1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00

Revert r332579 "[llvm-exegesis] Update to cover latency through another opcode."

The revision failed to update the ARM tests.

llvm-svn: 332580
This commit is contained in:
Clement Courbet 2018-05-17 08:12:29 +00:00
parent 07283fe934
commit c2ebebb08d
28 changed files with 1526 additions and 1328 deletions

View File

@ -1,78 +0,0 @@
//===-- Assembler.h ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines classes to assemble functions composed of a single basic block of
/// MCInsts.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_ASSEMBLER_H
#define LLVM_TOOLS_LLVM_EXEGESIS_ASSEMBLER_H
#include <memory>
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
namespace exegesis {
// Gather the set of reserved registers (depends on function's calling
// convention and target machine).
llvm::BitVector getFunctionReservedRegs(const llvm::TargetMachine &TM);
// Creates a temporary `void foo()` function containing the provided
// Instructions. Runs a set of llvm Passes to provide correct prologue and
// epilogue. Once the MachineFunction is ready, it is assembled for TM to
// AsmStream, the temporary function is eventually discarded.
void assembleToStream(std::unique_ptr<llvm::LLVMTargetMachine> TM,
llvm::ArrayRef<llvm::MCInst> Instructions,
llvm::raw_pwrite_stream &AsmStream);
// Creates an ObjectFile in the format understood by the host.
// Note: the resulting object keeps a copy of Buffer so it can be discarded once
// this function returns.
llvm::object::OwningBinary<llvm::object::ObjectFile>
getObjectFromBuffer(llvm::StringRef Buffer);
// Loads the content of Filename as on ObjectFile and returns it.
llvm::object::OwningBinary<llvm::object::ObjectFile>
getObjectFromFile(llvm::StringRef Filename);
// Consumes an ObjectFile containing a `void foo()` function and make it
// executable.
struct ExecutableFunction {
explicit ExecutableFunction(
std::unique_ptr<llvm::LLVMTargetMachine> TM,
llvm::object::OwningBinary<llvm::object::ObjectFile> &&ObjectFileHolder);
// Retrieves the function as an array of bytes.
llvm::StringRef getFunctionBytes() const { return FunctionBytes; }
// Executes the function.
void operator()() const { ((void (*)())(intptr_t)FunctionBytes.data())(); }
std::unique_ptr<llvm::LLVMContext> Context;
std::unique_ptr<llvm::ExecutionEngine> ExecEngine;
llvm::StringRef FunctionBytes;
};
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_ASSEMBLER_H

View File

@ -61,8 +61,10 @@ LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(exegesis::InstructionBenchmark)
namespace exegesis {
namespace {
template <typename ObjectOrList>
static ObjectOrList readYamlOrDieCommon(llvm::StringRef Filename) {
ObjectOrList readYamlOrDieCommon(llvm::StringRef Filename) {
std::unique_ptr<llvm::MemoryBuffer> MemBuffer = llvm::cantFail(
llvm::errorOrToExpected(llvm::MemoryBuffer::getFile(Filename)));
llvm::yaml::Input Yin(*MemBuffer);
@ -71,6 +73,8 @@ static ObjectOrList readYamlOrDieCommon(llvm::StringRef Filename) {
return Benchmark;
}
} // namespace
InstructionBenchmark
InstructionBenchmark::readYamlOrDie(llvm::StringRef Filename) {
return readYamlOrDieCommon<InstructionBenchmark>(Filename);
@ -81,26 +85,19 @@ InstructionBenchmark::readYamlsOrDie(llvm::StringRef Filename) {
return readYamlOrDieCommon<std::vector<InstructionBenchmark>>(Filename);
}
void InstructionBenchmark::writeYamlTo(llvm::raw_ostream &S) {
llvm::yaml::Output Yout(S);
Yout << *this;
}
void InstructionBenchmark::readYamlFrom(llvm::StringRef InputContent) {
llvm::yaml::Input Yin(InputContent);
Yin >> *this;
}
// FIXME: Change the API to let the caller handle errors.
void InstructionBenchmark::writeYamlOrDie(const llvm::StringRef Filename) {
if (Filename == "-") {
writeYamlTo(llvm::outs());
llvm::yaml::Output Yout(llvm::outs());
Yout << *this;
} else {
int ResultFD = 0;
llvm::cantFail(llvm::errorCodeToError(
openFileForWrite(Filename, ResultFD, llvm::sys::fs::F_Text)));
llvm::raw_fd_ostream Ostr(ResultFD, true /*shouldClose*/);
writeYamlTo(Ostr);
llvm::SmallString<1024> Buffer;
llvm::raw_svector_ostream Ostr(Buffer);
llvm::yaml::Output Yout(Ostr);
Yout << *this;
std::unique_ptr<llvm::FileOutputBuffer> File =
llvm::cantFail(llvm::FileOutputBuffer::create(Filename, Buffer.size()));
memcpy(File->getBufferStart(), Buffer.data(), Buffer.size());
llvm::cantFail(File->commit());
}
}

View File

@ -50,14 +50,9 @@ struct InstructionBenchmark {
std::string Info;
static InstructionBenchmark readYamlOrDie(llvm::StringRef Filename);
static std::vector<InstructionBenchmark>
static std::vector<InstructionBenchmark> readYamlsOrDie(llvm::StringRef Filename);
// Read functions.
readYamlsOrDie(llvm::StringRef Filename);
void readYamlFrom(llvm::StringRef InputContent);
// Write functions, non-const because of YAML traits.
void writeYamlTo(llvm::raw_ostream &S);
// Unfortunately this function is non const because of YAML traits.
void writeYamlOrDie(const llvm::StringRef Filename);
};

View File

@ -7,33 +7,23 @@
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "InMemoryAssembler.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
#include <string>
namespace exegesis {
BenchmarkRunner::InstructionFilter::~InstructionFilter() = default;
BenchmarkRunner::BenchmarkRunner(const LLVMState &State)
: State(State), MCInstrInfo(State.getInstrInfo()),
MCRegisterInfo(State.getRegInfo()),
RATC(MCRegisterInfo,
getFunctionReservedRegs(*State.createTargetMachine())) {}
BenchmarkRunner::~BenchmarkRunner() = default;
InstructionBenchmark BenchmarkRunner::run(unsigned Opcode,
const InstructionFilter &Filter,
unsigned NumRepetitions) {
InstructionBenchmark
BenchmarkRunner::run(const LLVMState &State, const unsigned Opcode,
unsigned NumRepetitions,
const InstructionFilter &Filter) const {
InstructionBenchmark InstrBenchmark;
InstrBenchmark.Key.OpcodeName = State.getInstrInfo().getName(Opcode);
@ -51,56 +41,36 @@ InstructionBenchmark BenchmarkRunner::run(unsigned Opcode,
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
llvm::raw_string_ostream InfoStream(InstrBenchmark.Info);
llvm::Expected<std::vector<llvm::MCInst>> SnippetOrError =
createSnippet(RATC, Opcode, InfoStream);
if (llvm::Error E = SnippetOrError.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
std::vector<llvm::MCInst> &Snippet = SnippetOrError.get();
if (Snippet.empty()) {
InstrBenchmark.Error = "Empty snippet";
return InstrBenchmark;
}
InfoStream << "Snippet:\n";
for (const auto &MCInst : Snippet) {
DumpMCInst(MCRegisterInfo, MCInstrInfo, MCInst, InfoStream);
InfoStream << "\n";
}
std::vector<llvm::MCInst> Code;
for (int I = 0; I < InstrBenchmark.NumRepetitions; ++I)
Code.push_back(Snippet[I % Snippet.size()]);
auto ExpectedObjectPath = writeObjectFile(Code);
if (llvm::Error E = ExpectedObjectPath.takeError()) {
JitFunctionContext Context(State.createTargetMachine());
auto ExpectedInstructions =
createCode(State, Opcode, NumRepetitions, Context);
if (llvm::Error E = ExpectedInstructions.takeError()) {
InstrBenchmark.Error = llvm::toString(std::move(E));
return InstrBenchmark;
}
// FIXME: Check if TargetMachine or ExecutionEngine can be reused instead of
// creating one everytime.
const ExecutableFunction EF(State.createTargetMachine(),
getObjectFromFile(*ExpectedObjectPath));
InstrBenchmark.Measurements = runMeasurements(EF, NumRepetitions);
const std::vector<llvm::MCInst> Instructions = *ExpectedInstructions;
const JitFunction Function(std::move(Context), Instructions);
const llvm::StringRef CodeBytes = Function.getFunctionBytes();
std::string AsmExcerpt;
constexpr const int ExcerptSize = 100;
constexpr const int ExcerptTailSize = 10;
if (CodeBytes.size() <= ExcerptSize) {
AsmExcerpt = llvm::toHex(CodeBytes);
} else {
AsmExcerpt =
llvm::toHex(CodeBytes.take_front(ExcerptSize - ExcerptTailSize + 3));
AsmExcerpt += "...";
AsmExcerpt += llvm::toHex(CodeBytes.take_back(ExcerptTailSize));
}
llvm::outs() << "# Asm excerpt: " << AsmExcerpt << "\n";
llvm::outs().flush(); // In case we crash.
InstrBenchmark.Measurements =
runMeasurements(State, Function, NumRepetitions);
return InstrBenchmark;
}
llvm::Expected<std::string>
BenchmarkRunner::writeObjectFile(llvm::ArrayRef<llvm::MCInst> Code) const {
int ResultFD = 0;
llvm::SmallString<256> ResultPath;
if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
"snippet", "o", ResultFD, ResultPath)))
return std::move(E);
llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
assembleToStream(State.createTargetMachine(), Code, OFS);
llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
<< ResultPath << "\n";
return ResultPath.str();
}
} // namespace exegesis

View File

@ -16,10 +16,9 @@
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_BENCHMARKRUNNER_H
#define LLVM_TOOLS_LLVM_EXEGESIS_BENCHMARKRUNNER_H
#include "Assembler.h"
#include "BenchmarkResult.h"
#include "InMemoryAssembler.h"
#include "LlvmState.h"
#include "RegisterAliasing.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Error.h"
#include <vector>
@ -29,8 +28,6 @@ namespace exegesis {
// Common code for all benchmark modes.
class BenchmarkRunner {
public:
explicit BenchmarkRunner(const LLVMState &State);
// Subtargets can disable running benchmarks for some instructions by
// returning an error here.
class InstructionFilter {
@ -45,29 +42,21 @@ public:
virtual ~BenchmarkRunner();
InstructionBenchmark run(unsigned Opcode, const InstructionFilter &Filter,
unsigned NumRepetitions);
protected:
const LLVMState &State;
const llvm::MCInstrInfo &MCInstrInfo;
const llvm::MCRegisterInfo &MCRegisterInfo;
InstructionBenchmark run(const LLVMState &State, unsigned Opcode,
unsigned NumRepetitions,
const InstructionFilter &Filter) const;
private:
virtual const char *getDisplayName() const = 0;
virtual llvm::Expected<std::vector<llvm::MCInst>>
createSnippet(RegisterAliasingTrackerCache &RATC, unsigned Opcode,
llvm::raw_ostream &Debug) const = 0;
createCode(const LLVMState &State, unsigned OpcodeIndex,
unsigned NumRepetitions,
const JitFunctionContext &Context) const = 0;
virtual std::vector<BenchmarkMeasure>
runMeasurements(const ExecutableFunction &EF,
const unsigned NumRepetitions) const = 0;
llvm::Expected<std::string>
writeObjectFile(llvm::ArrayRef<llvm::MCInst> Code) const;
RegisterAliasingTrackerCache RATC;
runMeasurements(const LLVMState &State, const JitFunction &Function,
unsigned NumRepetitions) const = 0;
};
} // namespace exegesis

View File

@ -1,15 +1,15 @@
add_library(LLVMExegesis
STATIC
Analysis.cpp
Assembler.cpp
BenchmarkResult.cpp
BenchmarkRunner.cpp
Clustering.cpp
InMemoryAssembler.cpp
InstructionSnippetGenerator.cpp
Latency.cpp
LlvmState.cpp
MCInstrDescView.cpp
OperandGraph.cpp
PerfHelper.cpp
RegisterAliasing.cpp
Uops.cpp
X86.cpp
)

View File

@ -1,4 +1,4 @@
//===-- Assembler.cpp -------------------------------------------*- C++ -*-===//
//===-- InMemoryAssembler.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
@ -7,8 +7,9 @@
//
//===----------------------------------------------------------------------===//
#include "Assembler.h"
#include "InMemoryAssembler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@ -16,11 +17,20 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/PassInfo.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
namespace exegesis {
@ -63,6 +73,47 @@ createVoidVoidMachineFunction(llvm::StringRef FunctionID, llvm::Module *Module,
return MMI->getOrCreateMachineFunction(*F);
}
static llvm::object::OwningBinary<llvm::object::ObjectFile>
assemble(llvm::Module *Module, std::unique_ptr<llvm::MachineModuleInfo> MMI,
llvm::LLVMTargetMachine *LLVMTM) {
llvm::legacy::PassManager PM;
llvm::MCContext &Context = MMI->getContext();
llvm::TargetLibraryInfoImpl TLII(llvm::Triple(Module->getTargetTriple()));
PM.add(new llvm::TargetLibraryInfoWrapperPass(TLII));
llvm::TargetPassConfig *TPC = LLVMTM->createPassConfig(PM);
PM.add(TPC);
PM.add(MMI.release());
TPC->printAndVerify("MachineFunctionGenerator::assemble");
// Adding the following passes:
// - machineverifier: checks that the MachineFunction is well formed.
// - prologepilog: saves and restore callee saved registers.
for (const char *PassName : {"machineverifier", "prologepilog"})
if (addPass(PM, PassName, *TPC))
llvm::report_fatal_error("Unable to add a mandatory pass");
TPC->setInitialized();
llvm::SmallVector<char, 4096> AsmBuffer;
llvm::raw_svector_ostream AsmStream(AsmBuffer);
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
if (LLVMTM->addAsmPrinter(PM, AsmStream, llvm::TargetMachine::CGFT_ObjectFile,
Context))
llvm::report_fatal_error("Cannot add AsmPrinter passes");
PM.run(*Module); // Run all the passes
// Storing the generated assembly into a MemoryBuffer that owns the memory.
std::unique_ptr<llvm::MemoryBuffer> Buffer =
llvm::MemoryBuffer::getMemBufferCopy(AsmStream.str());
// Create the ObjectFile from the MemoryBuffer.
std::unique_ptr<llvm::object::ObjectFile> Obj = llvm::cantFail(
llvm::object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
// Returning both the MemoryBuffer and the ObjectFile.
return llvm::object::OwningBinary<llvm::object::ObjectFile>(
std::move(Obj), std::move(Buffer));
}
static void fillMachineFunction(llvm::MachineFunction &MF,
llvm::ArrayRef<llvm::MCInst> Instructions) {
llvm::MachineBasicBlock *MBB = MF.CreateMachineBasicBlock();
@ -101,97 +152,6 @@ static void fillMachineFunction(llvm::MachineFunction &MF,
}
}
static std::unique_ptr<llvm::Module>
createModule(const std::unique_ptr<llvm::LLVMContext> &Context,
const llvm::DataLayout DL) {
auto Module = llvm::make_unique<llvm::Module>(ModuleID, *Context);
Module->setDataLayout(DL);
return Module;
}
llvm::BitVector getFunctionReservedRegs(const llvm::TargetMachine &TM) {
std::unique_ptr<llvm::LLVMContext> Context =
llvm::make_unique<llvm::LLVMContext>();
std::unique_ptr<llvm::Module> Module =
createModule(Context, TM.createDataLayout());
std::unique_ptr<llvm::MachineModuleInfo> MMI =
llvm::make_unique<llvm::MachineModuleInfo>(&TM);
llvm::MachineFunction &MF =
createVoidVoidMachineFunction(FunctionID, Module.get(), MMI.get());
// Saving reserved registers for client.
return MF.getSubtarget().getRegisterInfo()->getReservedRegs(MF);
}
void assembleToStream(std::unique_ptr<llvm::LLVMTargetMachine> TM,
llvm::ArrayRef<llvm::MCInst> Instructions,
llvm::raw_pwrite_stream &AsmStream) {
std::unique_ptr<llvm::LLVMContext> Context =
llvm::make_unique<llvm::LLVMContext>();
std::unique_ptr<llvm::Module> Module =
createModule(Context, TM->createDataLayout());
std::unique_ptr<llvm::MachineModuleInfo> MMI =
llvm::make_unique<llvm::MachineModuleInfo>(TM.get());
llvm::MachineFunction &MF =
createVoidVoidMachineFunction(FunctionID, Module.get(), MMI.get());
// We need to instruct the passes that we're done with SSA and virtual
// registers.
auto &Properties = MF.getProperties();
Properties.set(llvm::MachineFunctionProperties::Property::NoVRegs);
Properties.reset(llvm::MachineFunctionProperties::Property::IsSSA);
Properties.reset(llvm::MachineFunctionProperties::Property::TracksLiveness);
// prologue/epilogue pass needs the reserved registers to be frozen, this
// is usually done by the SelectionDAGISel pass.
MF.getRegInfo().freezeReservedRegs(MF);
// Fill the MachineFunction from the instructions.
fillMachineFunction(MF, Instructions);
// We create the pass manager, run the passes to populate AsmBuffer.
llvm::MCContext &MCContext = MMI->getContext();
llvm::legacy::PassManager PM;
llvm::TargetLibraryInfoImpl TLII(llvm::Triple(Module->getTargetTriple()));
PM.add(new llvm::TargetLibraryInfoWrapperPass(TLII));
llvm::TargetPassConfig *TPC = TM->createPassConfig(PM);
PM.add(TPC);
PM.add(MMI.release());
TPC->printAndVerify("MachineFunctionGenerator::assemble");
// Adding the following passes:
// - machineverifier: checks that the MachineFunction is well formed.
// - prologepilog: saves and restore callee saved registers.
for (const char *PassName : {"machineverifier", "prologepilog"})
if (addPass(PM, PassName, *TPC))
llvm::report_fatal_error("Unable to add a mandatory pass");
TPC->setInitialized();
// AsmPrinter is responsible for generating the assembly into AsmBuffer.
if (TM->addAsmPrinter(PM, AsmStream, llvm::TargetMachine::CGFT_ObjectFile,
MCContext))
llvm::report_fatal_error("Cannot add AsmPrinter passes");
PM.run(*Module); // Run all the passes
}
llvm::object::OwningBinary<llvm::object::ObjectFile>
getObjectFromBuffer(llvm::StringRef InputData) {
// Storing the generated assembly into a MemoryBuffer that owns the memory.
std::unique_ptr<llvm::MemoryBuffer> Buffer =
llvm::MemoryBuffer::getMemBufferCopy(InputData);
// Create the ObjectFile from the MemoryBuffer.
std::unique_ptr<llvm::object::ObjectFile> Obj = llvm::cantFail(
llvm::object::ObjectFile::createObjectFile(Buffer->getMemBufferRef()));
// Returning both the MemoryBuffer and the ObjectFile.
return llvm::object::OwningBinary<llvm::object::ObjectFile>(
std::move(Obj), std::move(Buffer));
}
llvm::object::OwningBinary<llvm::object::ObjectFile>
getObjectFromFile(llvm::StringRef Filename) {
return llvm::cantFail(llvm::object::ObjectFile::createObjectFile(Filename));
}
namespace {
// Implementation of this class relies on the fact that a single object with a
@ -215,31 +175,57 @@ private:
} // namespace
ExecutableFunction::ExecutableFunction(
std::unique_ptr<llvm::LLVMTargetMachine> TM,
llvm::object::OwningBinary<llvm::object::ObjectFile> &&ObjectFileHolder)
: Context(llvm::make_unique<llvm::LLVMContext>()) {
assert(ObjectFileHolder.getBinary() && "cannot create object file");
JitFunctionContext::JitFunctionContext(
std::unique_ptr<llvm::LLVMTargetMachine> TheTM)
: Context(llvm::make_unique<llvm::LLVMContext>()), TM(std::move(TheTM)),
MMI(llvm::make_unique<llvm::MachineModuleInfo>(TM.get())),
Module(llvm::make_unique<llvm::Module>(ModuleID, *Context)) {
Module->setDataLayout(TM->createDataLayout());
MF = &createVoidVoidMachineFunction(FunctionID, Module.get(), MMI.get());
// We need to instruct the passes that we're done with SSA and virtual
// registers.
auto &Properties = MF->getProperties();
Properties.set(llvm::MachineFunctionProperties::Property::NoVRegs);
Properties.reset(llvm::MachineFunctionProperties::Property::IsSSA);
Properties.reset(llvm::MachineFunctionProperties::Property::TracksLiveness);
// prologue/epilogue pass needs the reserved registers to be frozen, this is
// usually done by the SelectionDAGISel pass.
MF->getRegInfo().freezeReservedRegs(*MF);
// Saving reserved registers for client.
ReservedRegs = MF->getSubtarget().getRegisterInfo()->getReservedRegs(*MF);
}
JitFunction::JitFunction(JitFunctionContext &&Context,
llvm::ArrayRef<llvm::MCInst> Instructions)
: FunctionContext(std::move(Context)) {
fillMachineFunction(*FunctionContext.MF, Instructions);
// We create the pass manager, run the passes and returns the produced
// ObjectFile.
llvm::object::OwningBinary<llvm::object::ObjectFile> ObjHolder =
assemble(FunctionContext.Module.get(), std::move(FunctionContext.MMI),
FunctionContext.TM.get());
assert(ObjHolder.getBinary() && "cannot create object file");
// Initializing the execution engine.
// We need to use the JIT EngineKind to be able to add an object file.
LLVMLinkInMCJIT();
uintptr_t CodeSize = 0;
std::string Error;
llvm::LLVMTargetMachine *TM = FunctionContext.TM.release();
ExecEngine.reset(
llvm::EngineBuilder(createModule(Context, TM->createDataLayout()))
llvm::EngineBuilder(std::move(FunctionContext.Module))
.setErrorStr(&Error)
.setMCPU(TM->getTargetCPU())
.setEngineKind(llvm::EngineKind::JIT)
.setMCJITMemoryManager(
llvm::make_unique<TrackingSectionMemoryManager>(&CodeSize))
.create(TM.release()));
.create(TM));
if (!ExecEngine)
llvm::report_fatal_error(Error);
// Adding the generated object file containing the assembled function.
// The ExecutionEngine makes sure the object file is copied into an
// executable page.
ExecEngine->addObjectFile(std::move(ObjectFileHolder));
// Fetching function bytes.
ExecEngine->addObjectFile(std::move(ObjHolder));
// Setting function
FunctionBytes =
llvm::StringRef(reinterpret_cast<const char *>(
ExecEngine->getFunctionAddress(FunctionID)),

View File

@ -0,0 +1,82 @@
//===-- InMemoryAssembler.h -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines classes to assemble functions composed of a single basic block of
/// MCInsts.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_INMEMORYASSEMBLER_H
#define LLVM_TOOLS_LLVM_EXEGESIS_INMEMORYASSEMBLER_H
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCInst.h"
#include <cstdint>
#include <memory>
#include <vector>
namespace exegesis {
// Consumable context for JitFunction below.
// This temporary object allows for retrieving MachineFunction properties before
// assembling it.
class JitFunctionContext {
public:
explicit JitFunctionContext(std::unique_ptr<llvm::LLVMTargetMachine> TM);
// Movable
JitFunctionContext(JitFunctionContext &&) = default;
JitFunctionContext &operator=(JitFunctionContext &&) = default;
// Non copyable
JitFunctionContext(const JitFunctionContext &) = delete;
JitFunctionContext &operator=(const JitFunctionContext &) = delete;
const llvm::BitVector &getReservedRegs() const { return ReservedRegs; }
private:
friend class JitFunction;
std::unique_ptr<llvm::LLVMContext> Context;
std::unique_ptr<llvm::LLVMTargetMachine> TM;
std::unique_ptr<llvm::MachineModuleInfo> MMI;
std::unique_ptr<llvm::Module> Module;
llvm::MachineFunction *MF = nullptr;
llvm::BitVector ReservedRegs;
};
// Creates a void() function from a sequence of llvm::MCInst.
class JitFunction {
public:
// Assembles Instructions into an executable function.
JitFunction(JitFunctionContext &&Context,
llvm::ArrayRef<llvm::MCInst> Instructions);
// Retrieves the function as an array of bytes.
llvm::StringRef getFunctionBytes() const { return FunctionBytes; }
// Retrieves the callable function.
void operator()() const {
char* const FnData = const_cast<char*>(FunctionBytes.data());
((void (*)())(intptr_t)FnData)();
}
private:
JitFunctionContext FunctionContext;
std::unique_ptr<llvm::ExecutionEngine> ExecEngine;
llvm::StringRef FunctionBytes;
};
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_INMEMORYASSEMBLER_H

View File

@ -0,0 +1,355 @@
//===-- InstructionSnippetGenerator.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InstructionSnippetGenerator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInstBuilder.h"
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
namespace exegesis {
void Variable::print(llvm::raw_ostream &OS,
const llvm::MCRegisterInfo *RegInfo) const {
OS << "IsUse=" << IsUse << " IsDef=" << IsDef << " possible regs: {";
for (const size_t Reg : PossibleRegisters) {
if (RegInfo)
OS << RegInfo->getName(Reg);
else
OS << Reg;
OS << ",";
}
OS << "} ";
if (ExplicitOperands.empty()) {
OS << "implicit";
} else {
OS << "explicit ops: {";
for (const size_t Op : ExplicitOperands)
OS << Op << ",";
OS << "}";
}
OS << "\n";
}
// Update the state of a Variable with an explicit operand.
static void updateExplicitOperandVariable(const llvm::MCRegisterInfo &RegInfo,
const llvm::MCInstrDesc &InstrInfo,
const size_t OpIndex,
const llvm::BitVector &ReservedRegs,
Variable &Var) {
const bool IsDef = OpIndex < InstrInfo.getNumDefs();
if (IsDef)
Var.IsDef = true;
if (!IsDef)
Var.IsUse = true;
Var.ExplicitOperands.push_back(OpIndex);
const llvm::MCOperandInfo &OpInfo = InstrInfo.opInfo_begin()[OpIndex];
if (OpInfo.RegClass >= 0) {
Var.IsReg = true;
for (const llvm::MCPhysReg &Reg : RegInfo.getRegClass(OpInfo.RegClass)) {
if (!ReservedRegs[Reg])
Var.PossibleRegisters.insert(Reg);
}
}
}
static Variable &findVariableWithOperand(llvm::SmallVector<Variable, 8> &Vars,
size_t OpIndex) {
// Vars.size() is small (<10) so a linear scan is good enough.
for (Variable &Var : Vars) {
if (llvm::is_contained(Var.ExplicitOperands, OpIndex))
return Var;
}
assert(false && "Illegal state");
static Variable *const EmptyVariable = new Variable();
return *EmptyVariable;
}
llvm::SmallVector<Variable, 8>
getVariables(const llvm::MCRegisterInfo &RegInfo,
const llvm::MCInstrDesc &InstrInfo,
const llvm::BitVector &ReservedRegs) {
llvm::SmallVector<Variable, 8> Vars;
// For each operand, its "tied to" operand or -1.
llvm::SmallVector<int, 10> TiedToMap;
for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
TiedToMap.push_back(InstrInfo.getOperandConstraint(I, llvm::MCOI::TIED_TO));
}
// Adding non tied operands.
for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
if (TiedToMap[I] >= 0)
continue; // dropping tied ones.
Vars.emplace_back();
updateExplicitOperandVariable(RegInfo, InstrInfo, I, ReservedRegs,
Vars.back());
}
// Adding tied operands to existing variables.
for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
if (TiedToMap[I] < 0)
continue; // dropping non-tied ones.
updateExplicitOperandVariable(RegInfo, InstrInfo, I, ReservedRegs,
findVariableWithOperand(Vars, TiedToMap[I]));
}
// Adding implicit defs.
for (size_t I = 0, E = InstrInfo.getNumImplicitDefs(); I < E; ++I) {
Vars.emplace_back();
Variable &Var = Vars.back();
const llvm::MCPhysReg Reg = InstrInfo.getImplicitDefs()[I];
assert(!ReservedRegs[Reg] && "implicit def of reserved register");
Var.PossibleRegisters.insert(Reg);
Var.IsDef = true;
Var.IsReg = true;
}
// Adding implicit uses.
for (size_t I = 0, E = InstrInfo.getNumImplicitUses(); I < E; ++I) {
Vars.emplace_back();
Variable &Var = Vars.back();
const llvm::MCPhysReg Reg = InstrInfo.getImplicitUses()[I];
assert(!ReservedRegs[Reg] && "implicit use of reserved register");
Var.PossibleRegisters.insert(Reg);
Var.IsUse = true;
Var.IsReg = true;
}
return Vars;
}
VariableAssignment::VariableAssignment(size_t VarIdx,
llvm::MCPhysReg AssignedReg)
: VarIdx(VarIdx), AssignedReg(AssignedReg) {}
bool VariableAssignment::operator==(const VariableAssignment &Other) const {
return std::tie(VarIdx, AssignedReg) ==
std::tie(Other.VarIdx, Other.AssignedReg);
}
bool VariableAssignment::operator<(const VariableAssignment &Other) const {
return std::tie(VarIdx, AssignedReg) <
std::tie(Other.VarIdx, Other.AssignedReg);
}
void dumpAssignmentChain(const llvm::MCRegisterInfo &RegInfo,
const AssignmentChain &Chain) {
for (const VariableAssignment &Assignment : Chain) {
llvm::outs() << llvm::format("(%d %s) ", Assignment.VarIdx,
RegInfo.getName(Assignment.AssignedReg));
}
llvm::outs() << "\n";
}
std::vector<AssignmentChain>
computeSequentialAssignmentChains(const llvm::MCRegisterInfo &RegInfo,
llvm::ArrayRef<Variable> Vars) {
using graph::Node;
graph::Graph Graph;
// Add register aliasing to the graph.
setupRegisterAliasing(RegInfo, Graph);
// Adding variables to the graph.
for (size_t I = 0, E = Vars.size(); I < E; ++I) {
const Variable &Var = Vars[I];
const Node N = Node::Var(I);
if (Var.IsDef) {
Graph.connect(Node::In(), N);
for (const size_t Reg : Var.PossibleRegisters)
Graph.connect(N, Node::Reg(Reg));
}
if (Var.IsUse) {
Graph.connect(N, Node::Out());
for (const size_t Reg : Var.PossibleRegisters)
Graph.connect(Node::Reg(Reg), N);
}
}
// Find all possible dependency chains (aka all possible paths from In to Out
// node).
std::vector<AssignmentChain> AllChains;
for (;;) {
const auto Path = Graph.getPathFrom(Node::In(), Node::Out());
if (Path.empty())
break;
switch (Path.size()) {
case 0:
case 1:
case 2:
case 4:
assert(false && "Illegal state");
break;
case 3: { // IN -> variable -> OUT
const size_t VarIdx = Path[1].varValue();
for (size_t Reg : Vars[VarIdx].PossibleRegisters) {
AllChains.emplace_back();
AllChains.back().emplace(VarIdx, Reg);
}
Graph.disconnect(Path[0], Path[1]); // IN -> variable
Graph.disconnect(Path[1], Path[2]); // variable -> OUT
break;
}
default: { // IN -> var1 -> Reg[...] -> var2 -> OUT
const size_t Last = Path.size() - 1;
const size_t Var1 = Path[1].varValue();
const llvm::MCPhysReg Reg1 = Path[2].regValue();
const llvm::MCPhysReg Reg2 = Path[Last - 2].regValue();
const size_t Var2 = Path[Last - 1].varValue();
AllChains.emplace_back();
AllChains.back().emplace(Var1, Reg1);
AllChains.back().emplace(Var2, Reg2);
Graph.disconnect(Path[1], Path[2]); // Var1 -> Reg[0]
break;
}
}
}
return AllChains;
}
std::vector<llvm::MCPhysReg>
getRandomAssignment(llvm::ArrayRef<Variable> Vars,
llvm::ArrayRef<AssignmentChain> Chains,
const std::function<size_t(size_t)> &RandomIndexForSize) {
// Registers are initialized with 0 (aka NoRegister).
std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
if (Chains.empty())
return Registers;
// Pick one of the chains and set Registers that are fully constrained (have
// no degrees of freedom).
const size_t ChainIndex = RandomIndexForSize(Chains.size());
for (const VariableAssignment Assignment : Chains[ChainIndex])
Registers[Assignment.VarIdx] = Assignment.AssignedReg;
// Registers with remaining degrees of freedom are assigned randomly.
for (size_t I = 0, E = Vars.size(); I < E; ++I) {
llvm::MCPhysReg &Reg = Registers[I];
const Variable &Var = Vars[I];
const auto &PossibleRegisters = Var.PossibleRegisters;
if (Reg > 0 || PossibleRegisters.empty())
continue;
Reg = PossibleRegisters[RandomIndexForSize(PossibleRegisters.size())];
}
return Registers;
}
// Finds a matching register `reg` for variable `VarIdx` and sets
// `RegAssignments[r]` to `VarIdx`. Returns false if no matching can be found.
// `seen.count(r)` is 1 if register `reg` has been processed.
static bool findMatchingRegister(
llvm::ArrayRef<Variable> Vars, const size_t VarIdx,
std::unordered_set<llvm::MCPhysReg> &Seen,
std::unordered_map<llvm::MCPhysReg, size_t> &RegAssignments) {
for (const llvm::MCPhysReg Reg : Vars[VarIdx].PossibleRegisters) {
if (!Seen.count(Reg)) {
Seen.insert(Reg); // Mark `Reg` as seen.
// If `Reg` is not assigned to a variable, or if `Reg` was assigned to a
// variable which has an alternate possible register, assign `Reg` to
// variable `VarIdx`. Since `Reg` is marked as assigned in the above line,
// `RegAssignments[r]` in the following recursive call will not get
// assigned `Reg` again.
const auto AssignedVarIt = RegAssignments.find(Reg);
if (AssignedVarIt == RegAssignments.end() ||
findMatchingRegister(Vars, AssignedVarIt->second, Seen,
RegAssignments)) {
RegAssignments[Reg] = VarIdx;
return true;
}
}
}
return false;
}
// This is actually a maximum bipartite matching problem:
// https://en.wikipedia.org/wiki/Matching_(graph_theory)#Bipartite_matching
// The graph has variables on the left and registers on the right, with an edge
// between variable `I` and register `Reg` iff
// `Vars[I].PossibleRegisters.count(A)`.
// Note that a greedy approach won't work for cases like:
// Vars[0] PossibleRegisters={C,B}
// Vars[1] PossibleRegisters={A,B}
// Vars[2] PossibleRegisters={A,C}
// There is a feasible solution {0->B, 1->A, 2->C}, but the greedy solution is
// {0->C, 1->A, oops}.
std::vector<llvm::MCPhysReg>
getExclusiveAssignment(llvm::ArrayRef<Variable> Vars) {
// `RegAssignments[r]` is the variable id that was assigned register `Reg`.
std::unordered_map<llvm::MCPhysReg, size_t> RegAssignments;
for (size_t VarIdx = 0, E = Vars.size(); VarIdx < E; ++VarIdx) {
if (!Vars[VarIdx].IsReg)
continue;
std::unordered_set<llvm::MCPhysReg> Seen;
if (!findMatchingRegister(Vars, VarIdx, Seen, RegAssignments))
return {}; // Infeasible.
}
std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
for (const auto &RegVarIdx : RegAssignments)
Registers[RegVarIdx.second] = RegVarIdx.first;
return Registers;
}
std::vector<llvm::MCPhysReg>
getGreedyAssignment(llvm::ArrayRef<Variable> Vars) {
std::vector<llvm::MCPhysReg> Registers(Vars.size(), 0);
llvm::SmallSet<llvm::MCPhysReg, 8> Assigned;
for (size_t VarIdx = 0, E = Vars.size(); VarIdx < E; ++VarIdx) {
const auto &Var = Vars[VarIdx];
if (!Var.IsReg)
continue;
if (Var.PossibleRegisters.empty())
return {};
// Try possible registers until an unassigned one is found.
for (const auto Reg : Var.PossibleRegisters) {
if (Assigned.insert(Reg).second) {
Registers[VarIdx] = Reg;
break;
}
}
// Fallback to first possible register.
if (Registers[VarIdx] == 0)
Registers[VarIdx] = Var.PossibleRegisters[0];
}
return Registers;
}
llvm::MCInst generateMCInst(const llvm::MCInstrDesc &InstrInfo,
llvm::ArrayRef<Variable> Vars,
llvm::ArrayRef<llvm::MCPhysReg> VarRegs) {
const size_t NumOperands = InstrInfo.getNumOperands();
llvm::SmallVector<llvm::MCPhysReg, 16> OperandToRegister(NumOperands, 0);
// We browse the variable and for each explicit operands we set the selected
// register in the OperandToRegister array.
for (size_t I = 0, E = Vars.size(); I < E; ++I) {
for (const size_t OpIndex : Vars[I].ExplicitOperands) {
OperandToRegister[OpIndex] = VarRegs[I];
}
}
// Building the instruction.
llvm::MCInstBuilder Builder(InstrInfo.getOpcode());
for (size_t I = 0, E = InstrInfo.getNumOperands(); I < E; ++I) {
const llvm::MCOperandInfo &OpInfo = InstrInfo.opInfo_begin()[I];
switch (OpInfo.OperandType) {
case llvm::MCOI::OperandType::OPERAND_REGISTER:
Builder.addReg(OperandToRegister[I]);
break;
case llvm::MCOI::OperandType::OPERAND_IMMEDIATE:
Builder.addImm(1);
break;
default:
Builder.addOperand(llvm::MCOperand());
}
}
return Builder;
}
} // namespace exegesis

View File

@ -0,0 +1,119 @@
//===-- InstructionSnippetGenerator.h ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines helper classes to generate code snippets, in particular register
/// assignment.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_INSTRUCTIONSNIPPETGENERATOR_H
#define LLVM_TOOLS_LLVM_EXEGESIS_INSTRUCTIONSNIPPETGENERATOR_H
#include "OperandGraph.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include <vector>
namespace exegesis {
// A Variable represents a set of possible values that we need to choose from.
// It may represent one or more explicit operands that are tied together, or one
// implicit operand.
class Variable final {
public:
bool IsUse = false;
bool IsDef = false;
bool IsReg = false;
// Lists all the explicit operand indices that are tied to this variable.
// Empty if Variable represents an implicit operand.
llvm::SmallVector<size_t, 8> ExplicitOperands;
// - In case of explicit operands, PossibleRegisters is the expansion of the
// operands's RegClass registers. Please note that tied together explicit
// operands share the same RegClass.
// - In case of implicit operands, PossibleRegisters is a singleton MCPhysReg.
llvm::SmallSetVector<llvm::MCPhysReg, 16> PossibleRegisters;
// If RegInfo is null, register names won't get resolved.
void print(llvm::raw_ostream &OS, const llvm::MCRegisterInfo *RegInfo) const;
};
// Builds a model of implicit and explicit operands for InstrDesc into
// Variables.
llvm::SmallVector<Variable, 8>
getVariables(const llvm::MCRegisterInfo &RegInfo,
const llvm::MCInstrDesc &InstrDesc,
const llvm::BitVector &ReservedRegs);
// A simple object to represent a Variable assignement.
struct VariableAssignment {
VariableAssignment(size_t VarIdx, llvm::MCPhysReg AssignedReg);
size_t VarIdx;
llvm::MCPhysReg AssignedReg;
bool operator==(const VariableAssignment &) const;
bool operator<(const VariableAssignment &) const;
};
// An AssignmentChain is a set of assignement realizing a dependency chain.
// We inherit from std::set to leverage uniqueness of elements.
using AssignmentChain = std::set<VariableAssignment>;
// Debug function to print an assignment chain.
void dumpAssignmentChain(const llvm::MCRegisterInfo &RegInfo,
const AssignmentChain &Chain);
// Inserts Variables into a graph representing register aliasing and finds all
// the possible dependency chains for this instruction, i.e. all the possible
// assignement of operands that would make execution of the instruction
// sequential.
std::vector<AssignmentChain>
computeSequentialAssignmentChains(const llvm::MCRegisterInfo &RegInfo,
llvm::ArrayRef<Variable> Vars);
// Selects a random configuration leading to a dependency chain.
// The result is a vector of the same size as `Vars`.
// `random_index_for_size` is a functor giving a random value in [0, arg[.
std::vector<llvm::MCPhysReg>
getRandomAssignment(llvm::ArrayRef<Variable> Vars,
llvm::ArrayRef<AssignmentChain> Chains,
const std::function<size_t(size_t)> &RandomIndexForSize);
// Finds an assignment of registers to variables such that no two variables are
// assigned the same register.
// The result is a vector of the same size as `Vars`, or `{}` if the
// assignment is not feasible.
std::vector<llvm::MCPhysReg>
getExclusiveAssignment(llvm::ArrayRef<Variable> Vars);
// Finds a greedy assignment of registers to variables. Each variable gets
// assigned the first possible register that is not already assigned to a
// previous variable. If there is no such register, the variable gets assigned
// the first possible register.
// The result is a vector of the same size as `Vars`, or `{}` if the
// assignment is not feasible.
std::vector<llvm::MCPhysReg>
getGreedyAssignment(llvm::ArrayRef<Variable> Vars);
// Generates an LLVM MCInst with the previously computed variables.
// Immediate values are set to 1.
llvm::MCInst generateMCInst(const llvm::MCInstrDesc &InstrDesc,
llvm::ArrayRef<Variable> Vars,
llvm::ArrayRef<llvm::MCPhysReg> VarRegs);
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_INSTRUCTIONSNIPPETGENERATOR_H

View File

@ -8,41 +8,25 @@
//===----------------------------------------------------------------------===//
#include "Latency.h"
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "BenchmarkResult.h"
#include "InstructionSnippetGenerator.h"
#include "PerfHelper.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <random>
namespace exegesis {
static bool HasUnknownOperand(const llvm::MCOperandInfo &OpInfo) {
return OpInfo.OperandType == llvm::MCOI::OPERAND_UNKNOWN;
}
// FIXME: Handle memory, see PR36905.
static bool HasMemoryOperand(const llvm::MCOperandInfo &OpInfo) {
return OpInfo.OperandType == llvm::MCOI::OPERAND_MEMORY;
}
static bool IsInfeasible(const Instruction &Instruction, std::string &Error) {
const auto &MCInstrDesc = Instruction.Description;
if (MCInstrDesc.isPseudo()) {
Error = "is pseudo";
static bool isInvalidOperand(const llvm::MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
default:
return true;
}
if (llvm::any_of(MCInstrDesc.operands(), HasUnknownOperand)) {
Error = "has unknown operands";
return true;
}
if (llvm::any_of(MCInstrDesc.operands(), HasMemoryOperand)) {
Error = "has memory operands";
return true;
}
case llvm::MCOI::OPERAND_IMMEDIATE:
case llvm::MCOI::OPERAND_REGISTER:
return false;
}
}
static llvm::Error makeError(llvm::Twine Msg) {
@ -54,61 +38,39 @@ LatencyBenchmarkRunner::~LatencyBenchmarkRunner() = default;
const char *LatencyBenchmarkRunner::getDisplayName() const { return "latency"; }
llvm::Expected<std::vector<llvm::MCInst>>
LatencyBenchmarkRunner::createSnippet(RegisterAliasingTrackerCache &RATC,
unsigned Opcode,
llvm::raw_ostream &Info) const {
std::vector<llvm::MCInst> Snippet;
const llvm::MCInstrDesc &MCInstrDesc = MCInstrInfo.get(Opcode);
const Instruction ThisInstruction(MCInstrDesc, RATC);
llvm::Expected<std::vector<llvm::MCInst>> LatencyBenchmarkRunner::createCode(
const LLVMState &State, const unsigned OpcodeIndex,
const unsigned NumRepetitions, const JitFunctionContext &Context) const {
std::default_random_engine RandomEngine;
const auto GetRandomIndex = [&RandomEngine](size_t Size) {
assert(Size > 0 && "trying to get select a random element of an empty set");
return std::uniform_int_distribution<>(0, Size - 1)(RandomEngine);
};
std::string Error;
if (IsInfeasible(ThisInstruction, Error))
return makeError(llvm::Twine("Infeasible : ").concat(Error));
const AliasingConfigurations SelfAliasing(ThisInstruction, ThisInstruction);
if (!SelfAliasing.empty()) {
if (!SelfAliasing.hasImplicitAliasing()) {
Info << "explicit self cycles, selecting one aliasing configuration.\n";
setRandomAliasing(SelfAliasing);
} else {
Info << "implicit Self cycles, picking random values.\n";
}
Snippet.push_back(randomizeUnsetVariablesAndBuild(ThisInstruction));
return Snippet;
const auto &InstrInfo = State.getInstrInfo();
const auto &RegInfo = State.getRegInfo();
const llvm::MCInstrDesc &InstrDesc = InstrInfo.get(OpcodeIndex);
for (const llvm::MCOperandInfo &OpInfo : InstrDesc.operands()) {
if (isInvalidOperand(OpInfo))
return makeError("Only registers and immediates are supported");
}
// Let's try to create a dependency through another opcode.
std::vector<unsigned> Opcodes;
Opcodes.resize(MCInstrInfo.getNumOpcodes());
std::iota(Opcodes.begin(), Opcodes.end(), 0U);
std::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
for (const unsigned OtherOpcode : Opcodes) {
clearVariableAssignments(ThisInstruction);
if (OtherOpcode == Opcode)
continue;
const Instruction OtherInstruction(MCInstrInfo.get(OtherOpcode), RATC);
if (IsInfeasible(OtherInstruction, Error))
continue;
const AliasingConfigurations Forward(ThisInstruction, OtherInstruction);
const AliasingConfigurations Back(OtherInstruction, ThisInstruction);
if (Forward.empty() || Back.empty())
continue;
setRandomAliasing(Forward);
setRandomAliasing(Back);
Info << "creating cycle through " << MCInstrInfo.getName(OtherOpcode)
<< ".\n";
Snippet.push_back(randomizeUnsetVariablesAndBuild(ThisInstruction));
Snippet.push_back(randomizeUnsetVariablesAndBuild(OtherInstruction));
return Snippet;
}
return makeError(
"Infeasible : Didn't find any scheme to make the instruction serial\n");
const auto Vars = getVariables(RegInfo, InstrDesc, Context.getReservedRegs());
const std::vector<AssignmentChain> AssignmentChains =
computeSequentialAssignmentChains(RegInfo, Vars);
if (AssignmentChains.empty())
return makeError("Unable to find a dependency chain.");
const std::vector<llvm::MCPhysReg> Regs =
getRandomAssignment(Vars, AssignmentChains, GetRandomIndex);
const llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs);
if (!State.canAssemble(Inst))
return makeError("MCInst does not assemble.");
return std::vector<llvm::MCInst>(NumRepetitions, Inst);
}
std::vector<BenchmarkMeasure>
LatencyBenchmarkRunner::runMeasurements(const ExecutableFunction &Function,
LatencyBenchmarkRunner::runMeasurements(const LLVMState &State,
const JitFunction &Function,
const unsigned NumRepetitions) const {
// Cycle measurements include some overhead from the kernel. Repeat the
// measure several times and take the minimum value.

View File

@ -21,19 +21,19 @@ namespace exegesis {
class LatencyBenchmarkRunner : public BenchmarkRunner {
public:
using BenchmarkRunner::BenchmarkRunner;
~LatencyBenchmarkRunner() override;
private:
const char *getDisplayName() const override;
llvm::Expected<std::vector<llvm::MCInst>>
createSnippet(RegisterAliasingTrackerCache &RATC, unsigned OpcodeIndex,
llvm::raw_ostream &Info) const override;
createCode(const LLVMState &State, unsigned OpcodeIndex,
unsigned NumRepetitions,
const JitFunctionContext &Context) const override;
std::vector<BenchmarkMeasure>
runMeasurements(const ExecutableFunction &EF,
const unsigned NumRepetitions) const override;
runMeasurements(const LLVMState &State, const JitFunction &Function,
unsigned NumRepetitions) const override;
};
} // namespace exegesis

View File

@ -6,11 +6,6 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// A class to set up and access common LLVM objects.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_LLVMSTATE_H
#define LLVM_TOOLS_LLVM_EXEGESIS_LLVMSTATE_H

View File

@ -1,268 +0,0 @@
//===-- MCInstrDescView.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCInstrDescView.h"
#include <iterator>
#include <map>
#include <tuple>
#include "llvm/ADT/STLExtras.h"
namespace exegesis {
static void tie(const Operand *FromOperand, llvm::Optional<Variable> &Var) {
if (!Var)
Var.emplace();
Var->TiedOperands.push_back(FromOperand);
}
Instruction::Instruction(const llvm::MCInstrDesc &MCInstrDesc,
RegisterAliasingTrackerCache &RATC)
: Description(MCInstrDesc) {
unsigned OpIndex = 0;
for (; OpIndex < MCInstrDesc.getNumOperands(); ++OpIndex) {
const auto &OpInfo = MCInstrDesc.opInfo_begin()[OpIndex];
Operand Operand;
Operand.Index = OpIndex;
Operand.IsDef = (OpIndex < MCInstrDesc.getNumDefs());
Operand.IsExplicit = true;
// TODO(gchatelet): Handle isLookupPtrRegClass.
if (OpInfo.RegClass >= 0)
Operand.Tracker = &RATC.getRegisterClass(OpInfo.RegClass);
Operand.Info = &OpInfo;
Operands.push_back(Operand);
}
for (const llvm::MCPhysReg *MCPhysReg = MCInstrDesc.getImplicitDefs();
MCPhysReg && *MCPhysReg; ++MCPhysReg, ++OpIndex) {
Operand Operand;
Operand.Index = OpIndex;
Operand.IsDef = true;
Operand.IsExplicit = false;
Operand.Tracker = &RATC.getRegister(*MCPhysReg);
Operand.ImplicitReg = MCPhysReg;
Operands.push_back(Operand);
}
for (const llvm::MCPhysReg *MCPhysReg = MCInstrDesc.getImplicitUses();
MCPhysReg && *MCPhysReg; ++MCPhysReg, ++OpIndex) {
Operand Operand;
Operand.Index = OpIndex;
Operand.IsDef = false;
Operand.IsExplicit = false;
Operand.Tracker = &RATC.getRegister(*MCPhysReg);
Operand.ImplicitReg = MCPhysReg;
Operands.push_back(Operand);
}
// Set TiedTo for operands.
for (auto &Op : Operands) {
if (Op.IsExplicit) {
const int TiedTo =
MCInstrDesc.getOperandConstraint(Op.Index, llvm::MCOI::TIED_TO);
if (TiedTo >= 0) {
Op.TiedTo = &Operands[TiedTo];
tie(&Op, Operands[TiedTo].Var);
} else {
tie(&Op, Op.Var);
}
}
}
for (auto &Op : Operands) {
if (Op.Var) {
Variables.push_back(&*Op.Var);
}
}
// Processing Aliasing.
DefRegisters = RATC.emptyRegisters();
UseRegisters = RATC.emptyRegisters();
for (const auto &Op : Operands) {
if (Op.Tracker) {
auto &Registers = Op.IsDef ? DefRegisters : UseRegisters;
Registers |= Op.Tracker->aliasedBits();
}
}
}
bool RegisterOperandAssignment::
operator==(const RegisterOperandAssignment &Other) const {
return std::tie(Op, Reg) == std::tie(Other.Op, Other.Reg);
}
bool AliasingRegisterOperands::
operator==(const AliasingRegisterOperands &Other) const {
return std::tie(Defs, Uses) == std::tie(Other.Defs, Other.Uses);
}
static void addOperandIfAlias(
const llvm::MCPhysReg Reg, bool SelectDef, llvm::ArrayRef<Operand> Operands,
llvm::SmallVectorImpl<RegisterOperandAssignment> &OperandValues) {
for (const auto &Op : Operands) {
if (Op.Tracker && Op.IsDef == SelectDef) {
const int SourceReg = Op.Tracker->getOrigin(Reg);
if (SourceReg >= 0)
OperandValues.emplace_back(&Op, SourceReg);
}
}
}
bool AliasingRegisterOperands::hasImplicitAliasing() const {
const auto HasImplicit = [](const RegisterOperandAssignment &ROV) {
return !ROV.Op->IsExplicit;
};
return llvm::any_of(Defs, HasImplicit) && llvm::any_of(Uses, HasImplicit);
}
bool AliasingConfigurations::empty() const { return Configurations.empty(); }
bool AliasingConfigurations::hasImplicitAliasing() const {
return llvm::any_of(Configurations, [](const AliasingRegisterOperands &ARO) {
return ARO.hasImplicitAliasing();
});
}
AliasingConfigurations::AliasingConfigurations(
const Instruction &DefInstruction, const Instruction &UseInstruction)
: DefInstruction(DefInstruction), UseInstruction(UseInstruction) {
if (UseInstruction.UseRegisters.anyCommon(DefInstruction.DefRegisters)) {
auto CommonRegisters = UseInstruction.UseRegisters;
CommonRegisters &= DefInstruction.DefRegisters;
for (const llvm::MCPhysReg Reg : CommonRegisters.set_bits()) {
AliasingRegisterOperands ARO;
addOperandIfAlias(Reg, true, DefInstruction.Operands, ARO.Defs);
addOperandIfAlias(Reg, false, UseInstruction.Operands, ARO.Uses);
if (!ARO.Defs.empty() && !ARO.Uses.empty() &&
!llvm::is_contained(Configurations, ARO))
Configurations.push_back(std::move(ARO));
}
}
}
std::mt19937 &randomGenerator() {
static std::random_device RandomDevice;
static std::mt19937 RandomGenerator(RandomDevice());
return RandomGenerator;
}
static size_t randomIndex(size_t Size) {
assert(Size > 0);
std::uniform_int_distribution<> Distribution(0, Size - 1);
return Distribution(randomGenerator());
}
template <typename C>
static auto randomElement(const C &Container) -> decltype(Container[0]) {
return Container[randomIndex(Container.size())];
}
static void randomize(Variable &Var) {
assert(!Var.TiedOperands.empty());
assert(Var.TiedOperands.front() != nullptr);
const Operand &Op = *Var.TiedOperands.front();
assert(Op.Info != nullptr);
const auto &OpInfo = *Op.Info;
switch (OpInfo.OperandType) {
case llvm::MCOI::OperandType::OPERAND_IMMEDIATE:
// FIXME: explore immediate values too.
Var.AssignedValue = llvm::MCOperand::createImm(1);
break;
case llvm::MCOI::OperandType::OPERAND_REGISTER: {
assert(Op.Tracker);
const auto &Registers = Op.Tracker->sourceBits();
Var.AssignedValue = llvm::MCOperand::createReg(randomBit(Registers));
break;
}
default:
break;
}
}
static void setRegisterOperandValue(const RegisterOperandAssignment &ROV) {
const Operand *Op = ROV.Op->TiedTo ? ROV.Op->TiedTo : ROV.Op;
assert(Op->Var);
auto &AssignedValue = Op->Var->AssignedValue;
if (AssignedValue.isValid()) {
assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
return;
}
Op->Var->AssignedValue = llvm::MCOperand::createReg(ROV.Reg);
}
size_t randomBit(const llvm::BitVector &Vector) {
assert(Vector.any());
auto Itr = Vector.set_bits_begin();
for (size_t I = randomIndex(Vector.count()); I != 0; --I)
++Itr;
return *Itr;
}
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations) {
assert(!AliasingConfigurations.empty());
assert(!AliasingConfigurations.hasImplicitAliasing());
const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
setRegisterOperandValue(randomElement(RandomConf.Defs));
setRegisterOperandValue(randomElement(RandomConf.Uses));
}
void randomizeUnsetVariable(const Instruction &Instruction) {
for (auto *Var : Instruction.Variables)
if (!Var->AssignedValue.isValid())
randomize(*Var);
}
void clearVariableAssignments(const Instruction &Instruction) {
for (auto *Var : Instruction.Variables)
Var->AssignedValue = llvm::MCOperand();
}
llvm::MCInst build(const Instruction &Instruction) {
llvm::MCInst Result;
Result.setOpcode(Instruction.Description.Opcode);
for (const auto &Op : Instruction.Operands) {
if (Op.IsExplicit) {
auto &Var = Op.TiedTo ? Op.TiedTo->Var : Op.Var;
assert(Var);
Result.addOperand(Var->AssignedValue);
}
}
return Result;
}
llvm::MCInst randomizeUnsetVariablesAndBuild(const Instruction &Instruction) {
randomizeUnsetVariable(Instruction);
return build(Instruction);
}
void DumpMCOperand(const llvm::MCRegisterInfo &MCRegisterInfo,
const llvm::MCOperand &Op, llvm::raw_ostream &OS) {
if (!Op.isValid())
OS << "Invalid";
else if (Op.isReg())
OS << MCRegisterInfo.getName(Op.getReg());
else if (Op.isImm())
OS << Op.getImm();
else if (Op.isFPImm())
OS << Op.getFPImm();
else if (Op.isExpr())
OS << "Expr";
else if (Op.isInst())
OS << "SubInst";
}
void DumpMCInst(const llvm::MCRegisterInfo &MCRegisterInfo,
const llvm::MCInstrInfo &MCInstrInfo,
const llvm::MCInst &MCInst, llvm::raw_ostream &OS) {
OS << MCInstrInfo.getName(MCInst.getOpcode());
for (unsigned I = 0, E = MCInst.getNumOperands(); I < E; ++I) {
if (I > 0)
OS << ',';
OS << ' ';
DumpMCOperand(MCRegisterInfo, MCInst.getOperand(I), OS);
}
}
} // namespace exegesis

View File

@ -1,150 +0,0 @@
//===-- MCInstrDescView.h ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Provide views around LLVM structures to represents an instruction instance,
/// as well as its implicit and explicit arguments in a uniform way.
/// Arguments that are explicit and independant (non tied) also have a Variable
/// associated to them so the instruction can be fully defined by reading its
/// Variables.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_MCINSTRDESCVIEW_H
#define LLVM_TOOLS_LLVM_EXEGESIS_MCINSTRDESCVIEW_H
#include <random>
#include "RegisterAliasing.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
namespace exegesis {
struct Operand; // forward declaration.
// A variable represents the value of an Operand or a set of Operands if they ar
// tied together.
struct Variable {
llvm::SmallVector<const Operand *, 2> TiedOperands;
llvm::MCOperand AssignedValue;
};
// MCOperandInfo can only represents Explicit operands. This object gives a
// uniform view of Implicit and Explicit Operands.
//
// - Index: can be used to refer to MCInstrDesc::operands for Explicit operands.
// - Tracker: is set for Register Operands and is used to keep track of possible
// registers and the registers reachable from them (aliasing registers).
// - Info: a shortcut for MCInstrDesc::operands()[Index].
// - TiedTo: a pointer to the Operand holding the value or nullptr.
// - ImplicitReg: a pointer to the register value when Operand is Implicit,
// nullptr otherwise.
// - Variable: The value associated with this Operand. It is only set for
// explicit operands that are not TiedTo.
struct Operand {
uint8_t Index = 0;
bool IsDef = false;
bool IsExplicit = false;
const RegisterAliasingTracker *Tracker = nullptr; // Set for Register Op.
const llvm::MCOperandInfo *Info = nullptr; // Set for Explicit Op.
const Operand *TiedTo = nullptr; // Set for Reg/Explicit Op.
const llvm::MCPhysReg *ImplicitReg = nullptr; // Set for Implicit Op.
mutable llvm::Optional<Variable> Var; // Set for Explicit Op.
};
// A view over an MCInstrDesc offering a convenient interface to compute
// Register aliasing and assign values to Operands.
struct Instruction {
Instruction(const llvm::MCInstrDesc &MCInstrDesc,
RegisterAliasingTrackerCache &ATC);
const llvm::MCInstrDesc &Description;
llvm::SmallVector<Operand, 8> Operands;
llvm::SmallVector<Variable *, 8> Variables;
llvm::BitVector DefRegisters; // The union of the aliased def registers.
llvm::BitVector UseRegisters; // The union of the aliased use registers.
};
// Represents the assignment of a Register to an Operand.
struct RegisterOperandAssignment {
RegisterOperandAssignment(const Operand *Operand, llvm::MCPhysReg Reg)
: Op(Operand), Reg(Reg) {}
const Operand *Op; // Pointer to an Explicit Register Operand.
llvm::MCPhysReg Reg;
bool operator==(const RegisterOperandAssignment &other) const;
};
// Represents a set of Operands that would alias through the use of some
// Registers.
// There are two reasons why operands would alias:
// - The registers assigned to each of the operands are the same or alias each
// other (e.g. AX/AL)
// - The operands are tied.
struct AliasingRegisterOperands {
llvm::SmallVector<RegisterOperandAssignment, 1> Defs; // Unlikely size() > 1.
llvm::SmallVector<RegisterOperandAssignment, 2> Uses;
// True is Defs and Use contain an Implicit Operand.
bool hasImplicitAliasing() const;
bool operator==(const AliasingRegisterOperands &other) const;
};
// Returns all possible configurations leading Def registers of DefInstruction
// to alias with Use registers of UseInstruction.
struct AliasingConfigurations {
AliasingConfigurations(const Instruction &DefInstruction,
const Instruction &UseInstruction);
bool empty() const; // True if no aliasing configuration is found.
bool hasImplicitAliasing() const;
void setExplicitAliasing() const;
const Instruction &DefInstruction;
const Instruction &UseInstruction;
llvm::SmallVector<AliasingRegisterOperands, 32> Configurations;
};
// A global Random Number Generator to randomize configurations.
// FIXME: Move random number generation into an object and make it seedable for
// unit tests.
std::mt19937 &randomGenerator();
// Picks a random bit among the bits set in Vector and returns its index.
// Precondition: Vector must have at least one bit set.
size_t randomBit(const llvm::BitVector &Vector);
// Picks a random configuration, then select a random def and a random use from
// it and set the target Variables to the selected values.
// FIXME: This function mutates some nested variables in a const object, please
// fix ASAP.
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations);
// Set all Instruction's Variables AssignedValue to Invalid.
void clearVariableAssignments(const Instruction &Instruction);
// Assigns a Random Value to all Instruction's Variables that are still Invalid.
llvm::MCInst randomizeUnsetVariablesAndBuild(const Instruction &Instruction);
// Writes MCInst to OS.
// This is not assembly but the internal LLVM's name for instructions and
// registers.
void DumpMCInst(const llvm::MCRegisterInfo &MCRegisterInfo,
const llvm::MCInstrInfo &MCInstrInfo,
const llvm::MCInst &MCInst, llvm::raw_ostream &OS);
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_MCINSTRDESCVIEW_H

View File

@ -0,0 +1,115 @@
//===-- OperandGraph.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "OperandGraph.h"
#include "llvm/MC/MCRegisterInfo.h"
namespace exegesis {
namespace graph {
void Node::dump(const llvm::MCRegisterInfo &RegInfo) const {
switch (type()) {
case NodeType::VARIABLE:
printf(" %d", varValue());
break;
case NodeType::REG:
printf(" %s", RegInfo.getName(regValue()));
break;
case NodeType::IN:
printf(" IN");
break;
case NodeType::OUT:
printf(" OUT");
break;
}
}
NodeType Node::type() const { return first; }
int Node::regValue() const {
assert(first == NodeType::REG && "regValue() called on non-reg");
return second;
}
int Node::varValue() const {
assert(first == NodeType::VARIABLE && "varValue() called on non-var");
return second;
}
void Graph::connect(const Node From, const Node To) {
AdjacencyLists[From].insert(To);
}
void Graph::disconnect(const Node From, const Node To) {
AdjacencyLists[From].erase(To);
}
std::vector<Node> Graph::getPathFrom(const Node From, const Node To) const {
std::vector<Node> Path;
NodeSet Seen;
dfs(From, To, Path, Seen);
return Path;
}
// DFS is implemented recursively, this is fine as graph size is small (~250
// nodes, ~200 edges, longuest path depth < 10).
bool Graph::dfs(const Node Current, const Node Sentinel,
std::vector<Node> &Path, NodeSet &Seen) const {
Path.push_back(Current);
Seen.insert(Current);
if (Current == Sentinel)
return true;
if (AdjacencyLists.count(Current)) {
for (const Node Next : AdjacencyLists.find(Current)->second) {
if (Seen.count(Next))
continue;
if (dfs(Next, Sentinel, Path, Seen))
return true;
}
}
Path.pop_back();
return false;
}
// For each Register Units we walk up their parents.
// Let's take the case of the A register family:
//
// RAX
// ^
// EAX
// ^
// AX
// ^ ^
// AH AL
//
// Register Units are AH and AL.
// Walking them up gives the following lists:
// AH->AX->EAX->RAX and AL->AX->EAX->RAX
// When walking the lists we add connect current to parent both ways leading to
// the following connections:
//
// AL<->AX, AH<->AX, AX<->EAX, EAX<->RAX
// We repeat this process for all Unit Registers to cover all connections.
void setupRegisterAliasing(const llvm::MCRegisterInfo &RegInfo,
Graph &TheGraph) {
using SuperItr = llvm::MCSuperRegIterator;
for (size_t Reg = 0, E = RegInfo.getNumRegUnits(); Reg < E; ++Reg) {
size_t Current = Reg;
for (SuperItr Super(Reg, &RegInfo); Super.isValid(); ++Super) {
const Node A = Node::Reg(Current);
const Node B = Node::Reg(*Super);
TheGraph.connect(A, B);
TheGraph.connect(B, A);
Current = *Super;
}
}
}
} // namespace graph
} // namespace exegesis

View File

@ -0,0 +1,89 @@
//===-- OperandGraph.h ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// A collection of tools to model register aliasing and instruction operand.
/// This is used to find an aliasing between the input and output registers of
/// an instruction. It allows us to repeat an instruction and make sure that
/// successive instances are executed sequentially.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_OPERANDGRAPH_H
#define LLVM_TOOLS_LLVM_EXEGESIS_OPERANDGRAPH_H
#include "llvm/MC/MCRegisterInfo.h"
#include <map>
#include <set>
#include <tuple>
#include <vector>
namespace exegesis {
namespace graph {
enum class NodeType {
VARIABLE, // An set of "tied together operands" to resolve.
REG, // A particular register.
IN, // The input node.
OUT // The output node.
};
// A Node in the graph, it has a type and an int value.
struct Node : public std::pair<NodeType, int> {
using std::pair<NodeType, int>::pair;
static Node Reg(int Value) { return {NodeType::REG, Value}; }
static Node Var(int Value) { return {NodeType::VARIABLE, Value}; }
static Node In() { return {NodeType::IN, 0}; }
static Node Out() { return {NodeType::OUT, 0}; }
NodeType type() const;
int regValue() const; // checks that type==REG and returns value.
int varValue() const; // checks that type==VARIABLE and returns value.
void dump(const llvm::MCRegisterInfo &RegInfo) const;
};
// Graph represents the connectivity of registers for a particular instruction.
// This object is used to select registers that would create a dependency chain
// between instruction's input and output.
struct Graph {
public:
void connect(const Node From, const Node To);
void disconnect(const Node From, const Node To);
// Tries to find a path between 'From' and 'To' nodes.
// Returns empty if no path is found.
std::vector<Node> getPathFrom(const Node From, const Node To) const;
private:
// We use std::set to keep the implementation simple, using an unordered_set
// requires the definition of a hasher.
using NodeSet = std::set<Node>;
// Performs a Depth First Search from 'current' node up until 'sentinel' node
// is found. 'path' is the recording of the traversed nodes, 'seen' is the
// collection of nodes seen so far.
bool dfs(const Node Current, const Node Sentinel, std::vector<Node> &Path,
NodeSet &Seen) const;
// We use std::map to keep the implementation simple, using an unordered_map
// requires the definition of a hasher.
std::map<Node, NodeSet> AdjacencyLists;
};
// Add register nodes to graph and connect them when they alias. Connection is
// both ways.
void setupRegisterAliasing(const llvm::MCRegisterInfo &RegInfo,
Graph &TheGraph);
} // namespace graph
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_OPERANDGRAPH_H

View File

@ -1,83 +0,0 @@
//===-- RegisterAliasingTracker.cpp -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "RegisterAliasing.h"
namespace exegesis {
llvm::BitVector getAliasedBits(const llvm::MCRegisterInfo &RegInfo,
const llvm::BitVector &SourceBits) {
llvm::BitVector AliasedBits(RegInfo.getNumRegs());
for (const size_t PhysReg : SourceBits.set_bits()) {
using RegAliasItr = llvm::MCRegAliasIterator;
for (auto Itr = RegAliasItr(PhysReg, &RegInfo, true); Itr.isValid();
++Itr) {
AliasedBits.set(*Itr);
}
}
return AliasedBits;
}
RegisterAliasingTracker::RegisterAliasingTracker(
const llvm::MCRegisterInfo &RegInfo)
: SourceBits(RegInfo.getNumRegs()), AliasedBits(RegInfo.getNumRegs()),
Origins(RegInfo.getNumRegs()) {}
RegisterAliasingTracker::RegisterAliasingTracker(
const llvm::MCRegisterInfo &RegInfo, const llvm::BitVector &ReservedReg,
const llvm::MCRegisterClass &RegClass)
: RegisterAliasingTracker(RegInfo) {
for (llvm::MCPhysReg PhysReg : RegClass)
if (!ReservedReg[PhysReg]) // Removing reserved registers.
SourceBits.set(PhysReg);
FillOriginAndAliasedBits(RegInfo, SourceBits);
}
RegisterAliasingTracker::RegisterAliasingTracker(
const llvm::MCRegisterInfo &RegInfo, const llvm::MCPhysReg PhysReg)
: RegisterAliasingTracker(RegInfo) {
SourceBits.set(PhysReg);
FillOriginAndAliasedBits(RegInfo, SourceBits);
}
void RegisterAliasingTracker::FillOriginAndAliasedBits(
const llvm::MCRegisterInfo &RegInfo, const llvm::BitVector &SourceBits) {
using RegAliasItr = llvm::MCRegAliasIterator;
for (const size_t PhysReg : SourceBits.set_bits()) {
for (auto Itr = RegAliasItr(PhysReg, &RegInfo, true); Itr.isValid();
++Itr) {
AliasedBits.set(*Itr);
Origins[*Itr] = PhysReg;
}
}
}
RegisterAliasingTrackerCache::RegisterAliasingTrackerCache(
const llvm::MCRegisterInfo &RegInfo, const llvm::BitVector &ReservedReg)
: RegInfo(RegInfo), ReservedReg(ReservedReg),
EmptyRegisters(RegInfo.getNumRegs()) {}
const RegisterAliasingTracker &
RegisterAliasingTrackerCache::getRegister(llvm::MCPhysReg PhysReg) {
auto &Found = Registers[PhysReg];
if (!Found)
Found.reset(new RegisterAliasingTracker(RegInfo, PhysReg));
return *Found;
}
const RegisterAliasingTracker &
RegisterAliasingTrackerCache::getRegisterClass(unsigned RegClassIndex) {
auto &Found = RegisterClasses[RegClassIndex];
const auto &RegClass = RegInfo.getRegClass(RegClassIndex);
if (!Found)
Found.reset(new RegisterAliasingTracker(RegInfo, ReservedReg, RegClass));
return *Found;
}
} // namespace exegesis

View File

@ -1,107 +0,0 @@
//===-- RegisterAliasingTracker.h -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines classes to keep track of register aliasing.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_ALIASINGTRACKER_H
#define LLVM_TOOLS_LLVM_EXEGESIS_ALIASINGTRACKER_H
#include <memory>
#include <unordered_map>
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PackedVector.h"
#include "llvm/MC/MCRegisterInfo.h"
namespace exegesis {
// Returns the registers that are aliased by the ones set in SourceBits.
llvm::BitVector getAliasedBits(const llvm::MCRegisterInfo &RegInfo,
const llvm::BitVector &SourceBits);
// Keeps track of a mapping from one register (or a register class) to its
// aliased registers.
//
// e.g.
// RegisterAliasingTracker Tracker(RegInfo, llvm::X86::EAX);
// Tracker.sourceBits() == { llvm::X86::EAX }
// Tracker.aliasedBits() == { llvm::X86::AL, llvm::X86::AH, llvm::X86::AX,
// llvm::X86::EAX,llvm::X86::HAX, llvm::X86::RAX }
// Tracker.getOrigin(llvm::X86::AL) == llvm::X86::EAX;
// Tracker.getOrigin(llvm::X86::BX) == -1;
struct RegisterAliasingTracker {
// Construct a tracker from an MCRegisterClass.
RegisterAliasingTracker(const llvm::MCRegisterInfo &RegInfo,
const llvm::BitVector &ReservedReg,
const llvm::MCRegisterClass &RegClass);
// Construct a tracker from an MCPhysReg.
RegisterAliasingTracker(const llvm::MCRegisterInfo &RegInfo,
const llvm::MCPhysReg Register);
const llvm::BitVector &sourceBits() const { return SourceBits; }
// Retrieves all the touched registers as a BitVector.
const llvm::BitVector &aliasedBits() const { return AliasedBits; }
// Returns the origin of this register or -1.
int getOrigin(llvm::MCPhysReg Aliased) const {
if (!AliasedBits[Aliased])
return -1;
return Origins[Aliased];
}
private:
RegisterAliasingTracker(const llvm::MCRegisterInfo &RegInfo);
void FillOriginAndAliasedBits(const llvm::MCRegisterInfo &RegInfo,
const llvm::BitVector &OriginalBits);
llvm::BitVector SourceBits;
llvm::BitVector AliasedBits;
llvm::PackedVector<size_t, 10> Origins; // Max 1024 physical registers.
};
// A cache of existing trackers.
struct RegisterAliasingTrackerCache {
// RegInfo must outlive the cache.
RegisterAliasingTrackerCache(const llvm::MCRegisterInfo &RegInfo,
const llvm::BitVector &ReservedReg);
// Convenient function to retrieve a BitVector of the right size.
const llvm::BitVector &emptyRegisters() const { return EmptyRegisters; }
// Convenient function to retrieve the registers the function body can't use.
const llvm::BitVector &reservedRegisters() const { return ReservedReg; }
// Convenient function to retrieve the underlying MCRegInfo.
const llvm::MCRegisterInfo &regInfo() const { return RegInfo; }
// Retrieves the RegisterAliasingTracker for this particular register.
const RegisterAliasingTracker &getRegister(llvm::MCPhysReg Reg);
// Retrieves the RegisterAliasingTracker for this particular register class.
const RegisterAliasingTracker &getRegisterClass(unsigned RegClassIndex);
private:
const llvm::MCRegisterInfo &RegInfo;
const llvm::BitVector ReservedReg;
const llvm::BitVector EmptyRegisters;
std::unordered_map<unsigned, std::unique_ptr<RegisterAliasingTracker>>
Registers;
std::unordered_map<unsigned, std::unique_ptr<RegisterAliasingTracker>>
RegisterClasses;
};
} // namespace exegesis
#endif // LLVM_TOOLS_LLVM_EXEGESIS_ALIASINGTRACKER_H

View File

@ -8,130 +8,29 @@
//===----------------------------------------------------------------------===//
#include "Uops.h"
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "BenchmarkResult.h"
#include "InstructionSnippetGenerator.h"
#include "PerfHelper.h"
// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.
// Ideally we would like the only limitation on executing uops to be the issue
// ports. Maximizing port pressure increases the likelihood that the load is
// distributed evenly across possible ports.
// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the Var is assigned a
// register which is different from AX:
// idiv bx
// idiv bx
// idiv bx
// idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
// inc rax
// inc rax
// inc rax
// inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
// imul rax, rbx
// imul rcx, rbx
// imul rdx, rbx
// imul r8, rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <random>
#include <unordered_map>
#include <unordered_set>
namespace exegesis {
static bool hasUnknownOperand(const llvm::MCOperandInfo &OpInfo) {
return OpInfo.OperandType == llvm::MCOI::OPERAND_UNKNOWN;
}
// FIXME: Handle memory, see PR36905.
static bool hasMemoryOperand(const llvm::MCOperandInfo &OpInfo) {
return OpInfo.OperandType == llvm::MCOI::OPERAND_MEMORY;
}
static bool isInfeasible(const Instruction &Instruction, std::string &Error) {
const auto &MCInstrDesc = Instruction.Description;
if (MCInstrDesc.isPseudo()) {
Error = "is pseudo";
// FIXME: Handle memory (see PR36906)
static bool isInvalidOperand(const llvm::MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
default:
return true;
}
if (llvm::any_of(MCInstrDesc.operands(), hasUnknownOperand)) {
Error = "has unknown operands";
return true;
}
if (llvm::any_of(MCInstrDesc.operands(), hasMemoryOperand)) {
Error = "has memory operands";
return true;
}
case llvm::MCOI::OPERAND_IMMEDIATE:
case llvm::MCOI::OPERAND_REGISTER:
return false;
}
// Returns whether this Variable ties Use and Def operands together.
static bool hasTiedOperands(const Variable *Var) {
bool HasUse = false;
bool HasDef = false;
for (const Operand *Op : Var->TiedOperands) {
if (Op->IsDef)
HasDef = true;
else
HasUse = true;
}
return HasUse && HasDef;
}
static llvm::SmallVector<Variable *, 8>
getTiedVariables(const Instruction &Instruction) {
llvm::SmallVector<Variable *, 8> Result;
for (auto *Var : Instruction.Variables)
if (hasTiedOperands(Var))
Result.push_back(Var);
return Result;
}
static void remove(llvm::BitVector &a, const llvm::BitVector &b) {
assert(a.size() == b.size());
for (auto I : b.set_bits())
a.reset(I);
}
static llvm::Error makeError(llvm::Twine Msg) {
@ -139,89 +38,153 @@ static llvm::Error makeError(llvm::Twine Msg) {
llvm::inconvertibleErrorCode());
}
static std::vector<llvm::MCInst> generateIndependentAssignments(
const LLVMState &State, const llvm::MCInstrDesc &InstrDesc,
llvm::SmallVector<Variable, 8> Vars, int MaxAssignments) {
std::unordered_set<llvm::MCPhysReg> IsUsedByAnyVar;
for (const Variable &Var : Vars) {
if (Var.IsUse) {
IsUsedByAnyVar.insert(Var.PossibleRegisters.begin(),
Var.PossibleRegisters.end());
}
}
std::vector<llvm::MCInst> Pattern;
for (int A = 0; A < MaxAssignments; ++A) {
// FIXME: This is a bit pessimistic. We should get away with an
// assignment that ensures that the set of assigned registers for uses and
// the set of assigned registers for defs do not intersect (registers
// for uses (resp defs) do not have to be all distinct).
const std::vector<llvm::MCPhysReg> Regs = getExclusiveAssignment(Vars);
if (Regs.empty())
break;
// Remove all assigned registers defs that are used by at least one other
// variable from the list of possible variable registers. This ensures that
// we never create a RAW hazard that would lead to serialization.
for (size_t I = 0, E = Vars.size(); I < E; ++I) {
llvm::MCPhysReg Reg = Regs[I];
if (Vars[I].IsDef && IsUsedByAnyVar.count(Reg)) {
Vars[I].PossibleRegisters.remove(Reg);
}
}
// Create an MCInst and check assembly.
llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs);
if (!State.canAssemble(Inst))
continue;
Pattern.push_back(std::move(Inst));
}
return Pattern;
}
UopsBenchmarkRunner::~UopsBenchmarkRunner() = default;
const char *UopsBenchmarkRunner::getDisplayName() const { return "uops"; }
llvm::Expected<std::vector<llvm::MCInst>>
UopsBenchmarkRunner::createSnippet(RegisterAliasingTrackerCache &RATC,
unsigned Opcode,
llvm::raw_ostream &Info) const {
std::vector<llvm::MCInst> Snippet;
const llvm::MCInstrDesc &MCInstrDesc = MCInstrInfo.get(Opcode);
const Instruction Instruction(MCInstrDesc, RATC);
std::string Error;
if (isInfeasible(Instruction, Error)) {
llvm::report_fatal_error(llvm::Twine("Infeasible : ").concat(Error));
llvm::Expected<std::vector<llvm::MCInst>> UopsBenchmarkRunner::createCode(
const LLVMState &State, const unsigned OpcodeIndex,
const unsigned NumRepetitions, const JitFunctionContext &Context) const {
const auto &InstrInfo = State.getInstrInfo();
const auto &RegInfo = State.getRegInfo();
const llvm::MCInstrDesc &InstrDesc = InstrInfo.get(OpcodeIndex);
for (const llvm::MCOperandInfo &OpInfo : InstrDesc.operands()) {
if (isInvalidOperand(OpInfo))
return makeError("Only registers and immediates are supported");
}
const AliasingConfigurations SelfAliasing(Instruction, Instruction);
if (SelfAliasing.empty()) {
Info << "instruction is parallel, repeating a random one.\n";
Snippet.push_back(randomizeUnsetVariablesAndBuild(Instruction));
return Snippet;
// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.
// Ideally we would like the only limitation on executing uops to be the issue
// ports. Maximizing port pressure increases the likelihood that the load is
// distributed evenly across possible ports.
// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the variable is assigned a
// register which is different from AX:
// idiv bx
// idiv bx
// idiv bx
// idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
// inc rax
// inc rax
// inc rax
// inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
// imul rax, rbx
// imul rcx, rbx
// imul rdx, rbx
// imul r8, rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.
const auto Vars = getVariables(RegInfo, InstrDesc, Context.getReservedRegs());
// Generate as many independent exclusive assignments as possible.
constexpr const int MaxStaticRenames = 20;
std::vector<llvm::MCInst> Pattern =
generateIndependentAssignments(State, InstrDesc, Vars, MaxStaticRenames);
if (Pattern.empty()) {
// We don't even have a single exclusive assignment, fallback to a greedy
// assignment.
// FIXME: Tell the user about this decision to help debugging.
const std::vector<llvm::MCPhysReg> Regs = getGreedyAssignment(Vars);
if (!Vars.empty() && Regs.empty())
return makeError("No feasible greedy assignment");
llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs);
if (!State.canAssemble(Inst))
return makeError("Cannot assemble greedy assignment");
Pattern.push_back(std::move(Inst));
}
if (SelfAliasing.hasImplicitAliasing()) {
Info << "instruction is serial, repeating a random one.\n";
Snippet.push_back(randomizeUnsetVariablesAndBuild(Instruction));
return Snippet;
}
const auto TiedVariables = getTiedVariables(Instruction);
if (!TiedVariables.empty()) {
if (TiedVariables.size() > 1) {
Info << "Not yet implemented, don't know how to handle several tied "
"variables\n";
return makeError("Infeasible : don't know how to handle several tied "
"variables");
}
Info << "instruction has tied variables using static renaming.\n";
Variable *Var = TiedVariables.front();
assert(Var);
assert(!Var->TiedOperands.empty());
const Operand &Operand = *Var->TiedOperands.front();
assert(Operand.Tracker);
for (const llvm::MCPhysReg Reg : Operand.Tracker->sourceBits().set_bits()) {
clearVariableAssignments(Instruction);
Var->AssignedValue = llvm::MCOperand::createReg(Reg);
Snippet.push_back(randomizeUnsetVariablesAndBuild(Instruction));
}
return Snippet;
}
// No tied variables, we pick random values for defs.
llvm::BitVector Defs(MCRegisterInfo.getNumRegs());
for (const auto &Op : Instruction.Operands) {
if (Op.Tracker && Op.IsExplicit && Op.IsDef) {
assert(Op.Var);
auto PossibleRegisters = Op.Tracker->sourceBits();
remove(PossibleRegisters, RATC.reservedRegisters());
assert(PossibleRegisters.any() && "No register left to choose from");
const auto RandomReg = randomBit(PossibleRegisters);
Defs.set(RandomReg);
Op.Var->AssignedValue = llvm::MCOperand::createReg(RandomReg);
}
}
// And pick random use values that are not reserved and don't alias with defs.
const auto DefAliases = getAliasedBits(MCRegisterInfo, Defs);
for (const auto &Op : Instruction.Operands) {
if (Op.Tracker && Op.IsExplicit && !Op.IsDef) {
assert(Op.Var);
auto PossibleRegisters = Op.Tracker->sourceBits();
remove(PossibleRegisters, RATC.reservedRegisters());
remove(PossibleRegisters, DefAliases);
assert(PossibleRegisters.any() && "No register left to choose from");
const auto RandomReg = randomBit(PossibleRegisters);
Op.Var->AssignedValue = llvm::MCOperand::createReg(RandomReg);
}
}
Info
<< "instruction has no tied variables picking Uses different from defs\n";
Snippet.push_back(randomizeUnsetVariablesAndBuild(Instruction));
return Snippet;
// Generate repetitions of the pattern until benchmark_iterations is reached.
std::vector<llvm::MCInst> Result;
Result.reserve(NumRepetitions);
for (unsigned I = 0; I < NumRepetitions; ++I)
Result.push_back(Pattern[I % Pattern.size()]);
return Result;
}
std::vector<BenchmarkMeasure>
UopsBenchmarkRunner::runMeasurements(const ExecutableFunction &Function,
UopsBenchmarkRunner::runMeasurements(const LLVMState &State,
const JitFunction &Function,
const unsigned NumRepetitions) const {
const auto &SchedModel = State.getSubtargetInfo().getSchedModel();
@ -234,11 +197,7 @@ UopsBenchmarkRunner::runMeasurements(const ExecutableFunction &Function,
continue;
// FIXME: Sum results when there are several counters for a single ProcRes
// (e.g. P23 on SandyBridge).
pfm::PerfEvent UopPerfEvent(PfmCounters);
if (!UopPerfEvent.valid())
llvm::report_fatal_error(
llvm::Twine("invalid perf event ").concat(PfmCounters));
pfm::Counter Counter(UopPerfEvent);
pfm::Counter Counter{pfm::PerfEvent(PfmCounters)};
Counter.start();
Function();
Counter.stop();

View File

@ -21,19 +21,19 @@ namespace exegesis {
class UopsBenchmarkRunner : public BenchmarkRunner {
public:
using BenchmarkRunner::BenchmarkRunner;
~UopsBenchmarkRunner() override;
private:
const char *getDisplayName() const override;
llvm::Expected<std::vector<llvm::MCInst>>
createSnippet(RegisterAliasingTrackerCache &RATC, unsigned Opcode,
llvm::raw_ostream &Info) const override;
createCode(const LLVMState &State, unsigned OpcodeIndex,
unsigned NumRepetitions,
const JitFunctionContext &Context) const override;
std::vector<BenchmarkMeasure>
runMeasurements(const ExecutableFunction &EF,
const unsigned NumRepetitions) const override;
runMeasurements(const LLVMState &State, const JitFunction &Function,
unsigned NumRepetitions) const override;
};
} // namespace exegesis

View File

@ -76,23 +76,14 @@ static llvm::cl::opt<std::string> AnalysisClustersFile("analysis-clusters-file",
namespace exegesis {
static unsigned GetOpcodeOrDie(const llvm::MCInstrInfo &MCInstrInfo) {
if (OpcodeName.empty() && (OpcodeIndex == 0))
llvm::report_fatal_error(
"please provide one and only one of 'opcode-index' or 'opcode-name'");
if (OpcodeIndex > 0)
return OpcodeIndex;
// Resolve opcode name -> opcode.
for (unsigned I = 0, E = MCInstrInfo.getNumOpcodes(); I < E; ++I)
if (MCInstrInfo.getName(I) == OpcodeName)
return I;
llvm::report_fatal_error(llvm::Twine("unknown opcode ").concat(OpcodeName));
}
void benchmarkMain() {
if (exegesis::pfm::pfmInitialize())
llvm::report_fatal_error("cannot initialize libpfm");
if (OpcodeName.empty() == (OpcodeIndex == 0))
llvm::report_fatal_error(
"please provide one and only one of 'opcode-index' or 'opcode-name'");
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
@ -101,26 +92,37 @@ void benchmarkMain() {
const LLVMState State;
// FIXME: Do not require SchedModel for latency.
if (!State.getSubtargetInfo().getSchedModel().hasExtraProcessorInfo())
llvm::report_fatal_error("sched model is missing extra processor info!");
unsigned Opcode = OpcodeIndex;
if (Opcode == 0) {
// Resolve opcode name -> opcode.
for (unsigned I = 0, E = State.getInstrInfo().getNumOpcodes(); I < E; ++I) {
if (State.getInstrInfo().getName(I) == OpcodeName) {
Opcode = I;
break;
}
}
if (Opcode == 0) {
llvm::report_fatal_error(
llvm::Twine("unknown opcode ").concat(OpcodeName));
}
}
std::unique_ptr<BenchmarkRunner> Runner;
switch (BenchmarkMode) {
case BenchmarkModeE::Latency:
Runner = llvm::make_unique<LatencyBenchmarkRunner>(State);
Runner = llvm::make_unique<LatencyBenchmarkRunner>();
break;
case BenchmarkModeE::Uops:
Runner = llvm::make_unique<UopsBenchmarkRunner>(State);
Runner = llvm::make_unique<UopsBenchmarkRunner>();
break;
case BenchmarkModeE::Analysis:
llvm_unreachable("not a benchmark");
}
if (NumRepetitions == 0)
llvm::report_fatal_error("--num-repetitions must be greater than zero");
Runner->run(GetOpcodeOrDie(State.getInstrInfo()), Filter, NumRepetitions)
Runner->run(State, Opcode, NumRepetitions > 0 ? NumRepetitions : 1, Filter)
.writeYamlOrDie(BenchmarkFile);
exegesis::pfm::pfmTerminate();
}

View File

@ -13,6 +13,7 @@ set(LLVM_LINK_COMPONENTS
add_llvm_unittest(LLVMExegesisTests
BenchmarkResultTest.cpp
ClusteringTest.cpp
OperandGraphTest.cpp
PerfHelperTest.cpp
)
target_link_libraries(LLVMExegesisTests PRIVATE LLVMExegesis)

View File

@ -0,0 +1,48 @@
//===-- OperandGraphTest.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "OperandGraph.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using testing::ElementsAre;
using testing::IsEmpty;
using testing::Not;
namespace exegesis {
namespace graph {
namespace {
static const auto In = Node::In();
static const auto Out = Node::Out();
TEST(OperandGraphTest, NoPath) {
Graph TheGraph;
EXPECT_THAT(TheGraph.getPathFrom(In, Out), IsEmpty());
}
TEST(OperandGraphTest, Connecting) {
Graph TheGraph;
TheGraph.connect(In, Out);
EXPECT_THAT(TheGraph.getPathFrom(In, Out), Not(IsEmpty()));
EXPECT_THAT(TheGraph.getPathFrom(In, Out), ElementsAre(In, Out));
}
TEST(OperandGraphTest, ConnectingThroughVariable) {
const Node Var = Node::Var(1);
Graph TheGraph;
TheGraph.connect(In, Var);
TheGraph.connect(Var, Out);
EXPECT_THAT(TheGraph.getPathFrom(In, Out), Not(IsEmpty()));
EXPECT_THAT(TheGraph.getPathFrom(In, Out), ElementsAre(In, Var, Out));
}
} // namespace
} // namespace graph
} // namespace exegesis

View File

@ -14,7 +14,8 @@ set(LLVM_LINK_COMPONENTS
)
add_llvm_unittest(LLVMExegesisX86Tests
RegisterAliasingTest.cpp
InMemoryAssemblerTest.cpp
InstructionSnippetGeneratorTest.cpp
)
target_link_libraries(LLVMExegesisX86Tests PRIVATE LLVMExegesis)

View File

@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
#include "Assembler.h"
#include "InMemoryAssembler.h"
#include "X86InstrInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@ -51,7 +51,7 @@ protected:
llvm::TargetRegistry::lookupTarget(TT, Error);
EXPECT_TRUE(TheTarget) << Error << " " << TT;
const llvm::TargetOptions Options;
llvm::TargetMachine *TM = TheTarget->createTargetMachine(
llvm::TargetMachine* TM = TheTarget->createTargetMachine(
TT, CpuName, "", Options, llvm::Reloc::Model::Static);
EXPECT_TRUE(TM) << TT << " " << CpuName;
return std::unique_ptr<llvm::LLVMTargetMachine>(
@ -62,21 +62,7 @@ protected:
return llvm::StringRef(TT).startswith_lower("x86_64");
}
ExecutableFunction assembleFunction(llvm::MCInst MCInst) {
return assembleToFunction({MCInst});
}
ExecutableFunction assembleEmptyFunction() { return assembleToFunction({}); }
private:
ExecutableFunction
assembleToFunction(llvm::ArrayRef<llvm::MCInst> Instructions) {
llvm::SmallString<256> Buffer;
llvm::raw_svector_ostream AsmStream(Buffer);
assembleToStream(createTargetMachine(), Instructions, AsmStream);
return ExecutableFunction(createTargetMachine(),
getObjectFromBuffer(AsmStream.str()));
}
const std::string TT;
const std::string CpuName;
};
@ -87,41 +73,47 @@ private:
do \
if (!IsSupportedTarget()) \
return; \
while (0)
while(0)
TEST_F(MachineFunctionGeneratorTest, JitFunction) {
TEST_F(MachineFunctionGeneratorTest, DISABLED_JitFunction) {
SKIP_UNSUPPORTED_PLATFORM;
const ExecutableFunction Function = assembleEmptyFunction();
JitFunctionContext Context(createTargetMachine());
JitFunction Function(std::move(Context), {});
ASSERT_THAT(Function.getFunctionBytes().str(), ElementsAre(0xc3));
// FIXME: Check that the function runs without errors. Right now this is
// disabled because it fails on some bots.
Function();
// Function();
}
TEST_F(MachineFunctionGeneratorTest, JitFunctionXOR32rr) {
TEST_F(MachineFunctionGeneratorTest, DISABLED_JitFunctionXOR32rr) {
SKIP_UNSUPPORTED_PLATFORM;
const ExecutableFunction Function = assembleFunction(
MCInstBuilder(XOR32rr).addReg(EAX).addReg(EAX).addReg(EAX));
JitFunctionContext Context(createTargetMachine());
JitFunction Function(
std::move(Context),
{MCInstBuilder(XOR32rr).addReg(EAX).addReg(EAX).addReg(EAX)});
ASSERT_THAT(Function.getFunctionBytes().str(), ElementsAre(0x31, 0xc0, 0xc3));
Function();
// Function();
}
TEST_F(MachineFunctionGeneratorTest, JitFunctionMOV64ri) {
TEST_F(MachineFunctionGeneratorTest, DISABLED_JitFunctionMOV64ri) {
SKIP_UNSUPPORTED_PLATFORM;
const ExecutableFunction Function =
assembleFunction(MCInstBuilder(MOV64ri32).addReg(RAX).addImm(42));
JitFunctionContext Context(createTargetMachine());
JitFunction Function(std::move(Context),
{MCInstBuilder(MOV64ri32).addReg(RAX).addImm(42)});
ASSERT_THAT(Function.getFunctionBytes().str(),
ElementsAre(0x48, 0xc7, 0xc0, 0x2a, 0x00, 0x00, 0x00, 0xc3));
Function();
// Function();
}
TEST_F(MachineFunctionGeneratorTest, JitFunctionMOV32ri) {
TEST_F(MachineFunctionGeneratorTest, DISABLED_JitFunctionMOV32ri) {
SKIP_UNSUPPORTED_PLATFORM;
const ExecutableFunction Function =
assembleFunction(MCInstBuilder(MOV32ri).addReg(EAX).addImm(42));
JitFunctionContext Context(createTargetMachine());
JitFunction Function(std::move(Context),
{MCInstBuilder(MOV32ri).addReg(EAX).addImm(42)});
ASSERT_THAT(Function.getFunctionBytes().str(),
ElementsAre(0xb8, 0x2a, 0x00, 0x00, 0x00, 0xc3));
Function();
// Function();
}
} // namespace

View File

@ -0,0 +1,309 @@
//===-- InstructionSnippetGeneratorTest.cpp ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InstructionSnippetGenerator.h"
#include "X86InstrInfo.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <memory>
#include <set>
namespace llvm {
bool operator==(const MCOperand &A, const MCOperand &B) {
if ((A.isValid() == false) && (B.isValid() == false))
return true;
if (A.isReg() && B.isReg())
return A.getReg() == B.getReg();
if (A.isImm() && B.isImm())
return A.getImm() == B.getImm();
return false;
}
} // namespace llvm
namespace exegesis {
namespace {
using testing::_;
using testing::AllOf;
using testing::AnyOf;
using testing::Contains;
using testing::ElementsAre;
using testing::Eq;
using testing::Field;
using testing::Not;
using testing::SizeIs;
using testing::UnorderedElementsAre;
using testing::Value;
using llvm::X86::AL;
using llvm::X86::AX;
using llvm::X86::EFLAGS;
using llvm::X86::RAX;
class MCInstrDescViewTest : public ::testing::Test {
protected:
MCInstrDescViewTest()
: TheTriple("x86_64") {}
static void SetUpTestCase() {
LLVMInitializeX86TargetInfo();
LLVMInitializeX86TargetMC();
LLVMInitializeX86Target();
}
void SetUp() override {
std::string Error;
const auto *Target = llvm::TargetRegistry::lookupTarget(TheTriple, Error);
InstrInfo.reset(Target->createMCInstrInfo());
RegInfo.reset(Target->createMCRegInfo(TheTriple));
}
const std::string TheTriple;
std::unique_ptr<const llvm::MCInstrInfo> InstrInfo;
std::unique_ptr<const llvm::MCRegisterInfo> RegInfo;
};
MATCHER(IsDef, "") { return arg.IsDef; }
MATCHER(IsUse, "") { return arg.IsUse; }
MATCHER_P2(EqVarAssignement, VariableIndexMatcher, AssignedRegisterMatcher,
"") {
return Value(
arg,
AllOf(Field(&VariableAssignment::VarIdx, VariableIndexMatcher),
Field(&VariableAssignment::AssignedReg, AssignedRegisterMatcher)));
}
size_t returnIndexZero(const size_t UpperBound) { return 0; }
TEST_F(MCInstrDescViewTest, DISABLED_XOR64rr) {
const llvm::MCInstrDesc &InstrDesc = InstrInfo->get(llvm::X86::XOR64rr);
const auto Vars =
getVariables(*RegInfo, InstrDesc, llvm::BitVector(RegInfo->getNumRegs()));
// XOR64rr has the following operands:
// 0. out register
// 1. in register (tied to out)
// 2. in register
// 3. out EFLAGS (implicit)
//
// This translates to 3 variables, one for 0 and 1, one for 2, one for 3.
ASSERT_THAT(Vars, SizeIs(3));
EXPECT_THAT(Vars[0].ExplicitOperands, ElementsAre(0, 1));
EXPECT_THAT(Vars[1].ExplicitOperands, ElementsAre(2));
EXPECT_THAT(Vars[2].ExplicitOperands, ElementsAre()); // implicit
EXPECT_THAT(Vars[0], AllOf(IsUse(), IsDef()));
EXPECT_THAT(Vars[1], AllOf(IsUse(), Not(IsDef())));
EXPECT_THAT(Vars[2], AllOf(Not(IsUse()), IsDef()));
EXPECT_THAT(Vars[0].PossibleRegisters, Contains(RAX));
EXPECT_THAT(Vars[1].PossibleRegisters, Contains(RAX));
EXPECT_THAT(Vars[2].PossibleRegisters, ElementsAre(EFLAGS));
// Computing chains.
const auto Chains = computeSequentialAssignmentChains(*RegInfo, Vars);
// Because operands 0 and 1 are tied together any possible value for variable
// 0 would do.
for (const auto &Reg : Vars[0].PossibleRegisters) {
EXPECT_THAT(Chains, Contains(ElementsAre(EqVarAssignement(0, Reg))));
}
// We also have chains going through operand 0 to 2 (i.e. Vars 0 and 1).
EXPECT_THAT(Vars[0].PossibleRegisters, Eq(Vars[1].PossibleRegisters))
<< "Variables 0 and 1 are of the same class";
for (const auto &Reg : Vars[0].PossibleRegisters) {
EXPECT_THAT(Chains,
Contains(UnorderedElementsAre(EqVarAssignement(0, Reg),
EqVarAssignement(1, Reg))));
}
// EFLAGS does not appear as an input therefore no chain can contain EFLAGS.
EXPECT_THAT(Chains, Not(Contains(Contains(EqVarAssignement(_, EFLAGS)))));
// Computing assignment.
const auto Regs = getRandomAssignment(Vars, Chains, &returnIndexZero);
EXPECT_THAT(Regs, ElementsAre(RAX, RAX, EFLAGS));
// Generating assembler representation.
const llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs);
EXPECT_THAT(Inst.getOpcode(), llvm::X86::XOR64rr);
EXPECT_THAT(Inst.getNumOperands(), 3);
EXPECT_THAT(Inst.getOperand(0), llvm::MCOperand::createReg(RAX));
EXPECT_THAT(Inst.getOperand(1), llvm::MCOperand::createReg(RAX));
EXPECT_THAT(Inst.getOperand(2), llvm::MCOperand::createReg(RAX));
}
TEST_F(MCInstrDescViewTest, DISABLED_AAA) {
const llvm::MCInstrDesc &InstrDesc = InstrInfo->get(llvm::X86::AAA);
const auto Vars =
getVariables(*RegInfo, InstrDesc, llvm::BitVector(RegInfo->getNumRegs()));
// AAA has the following operands:
// 0. out AX (implicit)
// 1. out EFLAGS (implicit)
// 2. in AL (implicit)
// 3. in EFLAGS (implicit)
//
// This translates to 4 Vars (non are tied together).
ASSERT_THAT(Vars, SizeIs(4));
EXPECT_THAT(Vars[0].ExplicitOperands, ElementsAre()); // implicit
EXPECT_THAT(Vars[1].ExplicitOperands, ElementsAre()); // implicit
EXPECT_THAT(Vars[2].ExplicitOperands, ElementsAre()); // implicit
EXPECT_THAT(Vars[3].ExplicitOperands, ElementsAre()); // implicit
EXPECT_THAT(Vars[0], AllOf(Not(IsUse()), IsDef()));
EXPECT_THAT(Vars[1], AllOf(Not(IsUse()), IsDef()));
EXPECT_THAT(Vars[2], AllOf(IsUse(), Not(IsDef())));
EXPECT_THAT(Vars[3], AllOf(IsUse(), Not(IsDef())));
EXPECT_THAT(Vars[0].PossibleRegisters, ElementsAre(AX));
EXPECT_THAT(Vars[1].PossibleRegisters, ElementsAre(EFLAGS));
EXPECT_THAT(Vars[2].PossibleRegisters, ElementsAre(AL));
EXPECT_THAT(Vars[3].PossibleRegisters, ElementsAre(EFLAGS));
const auto Chains = computeSequentialAssignmentChains(*RegInfo, Vars);
EXPECT_THAT(Chains,
ElementsAre(UnorderedElementsAre(EqVarAssignement(0, AX),
EqVarAssignement(2, AL)),
UnorderedElementsAre(EqVarAssignement(1, EFLAGS),
EqVarAssignement(3, EFLAGS))));
// Computing assignment.
const auto Regs = getRandomAssignment(Vars, Chains, &returnIndexZero);
EXPECT_THAT(Regs, ElementsAre(AX, EFLAGS, AL, EFLAGS));
// Generating assembler representation.
const llvm::MCInst Inst = generateMCInst(InstrDesc, Vars, Regs);
EXPECT_THAT(Inst.getOpcode(), llvm::X86::AAA);
EXPECT_THAT(Inst.getNumOperands(), 0) << "All operands are implicit";
}
TEST_F(MCInstrDescViewTest, DISABLED_ReservedRegisters) {
llvm::BitVector ReservedRegisters(RegInfo->getNumRegs());
const llvm::MCInstrDesc &InstrDesc = InstrInfo->get(llvm::X86::XOR64rr);
{
const auto Vars = getVariables(*RegInfo, InstrDesc, ReservedRegisters);
ASSERT_THAT(Vars, SizeIs(3));
EXPECT_THAT(Vars[0].PossibleRegisters, Contains(RAX));
EXPECT_THAT(Vars[1].PossibleRegisters, Contains(RAX));
}
// Disable RAX.
ReservedRegisters.set(RAX);
{
const auto Vars = getVariables(*RegInfo, InstrDesc, ReservedRegisters);
ASSERT_THAT(Vars, SizeIs(3));
EXPECT_THAT(Vars[0].PossibleRegisters, Not(Contains(RAX)));
EXPECT_THAT(Vars[1].PossibleRegisters, Not(Contains(RAX)));
}
}
Variable makeVariableWithRegisters(bool IsReg,
std::initializer_list<int> Regs) {
assert((IsReg || (Regs.size() == 0)) && "IsReg => !(Regs.size() == 0)");
Variable Var;
Var.IsReg = IsReg;
Var.PossibleRegisters.insert(Regs.begin(), Regs.end());
return Var;
}
TEST(getExclusiveAssignment, TriviallyFeasible) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {3}),
makeVariableWithRegisters(false, {}),
makeVariableWithRegisters(true, {4}),
makeVariableWithRegisters(true, {5}),
};
const auto Regs = getExclusiveAssignment(Vars);
EXPECT_THAT(Regs, ElementsAre(3, 0, 4, 5));
}
TEST(getExclusiveAssignment, TriviallyInfeasible1) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {3}),
makeVariableWithRegisters(true, {}),
makeVariableWithRegisters(true, {4}),
makeVariableWithRegisters(true, {5}),
};
const auto Regs = getExclusiveAssignment(Vars);
EXPECT_THAT(Regs, ElementsAre());
}
TEST(getExclusiveAssignment, TriviallyInfeasible) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {4}),
makeVariableWithRegisters(true, {4}),
};
const auto Regs = getExclusiveAssignment(Vars);
EXPECT_THAT(Regs, ElementsAre());
}
TEST(getExclusiveAssignment, Feasible1) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {4, 3}),
makeVariableWithRegisters(true, {6, 3}),
makeVariableWithRegisters(true, {6, 4}),
};
const auto Regs = getExclusiveAssignment(Vars);
ASSERT_THAT(Regs, AnyOf(ElementsAre(3, 6, 4), ElementsAre(4, 3, 6)));
}
TEST(getExclusiveAssignment, Feasible2) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {1, 2}),
makeVariableWithRegisters(true, {3, 4}),
};
const auto Regs = getExclusiveAssignment(Vars);
ASSERT_THAT(Regs, AnyOf(ElementsAre(1, 3), ElementsAre(1, 4),
ElementsAre(2, 3), ElementsAre(2, 4)));
}
TEST(getGreedyAssignment, Infeasible) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {}),
makeVariableWithRegisters(true, {1, 2}),
};
const auto Regs = getGreedyAssignment(Vars);
ASSERT_THAT(Regs, ElementsAre());
}
TEST(getGreedyAssignment, FeasibleNoFallback) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(true, {1, 2}),
makeVariableWithRegisters(false, {}),
makeVariableWithRegisters(true, {2, 3}),
};
const auto Regs = getGreedyAssignment(Vars);
ASSERT_THAT(Regs, ElementsAre(1, 0, 2));
}
TEST(getGreedyAssignment, Feasible) {
const std::vector<Variable> Vars = {
makeVariableWithRegisters(false, {}),
makeVariableWithRegisters(true, {1, 2}),
makeVariableWithRegisters(true, {2, 3}),
makeVariableWithRegisters(true, {2, 3}),
makeVariableWithRegisters(true, {2, 3}),
};
const auto Regs = getGreedyAssignment(Vars);
ASSERT_THAT(Regs, ElementsAre(0, 1, 2, 3, 2));
}
} // namespace
} // namespace exegesis

View File

@ -1,82 +0,0 @@
#include "RegisterAliasing.h"
#include <cassert>
#include <memory>
#include "X86InstrInfo.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace exegesis {
namespace {
class RegisterAliasingTest : public ::testing::Test {
protected:
RegisterAliasingTest() {
const std::string TT = llvm::sys::getProcessTriple();
std::string error;
const llvm::Target *const TheTarget =
llvm::TargetRegistry::lookupTarget(TT, error);
assert(TheTarget);
MCRegInfo.reset(TheTarget->createMCRegInfo(TT));
}
static void SetUpTestCase() { llvm::InitializeNativeTarget(); }
const llvm::MCRegisterInfo &getMCRegInfo() { return *MCRegInfo; }
private:
std::unique_ptr<const llvm::MCRegisterInfo> MCRegInfo;
};
TEST_F(RegisterAliasingTest, TrackSimpleRegister) {
const auto &RegInfo = getMCRegInfo();
const RegisterAliasingTracker tracker(RegInfo, llvm::X86::EAX);
const std::set<llvm::MCPhysReg> ActualAliasedRegisters(
tracker.aliasedBits().set_bits().begin(),
tracker.aliasedBits().set_bits().end());
const std::set<llvm::MCPhysReg> ExpectedAliasedRegisters = {
llvm::X86::AL, llvm::X86::AH, llvm::X86::AX,
llvm::X86::EAX, llvm::X86::HAX, llvm::X86::RAX};
ASSERT_THAT(ActualAliasedRegisters, ExpectedAliasedRegisters);
for (llvm::MCPhysReg aliased : ExpectedAliasedRegisters) {
ASSERT_THAT(tracker.getOrigin(aliased), llvm::X86::EAX);
}
}
TEST_F(RegisterAliasingTest, TrackRegisterClass) {
// The alias bits for GR8_ABCD_LRegClassID are the union of the alias bits for
// AL, BL, CL and DL.
const auto &RegInfo = getMCRegInfo();
const llvm::BitVector NoReservedReg(RegInfo.getNumRegs());
const RegisterAliasingTracker RegClassTracker(
RegInfo, NoReservedReg,
RegInfo.getRegClass(llvm::X86::GR8_ABCD_LRegClassID));
llvm::BitVector sum(RegInfo.getNumRegs());
sum |= RegisterAliasingTracker(RegInfo, llvm::X86::AL).aliasedBits();
sum |= RegisterAliasingTracker(RegInfo, llvm::X86::BL).aliasedBits();
sum |= RegisterAliasingTracker(RegInfo, llvm::X86::CL).aliasedBits();
sum |= RegisterAliasingTracker(RegInfo, llvm::X86::DL).aliasedBits();
ASSERT_THAT(RegClassTracker.aliasedBits(), sum);
}
TEST_F(RegisterAliasingTest, TrackRegisterClassCache) {
// Fetching twice the same tracker yields the same pointers.
const auto &RegInfo = getMCRegInfo();
const llvm::BitVector NoReservedReg(RegInfo.getNumRegs());
RegisterAliasingTrackerCache Cache(RegInfo, NoReservedReg);
ASSERT_THAT(&Cache.getRegister(llvm::X86::AX),
&Cache.getRegister(llvm::X86::AX));
ASSERT_THAT(&Cache.getRegisterClass(llvm::X86::GR8_ABCD_LRegClassID),
&Cache.getRegisterClass(llvm::X86::GR8_ABCD_LRegClassID));
}
} // namespace
} // namespace exegesis