1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00

[SelectionDAG] rot(x, y) --> x iff ComputeNumSignBits(x) == BitWidth(x)

Rotating an 0/-1 value by any amount will always result in the same 0/-1 value
This commit is contained in:
Simon Pilgrim 2020-01-24 10:35:19 +00:00
parent c46fcc1c0b
commit c336c5c2b0
5 changed files with 49 additions and 38 deletions

View File

@ -7414,6 +7414,10 @@ SDValue DAGCombiner::visitRotate(SDNode *N) {
} }
} }
// Simplify the operands using demanded-bits information.
if (SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
if (N1.getOpcode() == ISD::TRUNCATE && if (N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getOpcode() == ISD::AND) { N1.getOperand(0).getOpcode() == ISD::AND) {

View File

@ -3743,6 +3743,12 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
} }
case ISD::ROTL: case ISD::ROTL:
case ISD::ROTR: case ISD::ROTR:
Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
// If we're rotating an 0/-1 value, then it stays an 0/-1 value.
if (Tmp == VTBits)
return VTBits;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RotAmt = C->getAPIntValue().urem(VTBits); unsigned RotAmt = C->getAPIntValue().urem(VTBits);
@ -3752,7 +3758,6 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
// If we aren't rotating out all of the known-in sign bits, return the // If we aren't rotating out all of the known-in sign bits, return the
// number that are left. This handles rotl(sext(x), 1) for example. // number that are left. This handles rotl(sext(x), 1) for example.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
} }
break; break;

View File

@ -1586,6 +1586,15 @@ bool TargetLowering::SimplifyDemandedBits(
} }
break; break;
} }
case ISD::ROTL:
case ISD::ROTR: {
SDValue Op0 = Op.getOperand(0);
// If we're rotating an 0/-1 value, then it stays an 0/-1 value.
if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
return TLO.CombineTo(Op, Op0);
break;
}
case ISD::BITREVERSE: { case ISD::BITREVERSE: {
SDValue Src = Op.getOperand(0); SDValue Src = Op.getOperand(0);
APInt DemandedSrcBits = DemandedBits.reverseBits(); APInt DemandedSrcBits = DemandedBits.reverseBits();

View File

@ -87,17 +87,10 @@ define <4 x i32> @rot_v4i32_zero_non_splat(<4 x i32> %x) {
} }
define <4 x i32> @rot_v4i32_allsignbits(<4 x i32> %x, <4 x i32> %y) { define <4 x i32> @rot_v4i32_allsignbits(<4 x i32> %x, <4 x i32> %y) {
; XOP-LABEL: rot_v4i32_allsignbits: ; CHECK-LABEL: rot_v4i32_allsignbits:
; XOP: # %bb.0: ; CHECK: # %bb.0:
; XOP-NEXT: vpsrad $31, %xmm0, %xmm0 ; CHECK-NEXT: vpsrad $31, %xmm0, %xmm0
; XOP-NEXT: vprotd %xmm1, %xmm0, %xmm0 ; CHECK-NEXT: retq
; XOP-NEXT: retq
;
; AVX512-LABEL: rot_v4i32_allsignbits:
; AVX512: # %bb.0:
; AVX512-NEXT: vpsrad $31, %xmm0, %xmm0
; AVX512-NEXT: vprolvd %xmm1, %xmm0, %xmm0
; AVX512-NEXT: retq
%1 = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31> %1 = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%2 = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %1, <4 x i32> %1, <4 x i32> %y) %2 = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %1, <4 x i32> %1, <4 x i32> %y)
ret <4 x i32> %2 ret <4 x i32> %2

View File

@ -314,52 +314,52 @@ define i64 @func5(i64 %x, i64 %y) nounwind {
; X86-NEXT: andl $-8, %esp ; X86-NEXT: andl $-8, %esp
; X86-NEXT: subl $72, %esp ; X86-NEXT: subl $72, %esp
; X86-NEXT: movl 8(%ebp), %ecx ; X86-NEXT: movl 8(%ebp), %ecx
; X86-NEXT: movl 12(%ebp), %edx ; X86-NEXT: movl 12(%ebp), %eax
; X86-NEXT: movl 20(%ebp), %ebx ; X86-NEXT: movl 20(%ebp), %edx
; X86-NEXT: sarl $31, %ebx ; X86-NEXT: movl %edx, %esi
; X86-NEXT: movl %edx, %eax ; X86-NEXT: sarl $31, %esi
; X86-NEXT: movl %eax, %edi
; X86-NEXT: sarl $31, %edi
; X86-NEXT: movl %edi, %ebx
; X86-NEXT: shldl $31, %eax, %ebx
; X86-NEXT: movl %ebx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: shldl $31, %ecx, %eax ; X86-NEXT: shldl $31, %ecx, %eax
; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill ; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: shll $31, %ecx ; X86-NEXT: shll $31, %ecx
; X86-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill ; X86-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: movl %edx, %esi ; X86-NEXT: pushl %esi
; X86-NEXT: sarl $31, %esi ; X86-NEXT: pushl %esi
; X86-NEXT: movl %esi, %edi ; X86-NEXT: pushl %edx
; X86-NEXT: shldl $31, %edx, %esi
; X86-NEXT: leal {{[0-9]+}}(%esp), %edx
; X86-NEXT: rorl %edi
; X86-NEXT: pushl %ebx
; X86-NEXT: pushl %ebx
; X86-NEXT: pushl 20(%ebp)
; X86-NEXT: pushl 16(%ebp) ; X86-NEXT: pushl 16(%ebp)
; X86-NEXT: pushl %edi ; X86-NEXT: pushl %edi
; X86-NEXT: pushl %esi ; X86-NEXT: pushl %ebx
; X86-NEXT: pushl %eax ; X86-NEXT: pushl %eax
; X86-NEXT: pushl %ecx ; X86-NEXT: pushl %ecx
; X86-NEXT: pushl %edx ; X86-NEXT: leal {{[0-9]+}}(%esp), %eax
; X86-NEXT: pushl %eax
; X86-NEXT: calll __divti3 ; X86-NEXT: calll __divti3
; X86-NEXT: addl $32, %esp ; X86-NEXT: addl $32, %esp
; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx ; X86-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X86-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill ; X86-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: movl {{[0-9]+}}(%esp), %eax ; X86-NEXT: movl {{[0-9]+}}(%esp), %ebx
; X86-NEXT: movl %ebx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: movl %ecx, %eax
; X86-NEXT: subl $1, %eax
; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill ; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: subl $1, %ecx ; X86-NEXT: sbbl $0, %ebx
; X86-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill ; X86-NEXT: testl %esi, %esi
; X86-NEXT: sbbl $0, %eax
; X86-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X86-NEXT: testl %ebx, %ebx
; X86-NEXT: sets %al ; X86-NEXT: sets %al
; X86-NEXT: testl %edi, %edi ; X86-NEXT: testl %edi, %edi
; X86-NEXT: sets %cl ; X86-NEXT: sets %cl
; X86-NEXT: xorb %al, %cl ; X86-NEXT: xorb %al, %cl
; X86-NEXT: movb %cl, {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Spill ; X86-NEXT: movb %cl, {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Spill
; X86-NEXT: leal {{[0-9]+}}(%esp), %eax ; X86-NEXT: leal {{[0-9]+}}(%esp), %eax
; X86-NEXT: pushl %ebx ; X86-NEXT: pushl %esi
; X86-NEXT: pushl %ebx ; X86-NEXT: pushl %esi
; X86-NEXT: pushl 20(%ebp) ; X86-NEXT: pushl 20(%ebp)
; X86-NEXT: pushl 16(%ebp) ; X86-NEXT: pushl 16(%ebp)
; X86-NEXT: pushl %edi ; X86-NEXT: pushl %edi
; X86-NEXT: pushl %esi ; X86-NEXT: pushl {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Reload
; X86-NEXT: pushl {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Reload ; X86-NEXT: pushl {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Reload
; X86-NEXT: pushl {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Reload ; X86-NEXT: pushl {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Reload
; X86-NEXT: pushl %eax ; X86-NEXT: pushl %eax
@ -374,8 +374,8 @@ define i64 @func5(i64 %x, i64 %y) nounwind {
; X86-NEXT: testb %al, {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Folded Reload ; X86-NEXT: testb %al, {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Folded Reload
; X86-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload ; X86-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X86-NEXT: cmovel {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload ; X86-NEXT: cmovel {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X86-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Reload ; X86-NEXT: cmovel {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Folded Reload
; X86-NEXT: cmovel {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Folded Reload ; X86-NEXT: movl %ebx, %edx
; X86-NEXT: leal -12(%ebp), %esp ; X86-NEXT: leal -12(%ebp), %esp
; X86-NEXT: popl %esi ; X86-NEXT: popl %esi
; X86-NEXT: popl %edi ; X86-NEXT: popl %edi