mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
Add a utility function that detects whether a loop is guaranteed to be finite.
Use it to safely handle less-than-or-equals-to exit conditions in loops. These also occur when the loop exit branch is exit on true because SCEV inverses the icmp predicate. Use it again to handle non-zero strides, but only with an unsigned comparison in the exit condition. llvm-svn: 59528
This commit is contained in:
parent
3460a79979
commit
c573f70ae4
@ -1477,7 +1477,7 @@ namespace {
|
||||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue. isSigned specifies whether the less-than is signed.
|
||||
SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
|
||||
bool isSigned);
|
||||
bool isSigned, bool trueWhenEqual);
|
||||
|
||||
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
|
||||
/// (which may not be an immediate predecessor) which has exactly one
|
||||
@ -1487,7 +1487,13 @@ namespace {
|
||||
|
||||
/// executesAtLeastOnce - Test whether entry to the loop is protected by
|
||||
/// a conditional between LHS and RHS.
|
||||
bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
|
||||
bool executesAtLeastOnce(const Loop *L, bool isSigned, bool trueWhenEqual,
|
||||
SCEV *LHS, SCEV *RHS);
|
||||
|
||||
/// potentialInfiniteLoop - Test whether the loop might jump over the exit value
|
||||
/// due to wrapping.
|
||||
bool potentialInfiniteLoop(SCEV *Stride, SCEV *RHS, bool isSigned,
|
||||
bool trueWhenEqual);
|
||||
|
||||
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
|
||||
/// in the header of its containing loop, we know the loop executes a
|
||||
@ -2025,24 +2031,46 @@ SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_SLT: {
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true, false);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_SGT: {
|
||||
SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
|
||||
SE.getNotSCEV(RHS), L, true);
|
||||
SE.getNotSCEV(RHS), L, true, false);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_ULT: {
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false, false);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGT: {
|
||||
SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
|
||||
SE.getNotSCEV(RHS), L, false);
|
||||
SE.getNotSCEV(RHS), L, false, false);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_SLE: {
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true, true);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_SGE: {
|
||||
SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
|
||||
SE.getNotSCEV(RHS), L, true, true);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_ULE: {
|
||||
SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false, true);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGE: {
|
||||
SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
|
||||
SE.getNotSCEV(RHS), L, false, true);
|
||||
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
||||
break;
|
||||
}
|
||||
@ -2738,6 +2766,7 @@ ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
|
||||
/// executesAtLeastOnce - Test whether entry to the loop is protected by
|
||||
/// a conditional between LHS and RHS.
|
||||
bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
|
||||
bool trueWhenEqual,
|
||||
SCEV *LHS, SCEV *RHS) {
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
BasicBlock *PreheaderDest = L->getHeader();
|
||||
@ -2770,20 +2799,36 @@ bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
|
||||
|
||||
switch (Cond) {
|
||||
case ICmpInst::ICMP_UGT:
|
||||
if (isSigned) continue;
|
||||
if (isSigned || trueWhenEqual) continue;
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
Cond = ICmpInst::ICMP_ULT;
|
||||
break;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
if (!isSigned) continue;
|
||||
if (!isSigned || trueWhenEqual) continue;
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
Cond = ICmpInst::ICMP_SLT;
|
||||
break;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
if (isSigned) continue;
|
||||
if (isSigned || trueWhenEqual) continue;
|
||||
break;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
if (!isSigned) continue;
|
||||
if (!isSigned || trueWhenEqual) continue;
|
||||
break;
|
||||
case ICmpInst::ICMP_UGE:
|
||||
if (isSigned || !trueWhenEqual) continue;
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
Cond = ICmpInst::ICMP_ULE;
|
||||
break;
|
||||
case ICmpInst::ICMP_SGE:
|
||||
if (!isSigned || !trueWhenEqual) continue;
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
Cond = ICmpInst::ICMP_SLE;
|
||||
break;
|
||||
case ICmpInst::ICMP_ULE:
|
||||
if (isSigned || !trueWhenEqual) continue;
|
||||
break;
|
||||
case ICmpInst::ICMP_SLE:
|
||||
if (!isSigned || !trueWhenEqual) continue;
|
||||
break;
|
||||
default:
|
||||
continue;
|
||||
@ -2802,11 +2847,46 @@ bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
|
||||
return false;
|
||||
}
|
||||
|
||||
/// potentialInfiniteLoop - Test whether the loop might jump over the exit value
|
||||
/// due to wrapping around 2^n.
|
||||
bool ScalarEvolutionsImpl::potentialInfiniteLoop(SCEV *Stride, SCEV *RHS,
|
||||
bool isSigned, bool trueWhenEqual) {
|
||||
// Return true when the distance from RHS to maxint > Stride.
|
||||
|
||||
if (!isa<SCEVConstant>(Stride))
|
||||
return true;
|
||||
SCEVConstant *SC = cast<SCEVConstant>(Stride);
|
||||
|
||||
if (SC->getValue()->isZero())
|
||||
return true;
|
||||
if (!trueWhenEqual && SC->getValue()->isOne())
|
||||
return false;
|
||||
|
||||
if (!isa<SCEVConstant>(RHS))
|
||||
return true;
|
||||
SCEVConstant *R = cast<SCEVConstant>(RHS);
|
||||
|
||||
if (isSigned)
|
||||
return true; // XXX: because we don't have an sdiv scev.
|
||||
|
||||
// If negative, it wraps around every iteration, but we don't care about that.
|
||||
APInt S = SC->getValue()->getValue().abs();
|
||||
|
||||
APInt Dist = APInt::getMaxValue(R->getValue()->getBitWidth()) -
|
||||
R->getValue()->getValue();
|
||||
|
||||
if (trueWhenEqual)
|
||||
return !S.ult(Dist);
|
||||
else
|
||||
return !S.ule(Dist);
|
||||
}
|
||||
|
||||
/// HowManyLessThans - Return the number of times a backedge containing the
|
||||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
SCEVHandle ScalarEvolutionsImpl::
|
||||
HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
|
||||
HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
|
||||
bool isSigned, bool trueWhenEqual) {
|
||||
// Only handle: "ADDREC < LoopInvariant".
|
||||
if (!RHS->isLoopInvariant(L)) return UnknownValue;
|
||||
|
||||
@ -2815,34 +2895,50 @@ HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
|
||||
return UnknownValue;
|
||||
|
||||
if (AddRec->isAffine()) {
|
||||
// FORNOW: We only support unit strides.
|
||||
SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
|
||||
if (AddRec->getOperand(1) != One)
|
||||
SCEVHandle Stride = AddRec->getOperand(1);
|
||||
if (potentialInfiniteLoop(Stride, RHS, isSigned, trueWhenEqual))
|
||||
return UnknownValue;
|
||||
|
||||
// We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
|
||||
// m. So, we count the number of iterations in which {n,+,1} < m is true.
|
||||
// Note that we cannot simply return max(m-n,0) because it's not safe to
|
||||
// We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
|
||||
// m. So, we count the number of iterations in which {n,+,s} < m is true.
|
||||
// Note that we cannot simply return max(m-n,0)/s because it's not safe to
|
||||
// treat m-n as signed nor unsigned due to overflow possibility.
|
||||
|
||||
// First, we get the value of the LHS in the first iteration: n
|
||||
SCEVHandle Start = AddRec->getOperand(0);
|
||||
|
||||
if (executesAtLeastOnce(L, isSigned,
|
||||
SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
|
||||
// Since we know that the condition is true in order to enter the loop,
|
||||
// we know that it will run exactly m-n times.
|
||||
return SE.getMinusSCEV(RHS, Start);
|
||||
} else {
|
||||
// Then, we get the value of the LHS in the first iteration in which the
|
||||
// above condition doesn't hold. This equals to max(m,n).
|
||||
SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
|
||||
: SE.getUMaxExpr(RHS, Start);
|
||||
SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
|
||||
|
||||
// Finally, we subtract these two values to get the number of times the
|
||||
// backedge is executed: max(m,n)-n.
|
||||
return SE.getMinusSCEV(End, Start);
|
||||
// Assuming that the loop will run at least once, we know that it will
|
||||
// run (m-n)/s times.
|
||||
SCEVHandle End = RHS;
|
||||
|
||||
if (!executesAtLeastOnce(L, isSigned, trueWhenEqual,
|
||||
SE.getMinusSCEV(Start, One), RHS)) {
|
||||
// If not, we get the value of the LHS in the first iteration in which
|
||||
// the above condition doesn't hold. This equals to max(m,n).
|
||||
End = isSigned ? SE.getSMaxExpr(RHS, Start)
|
||||
: SE.getUMaxExpr(RHS, Start);
|
||||
}
|
||||
|
||||
// If the expression is less-than-or-equal to, we need to extend the
|
||||
// loop by one iteration.
|
||||
//
|
||||
// The loop won't actually run (m-n)/s times because the loop iterations
|
||||
// won't divide evenly. For example, if you have {2,+,5} u< 10 the
|
||||
// division would equal one, but the loop runs twice putting the
|
||||
// induction variable at 12.
|
||||
|
||||
if (!trueWhenEqual)
|
||||
// (Stride - 1) is correct only because we know it's unsigned.
|
||||
// What we really want is to decrease the magnitude of Stride by one.
|
||||
Start = SE.getMinusSCEV(Start, SE.getMinusSCEV(Stride, One));
|
||||
else
|
||||
Start = SE.getMinusSCEV(Start, Stride);
|
||||
|
||||
// Finally, we subtract these two values to get the number of times the
|
||||
// backedge is executed: max(m,n)-n.
|
||||
return SE.getUDivExpr(SE.getMinusSCEV(End, Start), Stride);
|
||||
}
|
||||
|
||||
return UnknownValue;
|
||||
|
31
test/Analysis/ScalarEvolution/2008-11-18-LessThanOrEqual.ll
Normal file
31
test/Analysis/ScalarEvolution/2008-11-18-LessThanOrEqual.ll
Normal file
@ -0,0 +1,31 @@
|
||||
; RUN: llvm-as < %s | opt -analyze -scalar-evolution |& \
|
||||
; RUN: grep {Loop bb: (7 + (-1 \\* %argc)) iterations!}
|
||||
|
||||
define i32 @main(i32 %argc, i8** %argv) nounwind {
|
||||
entry:
|
||||
%0 = icmp ugt i32 %argc, 7 ; <i1> [#uses=1]
|
||||
br i1 %0, label %bb2, label %bb.nph
|
||||
|
||||
bb.nph: ; preds = %entry
|
||||
br label %bb
|
||||
|
||||
bb: ; preds = %bb.nph, %bb1
|
||||
%indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb1 ] ; <i32> [#uses=2]
|
||||
%argc_addr.04 = add i32 %indvar, %argc ; <i32> [#uses=1]
|
||||
tail call void (...)* @Test() nounwind
|
||||
%1 = add i32 %argc_addr.04, 1 ; <i32> [#uses=1]
|
||||
br label %bb1
|
||||
|
||||
bb1: ; preds = %bb
|
||||
%phitmp = icmp ugt i32 %1, 7 ; <i1> [#uses=1]
|
||||
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
|
||||
br i1 %phitmp, label %bb1.bb2_crit_edge, label %bb
|
||||
|
||||
bb1.bb2_crit_edge: ; preds = %bb1
|
||||
br label %bb2
|
||||
|
||||
bb2: ; preds = %bb1.bb2_crit_edge, %entry
|
||||
ret i32 0
|
||||
}
|
||||
|
||||
declare void @Test(...)
|
30
test/Analysis/ScalarEvolution/2008-11-18-Stride1.ll
Normal file
30
test/Analysis/ScalarEvolution/2008-11-18-Stride1.ll
Normal file
@ -0,0 +1,30 @@
|
||||
; RUN: llvm-as < %s | opt -analyze -scalar-evolution |& grep {/u 3}
|
||||
|
||||
define i32 @f(i32 %x) nounwind readnone {
|
||||
entry:
|
||||
%0 = icmp ugt i32 %x, 4 ; <i1> [#uses=1]
|
||||
br i1 %0, label %bb.nph, label %bb2
|
||||
|
||||
bb.nph: ; preds = %entry
|
||||
br label %bb
|
||||
|
||||
bb: ; preds = %bb.nph, %bb1
|
||||
%indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb1 ] ; <i32> [#uses=2]
|
||||
%tmp = mul i32 %indvar, -3 ; <i32> [#uses=1]
|
||||
%x_addr.04 = add i32 %tmp, %x ; <i32> [#uses=1]
|
||||
%1 = add i32 %x_addr.04, -3 ; <i32> [#uses=2]
|
||||
br label %bb1
|
||||
|
||||
bb1: ; preds = %bb
|
||||
%2 = icmp ugt i32 %1, 4 ; <i1> [#uses=1]
|
||||
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
|
||||
br i1 %2, label %bb, label %bb1.bb2_crit_edge
|
||||
|
||||
bb1.bb2_crit_edge: ; preds = %bb1
|
||||
%.lcssa = phi i32 [ %1, %bb1 ] ; <i32> [#uses=1]
|
||||
br label %bb2
|
||||
|
||||
bb2: ; preds = %bb1.bb2_crit_edge, %entry
|
||||
%x_addr.0.lcssa = phi i32 [ %.lcssa, %bb1.bb2_crit_edge ], [ %x, %entry ] ; <i32> [#uses=1]
|
||||
ret i32 %x_addr.0.lcssa
|
||||
}
|
30
test/Analysis/ScalarEvolution/2008-11-18-Stride2.ll
Normal file
30
test/Analysis/ScalarEvolution/2008-11-18-Stride2.ll
Normal file
@ -0,0 +1,30 @@
|
||||
; RUN: llvm-as < %s | opt -analyze -scalar-evolution |& grep {/u 3}
|
||||
|
||||
define i32 @f(i32 %x) nounwind readnone {
|
||||
entry:
|
||||
%0 = icmp ugt i32 %x, 999 ; <i1> [#uses=1]
|
||||
br i1 %0, label %bb2, label %bb.nph
|
||||
|
||||
bb.nph: ; preds = %entry
|
||||
br label %bb
|
||||
|
||||
bb: ; preds = %bb.nph, %bb1
|
||||
%indvar = phi i32 [ 0, %bb.nph ], [ %indvar.next, %bb1 ] ; <i32> [#uses=2]
|
||||
%tmp = mul i32 %indvar, 3 ; <i32> [#uses=1]
|
||||
%x_addr.04 = add i32 %tmp, %x ; <i32> [#uses=1]
|
||||
%1 = add i32 %x_addr.04, 3 ; <i32> [#uses=2]
|
||||
br label %bb1
|
||||
|
||||
bb1: ; preds = %bb
|
||||
%2 = icmp ugt i32 %1, 999 ; <i1> [#uses=1]
|
||||
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
|
||||
br i1 %2, label %bb1.bb2_crit_edge, label %bb
|
||||
|
||||
bb1.bb2_crit_edge: ; preds = %bb1
|
||||
%.lcssa = phi i32 [ %1, %bb1 ] ; <i32> [#uses=1]
|
||||
br label %bb2
|
||||
|
||||
bb2: ; preds = %bb1.bb2_crit_edge, %entry
|
||||
%x_addr.0.lcssa = phi i32 [ %.lcssa, %bb1.bb2_crit_edge ], [ %x, %entry ] ; <i32> [#uses=1]
|
||||
ret i32 %x_addr.0.lcssa
|
||||
}
|
Loading…
Reference in New Issue
Block a user