits = AMDGPU::getRegBitWidth(MRI.getRegClass(RCID));
if (RCBits == 32)
printImmediate32(Op.getImm(), STI, O);
else if (RCBits == 64)
printImmediate64(Op.getImm(), STI, O);
else
llvm_unreachable("Invalid register class size");
} else if (Desc.OpInfo[OpNo].OperandType == MCOI::OPERAND_IMMEDIATE) {
switch (Desc.OpInfo[OpNo].OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case MCOI::OPERAND_IMMEDIATE:
printImmediate32(Op.getImm(), STI, O);
} else {
break;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
printImmediate64(Op.getImm(), STI, O);
break;
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
printImmediate16(Op.getImm(), STI, O);
break;
case MCOI::OPERAND_UNKNOWN:
case MCOI::OPERAND_PCREL:
O << formatDec(Op.getImm());
break;
case MCOI::OPERAND_REGISTER:
// FIXME: This should be removed and handled somewhere else. Seems to come
// from a disassembler bug.
O << "/*invalid immediate*/";
break;
default:
// We hit this for the immediate instruction bits that don't yet have a
// custom printer.
// TODO: Eventually this should be unnecessary.
O << formatDec(Op.getImm());
llvm_unreachable("unexpected immediate operand type");
}
} else if (Op.isFPImm()) {
// We special case 0.0 because otherwise it will be printed as an integer.

View File

@ -88,6 +88,8 @@ private:
void printRegOperand(unsigned RegNo, raw_ostream &O);
void printVOPDst(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI,
raw_ostream &O);
void printImmediate16(uint32_t Imm, const MCSubtargetInfo &STI,
raw_ostream &O);
void printImmediate32(uint32_t Imm, const MCSubtargetInfo &STI,
raw_ostream &O);
void printImmediate64(uint64_t Imm, const MCSubtargetInfo &STI,

View File

@ -39,7 +39,7 @@ class SIMCCodeEmitter : public AMDGPUMCCodeEmitter {
const MCRegisterInfo &MRI;
/// \brief Encode an fp or int literal
uint32_t getLitEncoding(const MCOperand &MO, unsigned OpSize,
uint32_t getLitEncoding(const MCOperand &MO, const MCOperandInfo &OpInfo,
const MCSubtargetInfo &STI) const;
public:
@ -87,6 +87,42 @@ static uint32_t getIntInlineImmEncoding(IntTy Imm) {
return 0;
}
static uint32_t getLit16Encoding(uint16_t Val, const MCSubtargetInfo &STI) {
uint16_t IntImm = getIntInlineImmEncoding(static_cast<int16_t>(Val));
if (IntImm != 0)
return IntImm;
if (Val == 0x3800) // 0.5
return 240;
if (Val == 0xB800) // -0.5
return 241;
if (Val == 0x3C00) // 1.0
return 242;
if (Val == 0xBC00) // -1.0
return 243;
if (Val == 0x4000) // 2.0
return 244;
if (Val == 0xC000) // -2.0
return 245;
if (Val == 0x4400) // 4.0
return 246;
if (Val == 0xC400) // -4.0
return 247;
if (Val == 0x3118 && // 1.0 / (2.0 * pi)
STI.getFeatureBits()[AMDGPU::FeatureInv2PiInlineImm])
return 248;
return 255;
}
static uint32_t getLit32Encoding(uint32_t Val, const MCSubtargetInfo &STI) {
uint32_t IntImm = getIntInlineImmEncoding(static_cast<int32_t>(Val));
if (IntImm != 0)
@ -160,7 +196,7 @@ static uint32_t getLit64Encoding(uint64_t Val, const MCSubtargetInfo &STI) {
}
uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO,
unsigned OpSize,
const MCOperandInfo &OpInfo,
const MCSubtargetInfo &STI) const {
int64_t Imm;
@ -180,12 +216,16 @@ uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO,
Imm = MO.getImm();
}
if (OpSize == 4)
switch (AMDGPU::getOperandSize(OpInfo)) {
case 4:
return getLit32Encoding(static_cast<uint32_t>(Imm), STI);
assert(OpSize == 8);
return getLit64Encoding(static_cast<uint64_t>(Imm), STI);
case 8:
return getLit64Encoding(static_cast<uint64_t>(Imm), STI);
case 2:
return getLit16Encoding(static_cast<uint16_t>(Imm), STI);
default:
llvm_unreachable("invalid operand size");
}
}
void SIMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
@ -212,12 +252,9 @@ void SIMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
if (!AMDGPU::isSISrcOperand(Desc, i))
continue;
int RCID = Desc.OpInfo[i].RegClass;
const MCRegisterClass &RC = MRI.getRegClass(RCID);
// Is this operand a literal immediate?
const MCOperand &Op = MI.getOperand(i);
if (getLitEncoding(Op, AMDGPU::getRegBitWidth(RC) / 8, STI) != 255)
if (getLitEncoding(Op, Desc.OpInfo[i], STI) != 255)
continue;
// Yes! Encode it
@ -282,9 +319,7 @@ uint64_t SIMCCodeEmitter::getMachineOpValue(const MCInst &MI,
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
if (AMDGPU::isSISrcOperand(Desc, OpNo)) {
uint32_t Enc = getLitEncoding(MO,
AMDGPU::getRegOperandSize(&MRI, Desc, OpNo),
STI);
uint32_t Enc = getLitEncoding(MO, Desc.OpInfo[OpNo], STI);
if (Enc != ~0U && (Enc != 255 || Desc.getSize() == 4))
return Enc;

View File

@ -88,17 +88,36 @@ enum ClassFlags {
namespace AMDGPU {
enum OperandType {
/// Operands with register or 32-bit immediate
OPERAND_REG_IMM32_INT = MCOI::OPERAND_FIRST_TARGET,
OPERAND_REG_IMM32_FP,
OPERAND_REG_IMM_INT32 = MCOI::OPERAND_FIRST_TARGET,
OPERAND_REG_IMM_INT64,
OPERAND_REG_IMM_INT16,
OPERAND_REG_IMM_FP32,
OPERAND_REG_IMM_FP64,
OPERAND_REG_IMM_FP16,
/// Operands with register or inline constant
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
OPERAND_REG_INLINE_C_INT16,
OPERAND_REG_INLINE_C_INT32,
OPERAND_REG_INLINE_C_INT64,
OPERAND_REG_INLINE_C_FP16,
OPERAND_REG_INLINE_C_FP32,
OPERAND_REG_INLINE_C_FP64,
OPERAND_REG_IMM_FIRST = OPERAND_REG_IMM_INT32,
OPERAND_REG_IMM_LAST = OPERAND_REG_IMM_FP16,
OPERAND_REG_INLINE_C_FIRST = OPERAND_REG_INLINE_C_INT16,
OPERAND_REG_INLINE_C_LAST = OPERAND_REG_INLINE_C_FP64,
OPERAND_SRC_FIRST = OPERAND_REG_IMM_INT32,
OPERAND_SRC_LAST = OPERAND_REG_INLINE_C_LAST,
// Operand for source modifiers for VOP instructions
OPERAND_INPUT_MODS,
/// Operand with 32-bit immediate that uses the constant bus.
OPERAND_KIMM32
OPERAND_KIMM32,
OPERAND_KIMM16
};
}

View File

@ -315,12 +315,14 @@ static void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI,
return;
}
APInt Imm(64, OpToFold.getImm());
const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
const TargetRegisterClass *FoldRC =
TRI.getRegClass(FoldDesc.OpInfo[0].RegClass);
APInt Imm(TII->operandBitWidth(FoldDesc.OpInfo[1].OperandType),
OpToFold.getImm());
// Split 64-bit constants into 32-bits for folding.
if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
unsigned UseReg = UseOp.getReg();
@ -329,6 +331,8 @@ static void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI,
MRI.getRegClass(UseReg) :
TRI.getPhysRegClass(UseReg);
assert(Imm.getBitWidth() == 64);
if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
return;
@ -505,7 +509,6 @@ bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
if (!isSafeToFold(MI))
continue;
unsigned OpSize = TII->getOpSize(MI, 1);
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
@ -559,14 +562,15 @@ bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
Use = MRI.use_begin(Dst.getReg()), E = MRI.use_end();
Use != E; ++Use) {
MachineInstr *UseMI = Use->getParent();
unsigned OpNo = Use.getOperandNo();
if (TII->isInlineConstant(OpToFold, OpSize)) {
foldOperand(OpToFold, UseMI, Use.getOperandNo(), FoldList,
if (TII->isInlineConstant(*UseMI, OpNo, OpToFold)) {
foldOperand(OpToFold, UseMI, OpNo, FoldList,
CopiesToReplace, TII, TRI, MRI);
} else {
if (++NumLiteralUses == 1) {
NonInlineUse = &*Use;
NonInlineUseOpNo = Use.getOperandNo();
NonInlineUseOpNo = OpNo;
}
}
}

View File

@ -1415,10 +1415,12 @@ bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
// If this is a free constant, there's no reason to do this.
// TODO: We could fold this here instead of letting SIFoldOperands do it
// later.
if (isInlineConstant(ImmOp, 4))
MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
// Any src operand can be used for the legality check.
if (isInlineConstant(UseMI, *Src0, ImmOp))
return false;
MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
@ -1620,8 +1622,10 @@ MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
case AMDGPU::V_MAC_F16_e32:
IsF16 = true;
case AMDGPU::V_MAC_F32_e32: {
const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
if (Src0->isImm() && !isInlineConstant(*Src0, 4))
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::src0);
const MachineOperand *Src0 = &MI.getOperand(Src0Idx);
if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0))
return nullptr;
break;
}
@ -1682,46 +1686,55 @@ bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
case 64:
return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(),
ST.hasInv2PiInlineImm());
case 16:
return AMDGPU::isInlinableLiteral16(Imm.getSExtValue(),
ST.hasInv2PiInlineImm());
default:
llvm_unreachable("invalid bitwidth");
}
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
unsigned OpSize) const {
if (MO.isImm()) {
// MachineOperand provides no way to tell the true operand size, since it
// only records a 64-bit value. We need to know the size to determine if a
// 32-bit floating point immediate bit pattern is legal for an integer
// immediate. It would be for any 32-bit integer operand, but would not be
// for a 64-bit one.
switch (OpSize) {
case 4:
return AMDGPU::isInlinableLiteral32(static_cast<int32_t>(MO.getImm()),
ST.hasInv2PiInlineImm());
case 8:
return AMDGPU::isInlinableLiteral64(MO.getImm(),
ST.hasInv2PiInlineImm());
default:
llvm_unreachable("invalid bitwidth");
}
uint8_t OperandType) const {
if (!MO.isImm() || OperandType < MCOI::OPERAND_FIRST_TARGET)
return false;
// MachineOperand provides no way to tell the true operand size, since it only
// records a 64-bit value. We need to know the size to determine if a 32-bit
// floating point immediate bit pattern is legal for an integer immediate. It
// would be for any 32-bit integer operand, but would not be for a 64-bit one.
int64_t Imm = MO.getImm();
switch (operandBitWidth(OperandType)) {
case 32: {
int32_t Trunc = static_cast<int32_t>(Imm);
return Trunc == Imm &&
AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm());
}
case 64: {
return AMDGPU::isInlinableLiteral64(MO.getImm(),
ST.hasInv2PiInlineImm());
}
case 16: {
if (isInt<16>(Imm) || isUInt<16>(Imm)) {
int16_t Trunc = static_cast<int16_t>(Imm);
return AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm());
}
return false;
}
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
unsigned OpSize) const {
return MO.isImm() && !isInlineConstant(MO, OpSize);
return false;
}
default:
llvm_unreachable("invalid bitwidth");
}
}
bool SIInstrInfo::isLiteralConstantLike(const MachineOperand &MO,
unsigned OpSize) const {
const MCOperandInfo &OpInfo) const {
switch (MO.getType()) {
case MachineOperand::MO_Register:
return false;
case MachineOperand::MO_Immediate:
return !isInlineConstant(MO, OpSize);
return !isInlineConstant(MO, OpInfo);
case MachineOperand::MO_FrameIndex:
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_ExternalSymbol:
@ -1760,11 +1773,10 @@ bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
if (OpInfo.RegClass < 0)
return false;
unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
if (isLiteralConstant(MO, OpSize))
return RI.opCanUseLiteralConstant(OpInfo.OperandType);
if (MO.isImm() && isInlineConstant(MO, OpInfo))
return RI.opCanUseInlineConstant(OpInfo.OperandType);
return RI.opCanUseInlineConstant(OpInfo.OperandType);
return RI.opCanUseLiteralConstant(OpInfo.OperandType);
}
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
@ -1791,12 +1803,17 @@ bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
const MachineOperand &MO,
unsigned OpSize) const {
const MCOperandInfo &OpInfo) const {
// Literal constants use the constant bus.
if (isLiteralConstant(MO, OpSize))
return true;
//if (isLiteralConstantLike(MO, OpInfo))
// return true;
if (MO.isImm())
return !isInlineConstant(MO, OpInfo);
if (!MO.isReg() || !MO.isUse())
if (!MO.isReg())
return true; // Misc other operands like FrameIndex
if (!MO.isUse())
return false;
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
@ -1925,17 +1942,22 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
return false;
}
break;
case AMDGPU::OPERAND_REG_IMM32_INT:
case AMDGPU::OPERAND_REG_IMM32_FP:
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
break;
case AMDGPU::OPERAND_REG_INLINE_C_INT:
case AMDGPU::OPERAND_REG_INLINE_C_FP:
if (isLiteralConstant(MI.getOperand(i),
RI.getRegClass(RegClass)->getSize())) {
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16: {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) {
ErrInfo = "Illegal immediate value for operand.";
return false;
}
break;
}
case MCOI::OPERAND_IMMEDIATE:
case AMDGPU::OPERAND_KIMM32:
// Check if this operand is an immediate.
@ -1987,7 +2009,7 @@ bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
if (OpIdx == -1)
break;
const MachineOperand &MO = MI.getOperand(OpIdx);
if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) {
if (MO.isReg()) {
if (MO.getReg() != SGPRUsed)
++ConstantBusCount;
@ -2330,7 +2352,7 @@ bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
if (!MO)
MO = &MI.getOperand(OpIdx);
if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) {
RegSubRegPair SGPRUsed;
if (MO->isReg())
@ -2342,7 +2364,7 @@ bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
const MachineOperand &Op = MI.getOperand(i);
if (Op.isReg()) {
if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
usesConstantBus(MRI, Op, getOpSize(MI, i))) {
usesConstantBus(MRI, Op, InstDesc.OpInfo[i])) {
return false;
}
} else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
@ -3539,14 +3561,14 @@ unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
if (Src0Idx == -1)
return 4; // No operands.
if (isLiteralConstantLike(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx)))
if (isLiteralConstantLike(MI.getOperand(Src0Idx), Desc.OpInfo[Src0Idx]))
return 8;
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return 4;
if (isLiteralConstantLike(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx)))
if (isLiteralConstantLike(MI.getOperand(Src1Idx), Desc.OpInfo[Src1Idx]))
return 8;
return 4;

View File

@ -462,15 +462,96 @@ public:
return !RI.isSGPRReg(MRI, Dest);
}
static int operandBitWidth(uint8_t OperandType) {
switch (OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
return 32;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
return 64;
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
return 16;
default:
llvm_unreachable("unexpected operand type");
}
}
bool isInlineConstant(const APInt &Imm) const;
bool isInlineConstant(const MachineOperand &MO, unsigned OpSize) const;
bool isLiteralConstant(const MachineOperand &MO, unsigned OpSize) const;
bool isInlineConstant(const MachineOperand &MO, uint8_t OperandType) const;
bool isInlineConstant(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
return isInlineConstant(MO, OpInfo.OperandType);
}
/// \p returns true if \p UseMO is substituted with \p DefMO in \p MI it would
/// be an inline immediate.
bool isInlineConstant(const MachineInstr &MI,
const MachineOperand &UseMO,
const MachineOperand &DefMO) const {
assert(UseMO.getParent() == &MI);
int OpIdx = MI.getOperandNo(&UseMO);
if (!MI.getDesc().OpInfo || OpIdx > MI.getDesc().NumOperands) {
return false;
}
return isInlineConstant(DefMO, MI.getDesc().OpInfo[OpIdx]);
}
/// \p returns true if the operand \p OpIdx in \p MI is a valid inline
/// immediate.
bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx) const {
const MachineOperand &MO = MI.getOperand(OpIdx);
return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
}
bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx,
const MachineOperand &MO) const {
if (!MI.getDesc().OpInfo || OpIdx > MI.getDesc().NumOperands)
return false;
if (MI.isCopy()) {
unsigned Size = getOpSize(MI, OpIdx);
assert(Size == 8 || Size == 4);
uint8_t OpType = (Size == 8) ?
AMDGPU::OPERAND_REG_IMM_INT64 : AMDGPU::OPERAND_REG_IMM_INT32;
return isInlineConstant(MO, OpType);
}
return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
}
bool isInlineConstant(const MachineOperand &MO) const {
const MachineInstr *Parent = MO.getParent();
return isInlineConstant(*Parent, Parent->getOperandNo(&MO));
}
bool isLiteralConstant(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
return MO.isImm() && !isInlineConstant(MO, OpInfo.OperandType);
}
bool isLiteralConstant(const MachineInstr &MI, int OpIdx) const {
const MachineOperand &MO = MI.getOperand(OpIdx);
return MO.isImm() && !isInlineConstant(MI, OpIdx);
}
// Returns true if this operand could potentially require a 32-bit literal
// operand, but not necessarily. A FrameIndex for example could resolve to an
// inline immediate value that will not require an additional 4-bytes; this
// assumes that it will.
bool isLiteralConstantLike(const MachineOperand &MO, unsigned OpSize) const;
bool isLiteralConstantLike(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const;
bool isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
const MachineOperand &MO) const;
@ -482,7 +563,7 @@ public:
/// \brief Returns true if this operand uses the constant bus.
bool usesConstantBus(const MachineRegisterInfo &MRI,
const MachineOperand &MO,
unsigned OpSize) const;
const MCOperandInfo &OpInfo) const;
/// \brief Return true if this instruction has any modifiers.
/// e.g. src[012]_mod, omod, clamp.

View File

@ -445,21 +445,29 @@ def exp_tgt : NamedOperandU8<"ExpTgt", NamedMatchClass<"ExpTgt", 0>> {
} // End OperandType = "OPERAND_IMMEDIATE"
class KImmMatchClass<int size> : AsmOperandClass {
let Name = "KImmFP"#size;
let PredicateMethod = "isKImmFP"#size;
let ParserMethod = "parseImm";
let RenderMethod = "addKImmFP"#size#"Operands";
}
class kimmOperand<ValueType vt> : Operand<vt> {
let OperandNamespace = "AMDGPU";
let OperandType = "OPERAND_KIMM"#vt.Size;
let PrintMethod = "printU"#vt.Size#"ImmOperand";
let ParserMatchClass = !cast<AsmOperandClass>("KImmFP"#vt.Size#"MatchClass");
}
// 32-bit VALU immediate operand that uses the constant bus.
def KImmFP32MatchClass : AsmOperandClass {
let Name = "KImmFP32";
let PredicateMethod = "isKImmFP32";
let ParserMethod = "parseImm";
let RenderMethod = "addKImmFP32Operands";
}
def KImmFP32MatchClass : KImmMatchClass<32>;
def f32kimm : kimmOperand<i32>;
// 32-bit VALU immediate operand with a 16-bit value that uses the
// constant bus.
def KImmFP16MatchClass : KImmMatchClass<16>;
def f16kimm : kimmOperand<i16>;
def f32kimm : Operand<i32> {
let OperandNamespace = "AMDGPU";
let OperandType = "OPERAND_KIMM32";
let PrintMethod = "printU32ImmOperand";
let ParserMatchClass = KImmFP32MatchClass;
}
def VOPDstS64 : VOPDstOperand <SReg_64>;
@ -468,6 +476,7 @@ class FPInputModsMatchClass <int opSize> : AsmOperandClass {
let ParserMethod = "parseRegOrImmWithFPInputMods";
let PredicateMethod = "isRegOrImmWithFP"#opSize#"InputMods";
}
def FP16InputModsMatchClass : FPInputModsMatchClass<16>;
def FP32InputModsMatchClass : FPInputModsMatchClass<32>;
def FP64InputModsMatchClass : FPInputModsMatchClass<64>;
@ -480,6 +489,8 @@ class InputMods <AsmOperandClass matchClass> : Operand <i32> {
class FPInputMods <FPInputModsMatchClass matchClass> : InputMods <matchClass> {
let PrintMethod = "printOperandAndFPInputMods";
}
def FP16InputMods : FPInputMods<FP16InputModsMatchClass>;
def FP32InputMods : FPInputMods<FP32InputModsMatchClass>;
def FP64InputMods : FPInputMods<FP64InputModsMatchClass>;
@ -629,8 +640,8 @@ class getVOPSrc0ForVT<ValueType VT> {
!if(!eq(VT.Value, f64.Value), 1,
0)));
RegisterOperand ret = !if(isFP,
!if(!eq(VT.Size, 64), VSrc_f64, VSrc_f32),
!if(!eq(VT.Size, 64), VSrc_b64, VSrc_b32));
!if(!eq(VT.Size, 64), VSrc_f64, !if(!eq(VT.Size, 16), VSrc_f16, VSrc_f32)),
!if(!eq(VT.Size, 64), VSrc_b64, !if(!eq(VT.Size, 16), VSrc_b16, VSrc_b32)));
}
// Returns the vreg register class to use for source operand given VT
@ -657,8 +668,9 @@ class getVOP3SrcForVT<ValueType VT> {
!if(!eq(VT.Value, i1.Value),
SCSrc_b64,
!if(isFP,
VCSrc_f32,
VCSrc_b32)
!if(!eq(VT.Size, 16), VCSrc_f16, VCSrc_f32),
!if(!eq(VT.Size, 16), VCSrc_b16, VCSrc_b32)
)
)
)
);
@ -691,7 +703,13 @@ class getSrcMod <ValueType VT> {
0)));
Operand ret = !if(!eq(VT.Size, 64),
!if(isFP, FP64InputMods, Int64InputMods),
!if(isFP, FP32InputMods, Int32InputMods));
!if(isFP,
!if(!eq(VT.Value, f16.Value),
FP16InputMods,
FP32InputMods
),
Int32InputMods)
);
}
// Returns the input arguments for VOP[12C] instructions for the given SrcVT.

View File

@ -107,9 +107,8 @@ def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
// 64-bit vector move instruction. This is mainly used by the SIFoldOperands
// pass to enable folding of inline immediates.
def V_MOV_B64_PSEUDO : PseudoInstSI <(outs VReg_64:$vdst), (ins VSrc_b64:$src0)> {
let VALU = 1;
}
def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
(ins VSrc_b64:$src0)>;
} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
let usesCustomInserter = 1, SALU = 1 in {

View File

@ -1085,19 +1085,6 @@ bool SIRegisterInfo::shouldRewriteCopySrc(
return getCommonSubClass(DefRC, SrcRC) != nullptr;
}
bool SIRegisterInfo::opCanUseLiteralConstant(unsigned OpType) const {
return OpType == AMDGPU::OPERAND_REG_IMM32_INT ||
OpType == AMDGPU::OPERAND_REG_IMM32_FP;
}
bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
if (opCanUseLiteralConstant(OpType))
return true;
return OpType == AMDGPU::OPERAND_REG_INLINE_C_INT ||
OpType == AMDGPU::OPERAND_REG_INLINE_C_FP;
}
// FIXME: Most of these are flexible with HSA and we don't need to reserve them
// as input registers if unused. Whether the dispatch ptr is necessary should be
// easy to detect from used intrinsics. Scratch setup is harder to know.

View File

@ -16,6 +16,7 @@
#define LLVM_LIB_TARGET_AMDGPU_SIREGISTERINFO_H
#include "AMDGPURegisterInfo.h"
#include "SIDefines.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
namespace llvm {
@ -138,12 +139,19 @@ public:
/// \returns True if operands defined with this operand type can accept
/// a literal constant (i.e. any 32-bit immediate).
bool opCanUseLiteralConstant(unsigned OpType) const;
bool opCanUseLiteralConstant(unsigned OpType) const {
// TODO: 64-bit operands have extending behavior from 32-bit literal.
return OpType >= AMDGPU::OPERAND_REG_IMM_FIRST &&
OpType <= AMDGPU::OPERAND_REG_IMM_LAST;
}
/// \returns True if operands defined with this operand type can accept
/// an inline constant. i.e. An integer value in the range (-16, 64) or
/// -4.0f, -2.0f, -1.0f, -0.5f, 0.0f, 0.5f, 1.0f, 2.0f, 4.0f.
bool opCanUseInlineConstant(unsigned OpType) const;
bool opCanUseInlineConstant(unsigned OpType) const {
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
enum PreloadedValue {
// SGPRS:

View File

@ -384,31 +384,43 @@ class RegImmMatcher<string name> : AsmOperandClass {
multiclass SIRegOperand <string rc, string MatchName, string opType> {
let OperandNamespace = "AMDGPU" in {
def _b16 : RegisterOperand<!cast<RegisterClass>(rc#"_32")> {
let OperandType = opType#"_INT16";
let ParserMatchClass = RegImmMatcher<MatchName#"B16">;
let DecoderMethod = "decodeOperand_VSrc16";
}
def _f16 : RegisterOperand<!cast<RegisterClass>(rc#"_32")> {
let OperandType = opType#"_FP16";
let ParserMatchClass = RegImmMatcher<MatchName#"F16">;
let DecoderMethod = "decodeOperand_VSrc16";
}
def _b32 : RegisterOperand<!cast<RegisterClass>(rc#"_32")> {
let OperandType = opType#"_INT";
let OperandType = opType#"_INT32";
let ParserMatchClass = RegImmMatcher<MatchName#"B32">;
}
def _f32 : RegisterOperand<!cast<RegisterClass>(rc#"_32")> {
let OperandType = opType#"_FP";
let OperandType = opType#"_FP32";
let ParserMatchClass = RegImmMatcher<MatchName#"F32">;
}
def _b64 : RegisterOperand<!cast<RegisterClass>(rc#"_64")> {
let OperandType = opType#"_INT";
let OperandType = opType#"_INT64";
let ParserMatchClass = RegImmMatcher<MatchName#"B64">;
}
def _f64 : RegisterOperand<!cast<RegisterClass>(rc#"_64")> {
let OperandType = opType#"_FP";
let OperandType = opType#"_FP64";
let ParserMatchClass = RegImmMatcher<MatchName#"F64">;
}
}
}
// FIXME: 64-bit sources can sometimes use 32-bit constants.
multiclass RegImmOperand <string rc, string MatchName>
: SIRegOperand<rc, MatchName, "OPERAND_REG_IMM32">;
: SIRegOperand<rc, MatchName, "OPERAND_REG_IMM">;
multiclass RegInlineOperand <string rc, string MatchName>
: SIRegOperand<rc, MatchName, "OPERAND_REG_INLINE_C">;

View File

@ -134,15 +134,14 @@ static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
MachineOperand &Src0 = MI.getOperand(Src0Idx);
// Only one literal constant is allowed per instruction, so if src0 is a
// literal constant then we can't do any folding.
if (Src0.isImm() &&
TII->isLiteralConstant(Src0, TII->getOpSize(MI, Src0Idx)))
if (TII->isLiteralConstant(MI, Src0Idx))
return;
// Try to fold Src0
MachineOperand &Src0 = MI.getOperand(Src0Idx);
if (Src0.isReg() && MRI.hasOneUse(Src0.getReg())) {
unsigned Reg = Src0.getReg();
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
@ -184,11 +183,15 @@ static void copyFlagsToImplicitVCC(MachineInstr &MI,
}
static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
return isInt<16>(Src.getImm()) && !TII->isInlineConstant(Src, 4);
return isInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
return isUInt<16>(Src.getImm()) && !TII->isInlineConstant(Src, 4);
return isUInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
@ -196,12 +199,12 @@ static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
bool &IsUnsigned) {
if (isInt<16>(Src.getImm())) {
IsUnsigned = false;
return !TII->isInlineConstant(Src, 4);
return !TII->isInlineConstant(Src);
}
if (isUInt<16>(Src.getImm())) {
IsUnsigned = true;
return !TII->isInlineConstant(Src, 4);
return !TII->isInlineConstant(Src);
}
return false;
@ -212,7 +215,7 @@ static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
static bool isReverseInlineImm(const SIInstrInfo *TII,
const MachineOperand &Src,
int32_t &ReverseImm) {
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src, 4))
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
return false;
ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));

View File

@ -329,25 +329,29 @@ unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType == AMDGPU::OPERAND_REG_IMM32_INT ||
OpType == AMDGPU::OPERAND_REG_IMM32_FP ||
OpType == AMDGPU::OPERAND_REG_INLINE_C_INT ||
OpType == AMDGPU::OPERAND_REG_INLINE_C_FP;
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType == AMDGPU::OPERAND_REG_IMM32_FP ||
OpType == AMDGPU::OPERAND_REG_INLINE_C_FP;
switch (OpType) {
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
return true;
default:
return false;
}
}
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType == AMDGPU::OPERAND_REG_INLINE_C_INT ||
OpType == AMDGPU::OPERAND_REG_INLINE_C_FP;
return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}
// Avoid using MCRegisterClass::getSize, since that function will go away
@ -413,6 +417,15 @@ bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
if (Literal >= -16 && Literal <= 64)
return true;
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
uint32_t Val = static_cast<uint32_t>(Literal);
return (Val == FloatToBits(0.0f)) ||
(Val == FloatToBits(1.0f)) ||
@ -426,6 +439,23 @@ bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
(Val == 0x3e22f983 && HasInv2Pi);
}
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
if (Literal >= -16 && Literal <= 64)
return true;
uint16_t Val = static_cast<uint16_t>(Literal);
return Val == 0x3C00 || // 1.0
Val == 0xBC00 || // -1.0
Val == 0x3800 || // 0.5
Val == 0xB800 || // -0.5
Val == 0x4000 || // 2.0
Val == 0xC000 || // -2.0
Val == 0x4400 || // 4.0
Val == 0xC400 || // -4.0
Val == 0x3118; // 1/2pi
}
} // End namespace AMDGPU
} // End namespace llvm

View File

@ -13,6 +13,8 @@
#include "AMDKernelCodeT.h"
#include "llvm/IR/CallingConv.h"
#include "SIDefines.h"
#define GET_INSTRINFO_OPERAND_ENUM
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRINFO_OPERAND_ENUM
@ -167,6 +169,37 @@ unsigned getRegBitWidth(const MCRegisterClass &RC);
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo);
LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
return 4;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
return 8;
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
return 2;
default:
llvm_unreachable("unhandled operand type");
}
}
LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
return getOperandSize(Desc.OpInfo[OpNo]);
}
/// \brief Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);
@ -174,6 +207,8 @@ bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);
} // end namespace AMDGPU
} // end namespace llvm

View File

@ -134,7 +134,8 @@ multiclass VOP2eInst <string opName,
}
class VOP_MADAK <ValueType vt> : VOPProfile <[vt, vt, vt, vt]> {
field dag Ins32 = (ins VCSrc_f32:$src0, VGPR_32:$src1, f32kimm:$imm);
field Operand ImmOpType = !if(!eq(vt.Size, 32), f32kimm, f16kimm);
field dag Ins32 = (ins VCSrc_f32:$src0, VGPR_32:$src1, ImmOpType:$imm);
field string Asm32 = "$vdst, $src0, $src1, $imm";
field bit HasExt = 0;
}
@ -143,7 +144,8 @@ def VOP_MADAK_F16 : VOP_MADAK <f16>;
def VOP_MADAK_F32 : VOP_MADAK <f32>;
class VOP_MADMK <ValueType vt> : VOPProfile <[vt, vt, vt, vt]> {
field dag Ins32 = (ins VCSrc_f32:$src0, f32kimm:$imm, VGPR_32:$src1);
field Operand ImmOpType = !if(!eq(vt.Size, 32), f32kimm, f16kimm);
field dag Ins32 = (ins VCSrc_f32:$src0, ImmOpType:$imm, VGPR_32:$src1);
field string Asm32 = "$vdst, $src0, $imm, $src1";
field bit HasExt = 0;
}

View File

@ -41,7 +41,7 @@ two:
}
; GCN-LABEL: {{^}}br_cc_f16_imm_a
; GCN: v_mov_b32_e32 v[[A_F16:[0-9]+]], 0x380{{0|1}}{{$}}
; SI: v_mov_b32_e32 v[[A_F16:[0-9]+]], 0x3800{{$}}
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; GCN: buffer_load_ushort v[[B_F16:[0-9]+]]
@ -49,7 +49,7 @@ two:
; SI: v_cmp_ngt_f32_e32 vcc, v[[B_F32]], v[[A_F32]]
; SI: s_cbranch_vccz
; VI: v_cmp_nlt_f16_e32 vcc, v[[A_F16]], v[[B_F16]]
; VI: v_cmp_nlt_f16_e32 vcc, 0.5, v[[B_F16]]
; VI: s_cbranch_vccnz
; VI: one{{$}}
@ -80,13 +80,13 @@ two:
}
; GCN-LABEL: {{^}}br_cc_f16_imm_b
; GCN: v_mov_b32_e32 v[[B_F16:[0-9]+]], {{0x37ff|0x3800}}{{$}}
; SI: v_mov_b32_e32 v[[B_F16:[0-9]+]], 0x3800{{$}}
; SI: v_cvt_f32_f16_e32 v[[B_F32:[0-9]+]], v[[B_F16]]
; GCN: buffer_load_ushort v[[A_F16:[0-9]+]]
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_cmp_nlt_f32_e32 vcc, v[[A_F32]], v[[B_F32]]
; VI: v_cmp_ngt_f16_e32 vcc, v[[B_F16]], v[[A_F16]]
; VI: v_cmp_ngt_f16_e32 vcc, 0.5, v[[A_F16]]
; GCN: s_cbranch_vccnz
; GCN: one{{$}}

View File

@ -693,11 +693,16 @@ define void @commute_uno_2.0_f64(i32 addrspace(1)* %out, double addrspace(1)* %i
ret void
}
; FIXME: Should be able to fold this frameindex
; Without commuting the frame index in the pre-regalloc run of
; SIShrinkInstructions, this was using the VOP3 compare.
; GCN-LABEL: {{^}}commute_frameindex:
; GCN: v_cmp_eq_u32_e32 vcc, 0, v{{[0-9]+}}
; XGCN: v_cmp_eq_u32_e32 vcc, 0, v{{[0-9]+}}
; GCN: v_mov_b32_e32 [[FI:v[0-9]+]], 0{{$}}
; GCN: v_cmp_eq_u32_e32 vcc, [[FI]], v{{[0-9]+}}
define void @commute_frameindex(i32 addrspace(1)* nocapture %out) #0 {
entry:
%stack0 = alloca i32

View File

@ -29,7 +29,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[B_F32:[0-9]+]], v[[B_F16]]
; SI: v_add_f32_e32 v[[R_F32:[0-9]+]], v[[A_F32]], v[[B_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], 0x3c00, v[[B_F16]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], 1.0, v[[B_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @fadd_f16_imm_a(
@ -48,7 +48,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_add_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], 0x4000, v[[A_F16]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], 2.0, v[[A_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @fadd_f16_imm_b(
@ -104,8 +104,8 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_add_f32_e32 v[[R_F32_1:[0-9]+]], v[[A_F32_1]], v[[B_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], 0x3c00, v[[B_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], 0x4000, v[[B_F16_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], 1.0, v[[B_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], 2.0, v[[B_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]
@ -132,8 +132,8 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_add_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], 0x4000, v[[A_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], 0x3c00, v[[A_F16_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], 2.0, v[[A_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], 1.0, v[[A_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]

View File

@ -48,7 +48,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_mul_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_mul_f16_e32 v[[R_F16:[0-9]+]], 0x4400, v[[A_F16]]
; VI: v_mul_f16_e32 v[[R_F16:[0-9]+]], 4.0, v[[A_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @fmul_f16_imm_b(
@ -105,7 +105,7 @@ entry:
; SI: v_mul_f32_e32 v[[R_F32_1:[0-9]+]], v[[A_F32_1]], v[[B_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_mul_f16_e32 v[[R_F16_0:[0-9]+]], 0x4200, v[[B_V2_F16]]
; VI: v_mul_f16_e32 v[[R_F16_1:[0-9]+]], 0x4400, v[[B_F16_1]]
; VI: v_mul_f16_e32 v[[R_F16_1:[0-9]+]], 4.0, v[[B_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]
@ -132,7 +132,7 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_mul_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_mul_f16_e32 v[[R_F16_0:[0-9]+]], 0x4400, v[[A_V2_F16]]
; VI: v_mul_f16_e32 v[[R_F16_0:[0-9]+]], 4.0, v[[A_V2_F16]]
; VI: v_mul_f16_e32 v[[R_F16_1:[0-9]+]], 0x4200, v[[A_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]

View File

@ -29,7 +29,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[B_F32:[0-9]+]], v[[B_F16]]
; SI: v_subrev_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_sub_f16_e32 v[[R_F16:[0-9]+]], 0x3c00, v[[B_F16]]
; VI: v_sub_f16_e32 v[[R_F16:[0-9]+]], 1.0, v[[B_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @fsub_f16_imm_a(
@ -48,7 +48,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_add_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], 0xc000, v[[A_F16]]
; VI: v_add_f16_e32 v[[R_F16:[0-9]+]], -2.0, v[[A_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @fsub_f16_imm_b(
@ -104,8 +104,8 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_subrev_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_sub_f16_e32 v[[R_F16_0:[0-9]+]], 0x3c00, v[[B_V2_F16]]
; VI: v_sub_f16_e32 v[[R_F16_1:[0-9]+]], 0x4000, v[[B_F16_1]]
; VI: v_sub_f16_e32 v[[R_F16_0:[0-9]+]], 1.0, v[[B_V2_F16]]
; VI: v_sub_f16_e32 v[[R_F16_1:[0-9]+]], 2.0, v[[B_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]
@ -132,8 +132,8 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_subrev_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], 0xc000, v[[A_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], 0xbc00, v[[A_F16_1]]
; VI: v_add_f16_e32 v[[R_F16_0:[0-9]+]], -2.0, v[[A_V2_F16]]
; VI: v_add_f16_e32 v[[R_F16_1:[0-9]+]], -1.0, v[[A_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]

View File

@ -0,0 +1,316 @@
; RUN: llc -mtriple=amdgcn--amdhsa -mcpu=tonga -mattr=-flat-for-global -verify-machineinstrs < %s | FileCheck -check-prefix=GCN -check-prefix=VI %s
; RUN: llc -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -check-prefix=GCN -check-prefix=SI %s
; FIXME: Merge into imm.ll
; GCN-LABEL: {{^}}store_inline_imm_neg_0.0_i16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0x8000{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffff8000{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_neg_0.0_i16(i16 addrspace(1)* %out) {
store volatile i16 -32768, i16 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_0.0_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_0.0_f16(half addrspace(1)* %out) {
store half 0.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_imm_neg_0.0_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0x8000{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffff8000{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_imm_neg_0.0_f16(half addrspace(1)* %out) {
store half -0.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_0.5_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x3800{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_0.5_f16(half addrspace(1)* %out) {
store half 0.5, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_m_0.5_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xb800{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffffb800{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_m_0.5_f16(half addrspace(1)* %out) {
store half -0.5, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_1.0_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x3c00{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_1.0_f16(half addrspace(1)* %out) {
store half 1.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_m_1.0_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xbc00{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffffbc00{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_m_1.0_f16(half addrspace(1)* %out) {
store half -1.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_2.0_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x4000{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_2.0_f16(half addrspace(1)* %out) {
store half 2.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_m_2.0_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xc000{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffffc000{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_m_2.0_f16(half addrspace(1)* %out) {
store half -2.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_4.0_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x4400{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_4.0_f16(half addrspace(1)* %out) {
store half 4.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_m_4.0_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xc400{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffffc400{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_m_4.0_f16(half addrspace(1)* %out) {
store half -4.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_inv_2pi_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x3118{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_inv_2pi_f16(half addrspace(1)* %out) {
store half 0xH3118, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_inline_imm_m_inv_2pi_f16:
; SI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xb118{{$}}
; VI: v_mov_b32_e32 [[REG:v[0-9]+]], 0xffffb118{{$}}
; GCN: buffer_store_short [[REG]]
define void @store_inline_imm_m_inv_2pi_f16(half addrspace(1)* %out) {
store half 0xHB118, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}store_literal_imm_f16:
; GCN: v_mov_b32_e32 [[REG:v[0-9]+]], 0x6c00
; GCN: buffer_store_short [[REG]]
define void @store_literal_imm_f16(half addrspace(1)* %out) {
store half 4096.0, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_0.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_0.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_0.5_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 0.5, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_0.5_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0.5
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_0.5_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -0.5, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_0.5_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, -0.5
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_1.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 1.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_1.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 1.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_1.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -1.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_1.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, -1.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_2.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 2.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_2.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 2.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_2.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -2.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_2.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, -2.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_4.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 4.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_4.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 4.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_4.0_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -4.0, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_4.0_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, -4.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}commute_add_inline_imm_0.5_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 0.5, [[VAL]]
; VI: buffer_store_short [[REG]]
define void @commute_add_inline_imm_0.5_f16(half addrspace(1)* %out, half addrspace(1)* %in) {
%x = load half, half addrspace(1)* %in
%y = fadd half %x, 0.5
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}commute_add_literal_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 0x6400, [[VAL]]
; VI: buffer_store_short [[REG]]
define void @commute_add_literal_f16(half addrspace(1)* %out, half addrspace(1)* %in) {
%x = load half, half addrspace(1)* %in
%y = fadd half %x, 1024.0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_1_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 1, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_1_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xH0001
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_2_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 2, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_2_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xH0002
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_16_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 16, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_16_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xH0010
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_1_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -1, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_1_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xHFFFF
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_2_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -2, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_2_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xHFFFE
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_neg_16_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], -16, [[VAL]]{{$}}
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_neg_16_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xHFFF0
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_63_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 63, [[VAL]]
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_63_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xH003F
store half %y, half addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}add_inline_imm_64_f16:
; VI: buffer_load_ushort [[VAL:v[0-9]+]]
; VI: v_add_f16_e32 [[REG:v[0-9]+]], 64, [[VAL]]
; VI: buffer_store_short [[REG]]
define void @add_inline_imm_64_f16(half addrspace(1)* %out, half %x) {
%y = fadd half %x, 0xH0040
store half %y, half addrspace(1)* %out
ret void
}

View File

@ -20,7 +20,7 @@ define void @ldexp_f16(
; GCN-LABEL: {{^}}ldexp_f16_imm_a
; GCN: buffer_load_dword v[[B_I32:[0-9]+]]
; VI: v_ldexp_f16_e32 v[[R_F16:[0-9]+]], 0x4000, v[[B_I32]]
; VI: v_ldexp_f16_e32 v[[R_F16:[0-9]+]], 2.0, v[[B_I32]]
; GCN: buffer_store_short v[[R_F16]]
define void @ldexp_f16_imm_a(
half addrspace(1)* %r,

View File

@ -51,7 +51,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_max_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_max_f16_e32 v[[R_F16:[0-9]+]], 0x4400, v[[A_F16]]
; VI: v_max_f16_e32 v[[R_F16:[0-9]+]], 4.0, v[[A_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @maxnum_f16_imm_b(
@ -108,7 +108,7 @@ entry:
; SI: v_max_f32_e32 v[[R_F32_1:[0-9]+]], v[[A_F32_1]], v[[B_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_max_f16_e32 v[[R_F16_0:[0-9]+]], 0x4200, v[[B_V2_F16]]
; VI: v_max_f16_e32 v[[R_F16_1:[0-9]+]], 0x4400, v[[B_F16_1]]
; VI: v_max_f16_e32 v[[R_F16_1:[0-9]+]], 4.0, v[[B_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]
@ -135,7 +135,7 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_max_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_max_f16_e32 v[[R_F16_0:[0-9]+]], 0x4400, v[[A_V2_F16]]
; VI: v_max_f16_e32 v[[R_F16_0:[0-9]+]], 4.0, v[[A_V2_F16]]
; VI: v_max_f16_e32 v[[R_F16_1:[0-9]+]], 0x4200, v[[A_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]

View File

@ -51,7 +51,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[A_F32:[0-9]+]], v[[A_F16]]
; SI: v_min_f32_e32 v[[R_F32:[0-9]+]], v[[B_F32]], v[[A_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_min_f16_e32 v[[R_F16:[0-9]+]], 0x4400, v[[A_F16]]
; VI: v_min_f16_e32 v[[R_F16:[0-9]+]], 4.0, v[[A_F16]]
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
define void @minnum_f16_imm_b(
@ -108,7 +108,7 @@ entry:
; SI: v_min_f32_e32 v[[R_F32_1:[0-9]+]], v[[A_F32_1]], v[[B_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_min_f16_e32 v[[R_F16_0:[0-9]+]], 0x4200, v[[B_V2_F16]]
; VI: v_min_f16_e32 v[[R_F16_1:[0-9]+]], 0x4400, v[[B_F16_1]]
; VI: v_min_f16_e32 v[[R_F16_1:[0-9]+]], 4.0, v[[B_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]
; GCN: v_or_b32_e32 v[[R_V2_F16:[0-9]+]], v[[R_F16_HI]], v[[R_F16_LO]]
@ -135,7 +135,7 @@ entry:
; SI: v_cvt_f16_f32_e32 v[[R_F16_0:[0-9]+]], v[[R_F32_0]]
; SI: v_min_f32_e32 v[[R_F32_1:[0-9]+]], v[[B_F32_1]], v[[A_F32_1]]
; SI: v_cvt_f16_f32_e32 v[[R_F16_1:[0-9]+]], v[[R_F32_1]]
; VI: v_min_f16_e32 v[[R_F16_0:[0-9]+]], 0x4400, v[[A_V2_F16]]
; VI: v_min_f16_e32 v[[R_F16_0:[0-9]+]], 4.0, v[[A_V2_F16]]
; VI: v_min_f16_e32 v[[R_F16_1:[0-9]+]], 0x4200, v[[A_F16_1]]
; GCN: v_and_b32_e32 v[[R_F16_LO:[0-9]+]], 0xffff, v[[R_F16_0]]
; GCN: v_lshlrev_b32_e32 v[[R_F16_HI:[0-9]+]], 16, v[[R_F16_1]]

View File

@ -45,8 +45,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[D_F32:[0-9]+]], v[[D_F16]]
; SI: v_cndmask_b32_e32 v[[R_F32:[0-9]+]], v[[D_F32]], v[[C_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_mov_b32_e32 v[[A_F16:[0-9]+]], 0x3800{{$}}
; VI: v_cmp_lt_f16_e32 vcc, v[[A_F16]], v[[B_F16]]
; VI: v_cmp_lt_f16_e32 vcc, 0.5, v[[B_F16]]
; VI: v_cndmask_b32_e32 v[[R_F16:[0-9]+]], v[[D_F16]], v[[C_F16]], vcc
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm
@ -76,8 +75,7 @@ entry:
; SI: v_cvt_f32_f16_e32 v[[D_F32:[0-9]+]], v[[D_F16]]
; SI: v_cndmask_b32_e32 v[[R_F32:[0-9]+]], v[[D_F32]], v[[C_F32]]
; SI: v_cvt_f16_f32_e32 v[[R_F16:[0-9]+]], v[[R_F32]]
; VI: v_mov_b32_e32 v[[B_F16:[0-9]+]], 0x3800{{$}}
; VI: v_cmp_gt_f16_e32 vcc, v[[B_F16]], v[[A_F16]]
; VI: v_cmp_gt_f16_e32 vcc, 0.5, v[[A_F16]]
; VI: v_cndmask_b32_e32 v[[R_F16:[0-9]+]], v[[D_F16]], v[[C_F16]], vcc
; GCN: buffer_store_short v[[R_F16]]
; GCN: s_endpgm

View File

@ -0,0 +1,709 @@
# RUN: llc --mtriple=amdgcn--amdhsa -mcpu=fiji -verify-machineinstrs -run-pass si-fold-operands,si-shrink-instructions %s -o - | FileCheck %s
--- |
define void @add_f32_1.0_one_f16_use() #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f32.add = fadd float %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile float %f32.add, float addrspace(1)* undef
ret void
}
define void @add_f32_1.0_multi_f16_use() #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f32.add = fadd float %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile float %f32.add, float addrspace(1)* undef
ret void
}
define void @add_f32_1.0_one_f32_use_one_f16_use () #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f32.add = fadd float %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile float %f32.add, float addrspace(1)* undef
ret void
}
define void @add_f32_1.0_one_f32_use_multi_f16_use () #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f16.add1 = fadd half %f16.val1, 0xH3C00
%f32.add = fadd float %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile half %f16.add1, half addrspace(1)* undef
store volatile float %f32.add, float addrspace(1)* undef
ret void
}
define void @add_i32_1_multi_f16_use() #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH0001
%f16.add1 = fadd half %f16.val1, 0xH0001
store volatile half %f16.add0, half addrspace(1)* undef
store volatile half %f16.add1,half addrspace(1)* undef
ret void
}
define void @add_i32_m2_one_f32_use_multi_f16_use () #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xHFFFE
%f16.add1 = fadd half %f16.val1, 0xHFFFE
%f32.add = fadd float %f32.val, 0xffffffffc0000000
store volatile half %f16.add0, half addrspace(1)* undef
store volatile half %f16.add1, half addrspace(1)* undef
store volatile float %f32.add, float addrspace(1)* undef
ret void
}
define void @add_f16_1.0_multi_f32_use() #0 {
%f32.val0 = load volatile float, float addrspace(1)* undef
%f32.val1 = load volatile float, float addrspace(1)* undef
%f32.val = load volatile float, float addrspace(1)* undef
%f32.add0 = fadd float %f32.val0, 1.0
%f32.add1 = fadd float %f32.val1, 1.0
store volatile float %f32.add0, float addrspace(1)* undef
store volatile float %f32.add1, float addrspace(1)* undef
ret void
}
define void @add_f16_1.0_other_high_bits_multi_f16_use() #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile half, half addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f32.add = fadd half %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile half %f32.add, half addrspace(1)* undef
ret void
}
define void @add_f16_1.0_other_high_bits_use_f16_f32() #0 {
%f16.val0 = load volatile half, half addrspace(1)* undef
%f16.val1 = load volatile half, half addrspace(1)* undef
%f32.val = load volatile half, half addrspace(1)* undef
%f16.add0 = fadd half %f16.val0, 0xH3C00
%f32.add = fadd half %f32.val, 1.000000e+00
store volatile half %f16.add0, half addrspace(1)* undef
store volatile half %f32.add, half addrspace(1)* undef
ret void
}
attributes #0 = { nounwind }
...
---
# f32 1.0 with a single use should be folded as the low 32-bits of a
# literal constant.
# CHECK-LABEL: name: add_f32_1.0_one_f16_use
# CHECK: %13 = V_ADD_F16_e32 1065353216, killed %11, implicit %exec
name: add_f32_1.0_one_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = V_MOV_B32_e32 1065353216, implicit %exec
%13 = V_ADD_F16_e64 0, killed %11, 0, %12, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %13, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
S_ENDPGM
...
---
# Materialized f32 inline immediate should not be folded into the f16
# operands
# CHECK-LABEL: name: add_f32_1.0_multi_f16_use
# CHECK: %13 = V_MOV_B32_e32 1065353216, implicit %exec
# CHECK: %14 = V_ADD_F16_e32 %13, killed %11, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 killed %13, killed %12, implicit %exec
name: add_f32_1.0_multi_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%13 = V_MOV_B32_e32 1065353216, implicit %exec
%14 = V_ADD_F16_e64 0, killed %11, 0, %13, 0, 0, implicit %exec
%15 = V_ADD_F16_e64 0, killed %12, 0, killed %13, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %14, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
S_ENDPGM
...
---
# f32 1.0 should be folded into the single f32 use as an inline
# immediate, and folded into the single f16 use as a literal constant
# CHECK-LABEL: name: add_f32_1.0_one_f32_use_one_f16_use
# CHECK: %15 = V_ADD_F16_e32 1065353216, %11, implicit %exec
# CHECK: %16 = V_ADD_F32_e32 1065353216, killed %13, implicit %exec
name: add_f32_1.0_one_f32_use_one_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
- { id: 16, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%13 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%14 = V_MOV_B32_e32 1065353216, implicit %exec
%15 = V_ADD_F16_e64 0, %11, 0, %14, 0, 0, implicit %exec
%16 = V_ADD_F32_e64 0, killed %13, 0, killed %14, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_DWORD_OFFSET killed %16, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
S_ENDPGM
...
---
# f32 1.0 should be folded for the single f32 use as an inline
# constant, and not folded as a multi-use literal for the f16 cases
# CHECK-LABEL: name: add_f32_1.0_one_f32_use_multi_f16_use
# CHECK: %14 = V_MOV_B32_e32 1065353216, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 %14, %11, implicit %exec
# CHECK: %16 = V_ADD_F16_e32 %14, %12, implicit %exec
# CHECK: %17 = V_ADD_F32_e32 1065353216, killed %13, implicit %exec
name: add_f32_1.0_one_f32_use_multi_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
- { id: 16, class: vgpr_32 }
- { id: 17, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%13 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%14 = V_MOV_B32_e32 1065353216, implicit %exec
%15 = V_ADD_F16_e64 0, %11, 0, %14, 0, 0, implicit %exec
%16 = V_ADD_F16_e64 0, %12, 0, %14, 0, 0, implicit %exec
%17 = V_ADD_F32_e64 0, killed %13, 0, killed %14, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %16, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_DWORD_OFFSET killed %17, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
S_ENDPGM
...
---
# CHECK-LABEL: name: add_i32_1_multi_f16_use
# CHECK: %13 = V_MOV_B32_e32 1, implicit %exec
# CHECK: %14 = V_ADD_F16_e32 1, killed %11, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 1, killed %12, implicit %exec
name: add_i32_1_multi_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%13 = V_MOV_B32_e32 1, implicit %exec
%14 = V_ADD_F16_e64 0, killed %11, 0, %13, 0, 0, implicit %exec
%15 = V_ADD_F16_e64 0, killed %12, 0, killed %13, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %14, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
S_ENDPGM
...
---
# CHECK-LABEL: name: add_i32_m2_one_f32_use_multi_f16_use
# CHECK: %14 = V_MOV_B32_e32 -2, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 -2, %11, implicit %exec
# CHECK: %16 = V_ADD_F16_e32 -2, %12, implicit %exec
# CHECK: %17 = V_ADD_F32_e32 -2, killed %13, implicit %exec
name: add_i32_m2_one_f32_use_multi_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
- { id: 16, class: vgpr_32 }
- { id: 17, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%13 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%14 = V_MOV_B32_e32 -2, implicit %exec
%15 = V_ADD_F16_e64 0, %11, 0, %14, 0, 0, implicit %exec
%16 = V_ADD_F16_e64 0, %12, 0, %14, 0, 0, implicit %exec
%17 = V_ADD_F32_e64 0, killed %13, 0, killed %14, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %16, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_DWORD_OFFSET killed %17, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
S_ENDPGM
...
---
# f32 1.0 should be folded for the single f32 use as an inline
# constant, and not folded as a multi-use literal for the f16 cases
# CHECK-LABEL: name: add_f16_1.0_multi_f32_use
# CHECK: %13 = V_MOV_B32_e32 15360, implicit %exec
# CHECK: %14 = V_ADD_F32_e32 %13, %11, implicit %exec
# CHECK: %15 = V_ADD_F32_e32 %13, %12, implicit %exec
name: add_f16_1.0_multi_f32_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%12 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%13 = V_MOV_B32_e32 15360, implicit %exec
%14 = V_ADD_F32_e64 0, %11, 0, %13, 0, 0, implicit %exec
%15 = V_ADD_F32_e64 0, %12, 0, %13, 0, 0, implicit %exec
BUFFER_STORE_DWORD_OFFSET killed %14, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
BUFFER_STORE_DWORD_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
S_ENDPGM
...
---
# The low 16-bits are an inline immediate, but the high bits are junk
# FIXME: Should be able to fold this
# CHECK-LABEL: name: add_f16_1.0_other_high_bits_multi_f16_use
# CHECK: %13 = V_MOV_B32_e32 80886784, implicit %exec
# CHECK: %14 = V_ADD_F16_e32 %13, %11, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 %13, %12, implicit %exec
name: add_f16_1.0_other_high_bits_multi_f16_use
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%12 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%13 = V_MOV_B32_e32 80886784, implicit %exec
%14 = V_ADD_F16_e64 0, %11, 0, %13, 0, 0, implicit %exec
%15 = V_ADD_F16_e64 0, %12, 0, %13, 0, 0, implicit %exec
BUFFER_STORE_SHORT_OFFSET killed %14, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
S_ENDPGM
...
---
# FIXME: Should fold inline immediate into f16 and literal use into
# f32 instruction.
# CHECK-LABEL: name: add_f16_1.0_other_high_bits_use_f16_f32
# CHECK: %13 = V_MOV_B32_e32 305413120, implicit %exec
# CHECK: %14 = V_ADD_F32_e32 %13, %11, implicit %exec
# CHECK: %15 = V_ADD_F16_e32 %13, %12, implicit %exec
name: add_f16_1.0_other_high_bits_use_f16_f32
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
- { id: 0, class: sreg_64 }
- { id: 1, class: sreg_32 }
- { id: 2, class: sgpr_32 }
- { id: 3, class: vgpr_32 }
- { id: 4, class: sreg_64 }
- { id: 5, class: sreg_32 }
- { id: 6, class: sreg_64 }
- { id: 7, class: sreg_32 }
- { id: 8, class: sreg_32 }
- { id: 9, class: sreg_32 }
- { id: 10, class: sreg_128 }
- { id: 11, class: vgpr_32 }
- { id: 12, class: vgpr_32 }
- { id: 13, class: vgpr_32 }
- { id: 14, class: vgpr_32 }
- { id: 15, class: vgpr_32 }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
body: |
bb.0 (%ir-block.0):
%4 = IMPLICIT_DEF
%5 = COPY %4.sub1
%6 = IMPLICIT_DEF
%7 = COPY %6.sub0
%8 = S_MOV_B32 61440
%9 = S_MOV_B32 -1
%10 = REG_SEQUENCE killed %7, 1, killed %5, 2, killed %9, 3, killed %8, 4
%11 = BUFFER_LOAD_DWORD_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 4 from `float addrspace(1)* undef`)
%12 = BUFFER_LOAD_USHORT_OFFSET %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile load 2 from `half addrspace(1)* undef`)
%13 = V_MOV_B32_e32 305413120, implicit %exec
%14 = V_ADD_F32_e64 0, %11, 0, %13, 0, 0, implicit %exec
%15 = V_ADD_F16_e64 0, %12, 0, %13, 0, 0, implicit %exec
BUFFER_STORE_DWORD_OFFSET killed %14, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 4 into `float addrspace(1)* undef`)
BUFFER_STORE_SHORT_OFFSET killed %15, %10, 0, 0, 0, 0, 0, implicit %exec :: (volatile store 2 into `half addrspace(1)* undef`)
S_ENDPGM
...

View File

@ -0,0 +1,21 @@
// XFAIL: *
// RUN: not llvm-mc -arch=amdgcn -mcpu=tonga -show-encoding %s 2>&1 | FileCheck -check-prefix=NOVI %s
v_add_f16 v1, 0xfffff, v2
// NOVI: 19: error: invalid operand for instruction
v_add_f16 v1, 0x10000, v2
// NOVI: 19: error: invalid operand for instruction
v_add_f16 v1, v2, -0.0
v_add_f16 v1, v2, 1
// FIXME: Should give truncate error
v_add_f16 v1, -32769, v2
v_add_f16 v1, 65536, v2
v_add_f32 v1, 4294967296, v2
v_add_f32 v1, 0x0000000100000000, v2
v_and_b32 v1, 0x0000000100000000, v2

148
test/MC/AMDGPU/literal16.s Normal file
View File

@ -0,0 +1,148 @@
// RUN: llvm-mc -arch=amdgcn -mcpu=tonga -show-encoding %s | FileCheck -check-prefix=GCN -check-prefix=CIVI -check-prefix=VI %s
v_add_f16 v1, 0, v2
// VI: v_add_f16_e32 v1, 0, v2 ; encoding: [0x80,0x04,0x02,0x3e]
v_add_f16 v1, 0.0, v2
// VI: v_add_f16_e32 v1, 0, v2 ; encoding: [0x80,0x04,0x02,0x3e]
v_add_f16 v1, v2, 0
// VI: v_add_f16_e64 v1, v2, 0 ; encoding: [0x01,0x00,0x1f,0xd1,0x02,0x01,0x01,0x00]
v_add_f16 v1, v2, 0.0
// VI: v_add_f16_e64 v1, v2, 0 ; encoding: [0x01,0x00,0x1f,0xd1,0x02,0x01,0x01,0x00]
v_add_f16 v1, -0.0, v2
// VI: v_add_f16_e32 v1, 0x8000, v2 ; encoding: [0xff,0x04,0x02,0x3e,0x00,0x80,0x00,0x00]
v_add_f16 v1, 1.0, v2
// VI: v_add_f16_e32 v1, 1.0, v2 ; encoding: [0xf2,0x04,0x02,0x3e]
v_add_f16 v1, -1.0, v2
// VI: v_add_f16_e32 v1, -1.0, v2 ; encoding: [0xf3,0x04,0x02,0x3e]
v_add_f16 v1, -0.5, v2
// VI: v_add_f16_e32 v1, -0.5, v2 ; encoding: [0xf1,0x04,0x02,0x3e]
v_add_f16 v1, 0.5, v2
// VI: v_add_f16_e32 v1, 0.5, v2 ; encoding: [0xf0,0x04,0x02,0x3e]
v_add_f16 v1, 2.0, v2
// VI: v_add_f16_e32 v1, 2.0, v2 ; encoding: [0xf4,0x04,0x02,0x3e]
v_add_f16 v1, -2.0, v2
// VI: v_add_f16_e32 v1, -2.0, v2 ; encoding: [0xf5,0x04,0x02,0x3e]
v_add_f16 v1, 4.0, v2
// VI: v_add_f16_e32 v1, 4.0, v2 ; encoding: [0xf6,0x04,0x02,0x3e]
v_add_f16 v1, -4.0, v2
// VI: v_add_f16_e32 v1, -4.0, v2 ; encoding: [0xf7,0x04,0x02,0x3e]
v_add_f16 v1, 0.15915494, v2
// VI: v_add_f16_e32 v1, 0.15915494, v2 ; encoding: [0xf8,0x04,0x02,0x3e]
v_add_f16 v1, -0.15915494, v2
// VI: v_add_f16_e32 v1, 0xb118, v2 ; encoding: [0xff,0x04,0x02,0x3e,0x18,0xb1,0x00,0x00]
v_add_f16 v1, -1, v2
// VI: v_add_f16_e32 v1, -1, v2 ; encoding: [0xc1,0x04,0x02,0x3e]
v_add_f16 v1, -2, v2
// VI: v_add_f16_e32 v1, -2, v2 ; encoding: [0xc2,0x04,0x02,0x3e]
v_add_f16 v1, -3, v2
// VI: v_add_f16_e32 v1, -3, v2 ; encoding: [0xc3,0x04,0x02,0x3e]
v_add_f16 v1, -16, v2
// VI: v_add_f16_e32 v1, -16, v2 ; encoding: [0xd0,0x04,0x02,0x3e]
v_add_f16 v1, 1, v2
// VI: v_add_f16_e32 v1, 1, v2 ; encoding: [0x81,0x04,0x02,0x3e]
v_add_f16 v1, 2, v2
// VI: v_add_f16_e32 v1, 2, v2 ; encoding: [0x82,0x04,0x02,0x3e]
v_add_f16 v1, 3, v2
// VI: v_add_f16_e32 v1, 3, v2 ; encoding: [0x83,0x04,0x02,0x3e]
v_add_f16 v1, 4, v2
// VI: v_add_f16_e32 v1, 4, v2 ; encoding: [0x84,0x04,0x02,0x3e]
v_add_f16 v1, 15, v2
// VI: v_add_f16_e32 v1, 15, v2 ; encoding: [0x8f,0x04,0x02,0x3e]
v_add_f16 v1, 16, v2
// VI: v_add_f16_e32 v1, 16, v2 ; encoding: [0x90,0x04,0x02,0x3e]
v_add_f16 v1, 63, v2
// VI: v_add_f16_e32 v1, 63, v2 ; encoding: [0xbf,0x04,0x02,0x3e]
v_add_f16 v1, 64, v2
// VI: v_add_f16_e32 v1, 64, v2 ; encoding: [0xc0,0x04,0x02,0x3e]
v_add_f16 v1, 0x0001, v2
// VI: v_add_f16_e32 v1, 1, v2 ; encoding: [0x81,0x04,0x02,0x3e]
v_add_f16 v1, 0xffff, v2
// VI: v_add_f16_e32 v1, -1, v2 ; encoding: [0xc1,0x04,0x02,0x3e]
v_add_f16 v1, -17, v2
// VI: v_add_f16_e32 v1, 0xffef, v2 ; encoding: [0xff,0x04,0x02,0x3e,0xef,0xff,0x00,0x00]
v_add_f16 v1, 65, v2
// VI: v_add_f16_e32 v1, 0x41, v2 ; encoding: [0xff,0x04,0x02,0x3e,0x41,0x00,0x00,0x00]
v_add_f16 v1, 0x3c00, v2
// VI: v_add_f16_e32 v1, 1.0, v2 ; encoding: [0xf2,0x04,0x02,0x3e]
v_add_f16 v1, 0xbc00, v2
// VI: v_add_f16_e32 v1, -1.0, v2 ; encoding: [0xf3,0x04,0x02,0x3e]
v_add_f16 v1, 0x3800, v2
// VI: v_add_f16_e32 v1, 0.5, v2 ; encoding: [0xf0,0x04,0x02,0x3e]
v_add_f16 v1, 0xb800, v2
// VI: v_add_f16_e32 v1, -0.5, v2 ; encoding: [0xf1,0x04,0x02,0x3e]
v_add_f16 v1, 0x4000, v2
// VI: v_add_f16_e32 v1, 2.0, v2 ; encoding: [0xf4,0x04,0x02,0x3e]
v_add_f16 v1, 0xc000, v2
// VI: v_add_f16_e32 v1, -2.0, v2 ; encoding: [0xf5,0x04,0x02,0x3e]
v_add_f16 v1, 0x4400, v2
// VI: v_add_f16_e32 v1, 4.0, v2 ; encoding: [0xf6,0x04,0x02,0x3e]
v_add_f16 v1, 0xc400, v2
// VI: v_add_f16_e32 v1, -4.0, v2 ; encoding: [0xf7,0x04,0x02,0x3e]
v_add_f16 v1, 0x3118, v2
// VI: v_add_f16_e32 v1, 0.15915494, v2 ; encoding: [0xf8,0x04,0x02,0x3e]
v_add_f16 v1, -32768, v2
// VI: v_add_f16_e32 v1, 0x8000, v2 ; encoding: [0xff,0x04,0x02,0x3e,0x00,0x80,0x00,0x00]
v_add_f16 v1, 32767, v2
// VI: v_add_f16_e32 v1, 0x7fff, v2 ; encoding: [0xff,0x04,0x02,0x3e,0xff,0x7f,0x00,0x00]
v_add_f16 v1, 65535, v2
// VI: v_add_f16_e32 v1, -1, v2 ; encoding: [0xc1,0x04,0x02,0x3e]
// K-constant
v_madmk_f16 v1, v2, 0x4280, v3
// VI: v_madmk_f16_e32 v1, v2, 0x4280, v3 ; encoding: [0x02,0x07,0x02,0x48,0x80,0x42,0x00,0x00]
v_madmk_f16 v1, v2, 1.0, v3
// VI: v_madmk_f16_e32 v1, v2, 0x3c00, v3 ; encoding: [0x02,0x07,0x02,0x48,0x00,0x3c,0x00,0x00]
v_madmk_f16 v1, v2, 1, v3
// VI: v_madmk_f16_e32 v1, v2, 0x1, v3 ; encoding: [0x02,0x07,0x02,0x48,0x01,0x00,0x00,0x00]
v_madmk_f16 v1, v2, 64.0, v3
// VI: v_madmk_f16_e32 v1, v2, 0x5400, v3 ; encoding: [0x02,0x07,0x02,0x48,0x00,0x54,0x00,0x00]
v_add_f16_e32 v1, 64.0, v2

View File

@ -422,12 +422,12 @@ v_mac_f16_e32 v1, v2, v3
// NOSICI: error: instruction not supported on this GPU
// NOSICI: v_madmk_f16 v1, v2, 64.0, v3
// VI: v_madmk_f16_e32 v1, v2, 0x42800000, v3 ; encoding: [0x02,0x07,0x02,0x48,0x00,0x00,0x80,0x42]
// VI: v_madmk_f16_e32 v1, v2, 0x5400, v3 ; encoding: [0x02,0x07,0x02,0x48,0x00,0x54,0x00,0x00]
v_madmk_f16 v1, v2, 64.0, v3
// NOSICI: error: instruction not supported on this GPU
// NOSICI: v_madak_f16 v1, v2, v3, 64.0
// VI: v_madak_f16_e32 v1, v2, v3, 0x42800000 ; encoding: [0x02,0x07,0x02,0x4a,0x00,0x00,0x80,0x42]
// VI: v_madak_f16_e32 v1, v2, v3, 0x5400 ; encoding: [0x02,0x07,0x02,0x4a,0x00,0x54,0x00,0x00]
v_madak_f16 v1, v2, v3, 64.0
// NOSICI: error: instruction not supported on this GPU

View File

@ -0,0 +1,54 @@
# RUN: llvm-mc -arch=amdgcn -mcpu=tonga -disassemble -show-encoding %s | FileCheck -check-prefix=VI %s
# VI: v_add_f16_e32 v1, 0.5, v3 ; encoding: [0xf0,0x06,0x02,0x3e]
0xf0 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, -0.5, v3 ; encoding: [0xf1,0x06,0x02,0x3e]
0xf1 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, 1.0, v3 ; encoding: [0xf2,0x06,0x02,0x3e]
0xf2 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, -1.0, v3 ; encoding: [0xf3,0x06,0x02,0x3e]
0xf3 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, 2.0, v3 ; encoding: [0xf4,0x06,0x02,0x3e]
0xf4 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, -2.0, v3 ; encoding: [0xf5,0x06,0x02,0x3e]
0xf5 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, 4.0, v3 ; encoding: [0xf6,0x06,0x02,0x3e]
0xf6 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, -4.0, v3 ; encoding: [0xf7,0x06,0x02,0x3e]
0xf7 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, 0.15915494, v3 ; encoding: [0xf8,0x06,0x02,0x3e]
0xf8 0x06 0x02 0x3e
# VI: v_add_f16_e32 v1, 0x41, v3 ; encoding: [0xff,0x06,0x02,0x3e,0x41,0x00,0x00,0x00]
0xff 0x06 0x02 0x3e 0x41 0x00 0x00 0x00
# VI: v_add_f16_e32 v1, 0x100, v3 ; encoding: [0xff,0x06,0x02,0x3e,0x00,0x01,0x00,0x00]
0xff 0x06 0x02 0x3e 0x00 0x01 0x00 0x00
# non-zero unused bits in constant
# VI: v_add_f16_e32 v1, 0x10041, v3 ; encoding: [0xff,0x06,0x02,0x3e,0x41,0x00,0x01,0x00]
0xff 0x06 0x02 0x3e 0x41 0x00 0x01 0x00
# VI: v_add_f16_e32 v1, 0x1000041, v3 ; encoding: [0xff,0x06,0x02,0x3e,0x41,0x00,0x00,0x01]
0xff 0x06 0x02 0x3e 0x41 0x00 0x00 0x01
# FIXME: This should be able to round trip with literal after instruction
# VI: v_add_f16_e32 v1, 0, v3 ; encoding: [0x80,0x06,0x02,0x3e]
0xff 0x06 0x02 0x3e 0x00 0x00 0x00 0x00
# VI: v_madmk_f16_e32 v1, v2, 0x41, v3 ; encoding: [0x02,0x07,0x02,0x48,0x41,0x00,0x00,0x00]
0x02 0x07 0x02 0x48 0x41 0x00 0x00 0x00
# VI: v_madmk_f16_e32 v1, v2, 0x10041, v3 ; encoding: [0x02,0x07,0x02,0x48,0x41,0x00,0x01,0x00]
0x02 0x07 0x02 0x48 0x41 0x00 0x01 0x00
# VI: v_madmk_f16_e32 v1, v2, 0x1000041, v3 ; encoding: [0x02,0x07,0x02,0x48,0x41,0x00,0x00,0x01]
0x02 0x07 0x02 0x48 0x41 0x00 0x00 0x01

View File

@ -246,5 +246,5 @@
# CHECK: v_cvt_f16_i16_e32 v123, 0x21c2 ; encoding: [0xff,0x74,0xf6,0x7e,0xc2,0x21,0x00,0x00]
0xff 0x74 0xf6 0x7e 0xc2 0x21 0x00 0x00
# CHECK: v_cvt_u16_f16_e32 v123, 0x3f200000 ; encoding: [0xff,0x76,0xf6,0x7e,0x00,0x00,0x20,0x3f]
0xff 0x76 0xf6 0x7e 0x00 0x00 0x20 0x3f
# CHECK: v_cvt_u16_f16_e32 v123, 0x3f20 ; encoding: [0xff,0x76,0xf6,0x7e,0x20,0x3f,0x00,0x00]
0xff 0x76 0xf6 0x7e 0x20 0x3f 0x00 0x00