1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

Refactor AtomicExpandPass and add a generic isAtomic() method to Instruction

Summary:
Split shouldExpandAtomicInIR() into different versions for Stores/Loads/RMWs/CmpXchgs.
Makes runOnFunction cleaner (no more redundant checking/casting), and will help moving
the X86 backend to this pass.

This requires a way of easily detecting which instructions are atomic.
I followed the pattern of mayReadFromMemory, mayWriteOrReadMemory, etc.. in making
isAtomic() a method of Instruction implemented by a switch on the opcodes.

Test Plan: make check

Reviewers: jfb

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D5035

llvm-svn: 217080
This commit is contained in:
Robin Morisset 2014-09-03 21:29:59 +00:00
parent e2bc8704e5
commit c2d1634d13
9 changed files with 121 additions and 74 deletions

View File

@ -338,6 +338,11 @@ public:
return mayReadFromMemory() || mayWriteToMemory();
}
/// isAtomic - Return true if this instruction has an
/// AtomicOrdering of unordered or higher.
///
bool isAtomic() const;
/// mayThrow - Return true if this instruction may throw an exception.
///
bool mayThrow() const;

View File

@ -241,7 +241,6 @@ public:
(xthread << 6));
}
bool isAtomic() const { return getOrdering() != NotAtomic; }
void setAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope = CrossThread) {
setOrdering(Ordering);
@ -361,7 +360,6 @@ public:
(xthread << 6));
}
bool isAtomic() const { return getOrdering() != NotAtomic; }
void setAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope = CrossThread) {
setOrdering(Ordering);

View File

@ -31,6 +31,7 @@
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Target/TargetCallingConv.h"
@ -955,7 +956,7 @@ public:
/// It is called by AtomicExpandPass before expanding an
/// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
/// RMW and CmpXchg set both IsStore and IsLoad to true.
/// Backends with !getInsertFencesForAtomic() should keep a no-op here
/// Backends with !getInsertFencesForAtomic() should keep a no-op here.
virtual void emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
bool IsStore, bool IsLoad) const {
assert(!getInsertFencesForAtomic());
@ -965,20 +966,28 @@ public:
/// It is called by AtomicExpandPass after expanding an
/// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
/// RMW and CmpXchg set both IsStore and IsLoad to true.
/// Backends with !getInsertFencesForAtomic() should keep a no-op here
/// Backends with !getInsertFencesForAtomic() should keep a no-op here.
virtual void emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
bool IsStore, bool IsLoad) const {
assert(!getInsertFencesForAtomic());
}
/// Return true if the given (atomic) instruction should be expanded by the
/// IR-level AtomicExpand pass into a loop involving
/// load-linked/store-conditional pairs. Atomic stores will be expanded in the
/// same way as "atomic xchg" operations which ignore their output if needed.
virtual bool shouldExpandAtomicInIR(Instruction *Inst) const {
/// Returns true if the given (atomic) store should be expanded by the
/// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return false;
}
/// Returns true if the given (atomic) load should be expanded by the
/// IR-level AtomicExpand pass into a load-linked instruction
/// (through emitLoadLinked()).
virtual bool shouldExpandAtomicLoadInIR(LoadInst *LI) const { return false; }
/// Returns true if the given AtomicRMW should be expanded by the
/// IR-level AtomicExpand pass into a loop using LoadLinked/StoreConditional.
virtual bool shouldExpandAtomicRMWInIR(AtomicRMWInst *RMWI) const {
return false;
}
//===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by

View File

@ -15,6 +15,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
@ -38,10 +39,10 @@ namespace {
}
bool runOnFunction(Function &F) override;
bool expandAtomicInsts(Function &F);
private:
bool expandAtomicLoad(LoadInst *LI);
bool expandAtomicStore(StoreInst *LI);
bool expandAtomicStore(StoreInst *SI);
bool expandAtomicRMW(AtomicRMWInst *AI);
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
};
@ -60,37 +61,37 @@ FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
bool AtomicExpand::runOnFunction(Function &F) {
if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand())
return false;
auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering();
SmallVector<Instruction *, 1> AtomicInsts;
// Changing control-flow while iterating through it is a bad idea, so gather a
// list of all atomic instructions before we start.
for (BasicBlock &BB : F)
for (Instruction &Inst : BB) {
if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
(isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
(isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
AtomicInsts.push_back(&Inst);
}
bool MadeChange = false;
for (Instruction *Inst : AtomicInsts) {
if (!TM->getSubtargetImpl()->getTargetLowering()->shouldExpandAtomicInIR(
Inst))
continue;
if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
MadeChange |= expandAtomicRMW(AI);
else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
MadeChange |= expandAtomicCmpXchg(CI);
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
MadeChange |= expandAtomicLoad(LI);
else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
MadeChange |= expandAtomicStore(SI);
else
llvm_unreachable("Unknown atomic instruction");
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->isAtomic())
AtomicInsts.push_back(&*I);
}
bool MadeChange = false;
for (auto I : AtomicInsts) {
auto LI = dyn_cast<LoadInst>(I);
auto SI = dyn_cast<StoreInst>(I);
auto RMWI = dyn_cast<AtomicRMWInst>(I);
auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
"Unknown atomic instruction");
if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) {
MadeChange |= expandAtomicLoad(LI);
} else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) {
MadeChange |= expandAtomicStore(SI);
} else if (RMWI && TargetLowering->shouldExpandAtomicRMWInIR(RMWI)) {
MadeChange |= expandAtomicRMW(RMWI);
} else if (CASI) {
MadeChange |= expandAtomicCmpXchg(CASI);
}
}
return MadeChange;
}
@ -146,10 +147,10 @@ bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) {
BasicBlock *BB = AI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// If getInsertFencesForAtomic() return true, then the target does not want to
// deal with memory orders, and emitLeading/TrailingFence should take care of
// everything. Otherwise, emitLeading/TrailingFence are no-op and we should
// preserve the ordering.
// If getInsertFencesForAtomic() returns true, then the target does not want
// to deal with memory orders, and emitLeading/TrailingFence should take care
// of everything. Otherwise, emitLeading/TrailingFence are no-op and we
// should preserve the ordering.
AtomicOrdering MemOpOrder =
TLI->getInsertFencesForAtomic() ? Monotonic : Order;
@ -252,10 +253,10 @@ bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
BasicBlock *BB = CI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// If getInsertFencesForAtomic() return true, then the target does not want to
// deal with memory orders, and emitLeading/TrailingFence should take care of
// everything. Otherwise, emitLeading/TrailingFence are no-op and we should
// preserve the ordering.
// If getInsertFencesForAtomic() returns true, then the target does not want
// to deal with memory orders, and emitLeading/TrailingFence should take care
// of everything. Otherwise, emitLeading/TrailingFence are no-op and we
// should preserve the ordering.
AtomicOrdering MemOpOrder =
TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;

View File

@ -443,6 +443,21 @@ bool Instruction::mayWriteToMemory() const {
}
}
bool Instruction::isAtomic() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return true;
case Instruction::Load:
return cast<LoadInst>(this)->getOrdering() != NotAtomic;
case Instruction::Store:
return cast<StoreInst>(this)->getOrdering() != NotAtomic;
}
}
bool Instruction::mayThrow() const {
if (const CallInst *CI = dyn_cast<CallInst>(this))
return !CI->doesNotThrow();

View File

@ -8513,19 +8513,6 @@ void AArch64TargetLowering::ReplaceNodeResults(
}
}
bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong:
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
return LI->getType()->getPrimitiveSizeInBits() == 128;
// For the real atomic operations, we have ldxr/stxr up to 128 bits.
return Inst->getType()->getPrimitiveSizeInBits() <= 128;
}
bool AArch64TargetLowering::useLoadStackGuardNode() const {
return true;
}
@ -8542,6 +8529,28 @@ AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
return TargetLoweringBase::getPreferredVectorAction(VT);
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return Size == 128;
}
// Loads and stores less than 128-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong.
bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
return Size == 128;
}
// For the real atomic operations, we have ldxr/stxr up to 128 bits,
bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
return Size <= 128;
}
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();

View File

@ -322,7 +322,9 @@ public:
Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const override;
bool shouldExpandAtomicInIR(Instruction *Inst) const override;
bool shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
bool useLoadStackGuardNode() const override;
TargetLoweringBase::LegalizeTypeAction

View File

@ -11039,23 +11039,29 @@ void ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
}
}
bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool IsMClass = Subtarget->isMClass();
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return Size == 64 && !IsMClass;
} else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
return LI->getType()->getPrimitiveSizeInBits() == 64 && !IsMClass;
}
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return (Size == 64) && !Subtarget->isMClass();
}
// For the real atomic operations, we have ldrex/strex up to 32 bits,
// and up to 64 bits on the non-M profiles
unsigned AtomicLimit = IsMClass ? 32 : 64;
return Inst->getType()->getPrimitiveSizeInBits() <= AtomicLimit;
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
return (Size == 64) && !Subtarget->isMClass();
}
// For the real atomic operations, we have ldrex/strex up to 32 bits,
// and up to 64 bits on the non-M profiles
bool ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
return Size <= (Subtarget->isMClass() ? 32 : 64);
}
// This has so far only been implemented for MachO.

View File

@ -402,7 +402,9 @@ namespace llvm {
void emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
bool IsStore, bool IsLoad) const override;
bool shouldExpandAtomicInIR(Instruction *Inst) const override;
bool shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
bool useLoadStackGuardNode() const override;