1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[XRay] A graph Class for the llvm-xray graph

Summary:
In preparation for graph comparison and filtering, this is a library for
representing graphs in LLVM. This will enable easier encapsulation and reuse
of graphs in llvm-xray.

Depends on D28999, D28225

Reviewers: dblaikie, dberris

Reviewed By: dberris

Subscribers: mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D29005

llvm-svn: 294713
This commit is contained in:
Dean Michael Berris 2017-02-10 05:40:37 +00:00
parent eef1a7854a
commit cadcaaab9b
6 changed files with 869 additions and 96 deletions

494
include/llvm/XRay/Graph.h Normal file
View File

@ -0,0 +1,494 @@
//===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A Graph Datatype for XRay.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_XRAY_GRAPH_T_H
#define LLVM_XRAY_GRAPH_T_H
#include <initializer_list>
#include <stdint.h>
#include <type_traits>
#include <utility>
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Error.h"
namespace llvm {
namespace xray {
/// A Graph object represents a Directed Graph and is used in XRay to compute
/// and store function call graphs and associated statistical information.
///
/// The graph takes in four template parameters, these are:
/// - VertexAttribute, this is a structure which is stored for each vertex.
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each edge
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each variable
/// - VI, this is a type over which DenseMapInfo is defined and is the type
/// used look up strings, available as VertexIdentifier.
/// - If the built in DenseMapInfo is not defined, provide a specialization
/// class type here.
///
/// Graph is CopyConstructible, CopyAssignable, MoveConstructible and
/// MoveAssignable but is not EqualityComparible or LessThanComparible.
///
/// Usage Example Graph with weighted edges and vertices:
/// Graph<int, int, int> G;
///
/// G[1] = 0;
/// G[2] = 2;
/// G[{1,2}] = 1;
/// G[{2,1}] = -1;
/// for(const auto &v : G.vertices()){
/// // Do something with the vertices in the graph;
/// }
/// for(const auto &e : G.edges()){
/// // Do something with the edges in the graph;
/// }
///
/// Usage Example with StrRef keys.
/// Graph<int, double, StrRef> StrG;
/// char va[] = "Vertex A";
/// char vaa[] = "Vertex A";
/// char vb[] = "Vertex B"; // Vertices are referenced by String Refs.
/// G[va] = 0;
/// G[vb] = 1;
/// G[{va, vb}] = 1.0;
/// cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0".
///
template <typename VertexAttribute, typename EdgeAttribute,
typename VI = int32_t>
class Graph {
public:
/// These objects are used to name edges and vertices in the graph.
typedef VI VertexIdentifier;
typedef std::pair<VI, VI> EdgeIdentifier;
/// This type is the value_type of all iterators which range over vertices,
/// Determined by the Vertices DenseMap
using VertexValueType =
detail::DenseMapPair<VertexIdentifier, VertexAttribute>;
/// This type is the value_type of all iterators which range over edges,
/// Determined by the Edges DenseMap.
using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;
using size_type = std::size_t;
private:
/// The type used for storing the EdgeAttribute for each edge in the graph
using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;
/// The type used for storing the VertexAttribute for each vertex in
/// the graph.
using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;
/// The type used for storing the edges entering a vertex. Indexed by
/// the VertexIdentifier of the start of the edge. Only used to determine
/// where the incoming edges are, the EdgeIdentifiers are stored in an
/// InnerEdgeMapT.
using NeighborSetT = DenseSet<VertexIdentifier>;
/// The type storing the InnerInvGraphT corresponding to each vertex in
/// the graph (When a vertex has an incoming edge incident to it)
using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;
private:
/// Stores the map from the start and end vertex of an edge to it's
/// EdgeAttribute
EdgeMapT Edges;
/// Stores the map from VertexIdentifier to VertexAttribute
VertexMapT Vertices;
/// Allows fast lookup for the incoming edge set of any given vertex.
NeighborLookupT InNeighbors;
/// Allows fast lookup for the outgoing edge set of any given vertex.
NeighborLookupT OutNeighbors;
/// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator,
/// and storing the VertexIdentifier the iterator range comes from. The
/// dereference operator is then performed using a pointer to the graph's edge
/// set.
template <bool IsConst, bool IsOut,
typename BaseIt = typename NeighborSetT::const_iterator,
typename T = typename std::conditional<IsConst, const EdgeValueType,
EdgeValueType>::type>
class NeighborEdgeIteratorT
: public iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T> {
using InternalEdgeMapT =
typename std::conditional<IsConst, const EdgeMapT, EdgeMapT>::type;
friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
const EdgeValueType>;
InternalEdgeMapT *MP;
VertexIdentifier SI;
public:
template <bool IsConstDest,
typename = typename std::enable_if<IsConstDest && !IsConst>::type>
operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>() const {
return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>(this->I, MP, SI);
}
NeighborEdgeIteratorT() = default;
NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP,
VertexIdentifier _SI)
: iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T>(_I),
MP(_MP), SI(_SI) {}
T &operator*() const {
if (!IsOut)
return *(MP->find({*(this->I), SI}));
else
return *(MP->find({SI, *(this->I)}));
}
};
public:
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using InEdgeIterator = NeighborEdgeIteratorT<false, false>;
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;
/// A class for ranging over the incoming edges incident to a vertex.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst, bool isOut> class InOutEdgeView {
public:
using iterator = NeighborEdgeIteratorT<isConst, isOut>;
using const_iterator = NeighborEdgeIteratorT<true, isOut>;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
using InternalEdgeMapT =
typename std::conditional<isConst, const EdgeMapT, EdgeMapT>::type;
private:
InternalEdgeMapT &M;
const VertexIdentifier A;
const NeighborLookupT &NL;
public:
iterator begin() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.begin(), &M, A);
}
const_iterator cbegin() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.begin(), &M, A);
}
const_iterator begin() const { return cbegin(); }
iterator end() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.end(), &M, A);
}
const_iterator cend() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.end(), &M, A);
}
const_iterator end() const { return cend(); }
size_type size() const {
auto I = NL.find(A);
if (I == NL.end())
return 0;
else
return I->second.size();
}
bool empty() const { return NL.count(A) == 0; };
InOutEdgeView(GraphT &G, VertexIdentifier A)
: M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {}
};
/// A const iterator type for iterating through the whole vertex set of the
/// graph.
///
/// Has a const VertexValueType as its value_type
using ConstVertexIterator = typename VertexMapT::const_iterator;
/// An iterator type for iterating through the whole vertex set of the graph.
///
/// Has a VertexValueType as its value_type
using VertexIterator = typename VertexMapT::iterator;
/// A class for ranging over the vertices in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class VertexView {
public:
using iterator = typename std::conditional<isConst, ConstVertexIterator,
VertexIterator>::type;
using const_iterator = ConstVertexIterator;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
private:
GraphT &G;
public:
iterator begin() { return G.Vertices.begin(); }
iterator end() { return G.Vertices.end(); }
const_iterator cbegin() const { return G.Vertices.cbegin(); }
const_iterator cend() const { return G.Vertices.cend(); }
const_iterator begin() const { return G.Vertices.begin(); }
const_iterator end() const { return G.Vertices.end(); }
size_type size() const { return G.Vertices.size(); }
bool empty() const { return G.Vertices.empty(); }
VertexView(GraphT &_G) : G(_G) {}
};
/// A const iterator for iterating through the entire edge set of the graph.
///
/// Has a const EdgeValueType as its value_type
using ConstEdgeIterator = typename EdgeMapT::const_iterator;
/// An iterator for iterating through the entire edge set of the graph.
///
/// Has an EdgeValueType as its value_type
using EdgeIterator = typename EdgeMapT::iterator;
/// A class for ranging over all the edges in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class EdgeView {
public:
using iterator = typename std::conditional<isConst, ConstEdgeIterator,
EdgeIterator>::type;
using const_iterator = ConstEdgeIterator;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
private:
GraphT &G;
public:
iterator begin() { return G.Edges.begin(); }
iterator end() { return G.Edges.end(); }
const_iterator cbegin() const { return G.Edges.cbegin(); }
const_iterator cend() const { return G.Edges.cend(); }
const_iterator begin() const { return G.Edges.begin(); }
const_iterator end() const { return G.Edges.end(); }
size_type size() const { return G.Edges.size(); }
bool empty() const { return G.Edges.empty(); }
EdgeView(GraphT &_G) : G(_G) {}
};
public:
// TODO: implement constructor to enable Graph Initialisation.\
// Something like:
// Graph<int, int, int> G(
// {1, 2, 3, 4, 5},
// {{1, 2}, {2, 3}, {3, 4}});
/// Empty the Graph
void clear() {
Edges.clear();
Vertices.clear();
InNeighbors.clear();
OutNeighbors.clear();
}
/// Returns a view object allowing iteration over the vertices of the graph.
/// also allows access to the size of the vertex set.
VertexView<false> vertices() { return VertexView<false>(*this); }
VertexView<true> vertices() const { return VertexView<true>(*this); }
/// Returns a view object allowing iteration over the edges of the graph.
/// also allows access to the size of the edge set.
EdgeView<false> edges() { return EdgeView<false>(*this); }
EdgeView<true> edges() const { return EdgeView<true>(*this); }
/// Returns a view object allowing iteration over the edges which start at
/// a vertex I.
InOutEdgeView<false, true> outEdges(const VertexIdentifier I) {
return InOutEdgeView<false, true>(*this, I);
}
InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, true>(*this, I);
}
/// Returns a view object allowing iteration over the edges which point to
/// a vertex I.
InOutEdgeView<false, false> inEdges(const VertexIdentifier I) {
return InOutEdgeView<false, false>(*this, I);
}
InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, false>(*this, I);
}
/// Looks up the vertex with identifier I, if it does not exist it default
/// constructs it.
VertexAttribute &operator[](const VertexIdentifier &I) {
return Vertices.FindAndConstruct(I).second;
}
/// Looks up the edge with identifier I, if it does not exist it default
/// constructs it, if it's endpoints do not exist it also default constructs
/// them.
EdgeAttribute &operator[](const EdgeIdentifier &I) {
auto &P = Edges.FindAndConstruct(I);
Vertices.FindAndConstruct(I.first);
Vertices.FindAndConstruct(I.second);
InNeighbors[I.second].insert(I.first);
OutNeighbors[I.first].insert(I.second);
return P.second;
}
/// Looks up a vertex with Identifier I, or an error if it does not exist.
Expected<VertexAttribute &> at(const VertexIdentifier &I) {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const VertexAttribute &> at(const VertexIdentifier &I) const {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks up an edge with Identifier I, or an error if it does not exist.
Expected<EdgeAttribute &> at(const EdgeIdentifier &I) {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks for a vertex with identifier I, returns 1 if one exists, and
/// 0 otherwise
size_type count(const VertexIdentifier &I) const {
return Vertices.count(I);
}
/// Looks for an edge with Identifier I, returns 1 if one exists and 0
/// otherwise
size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }
/// Inserts a vertex into the graph with Identifier Val.first, and
/// Attribute Val.second.
std::pair<VertexIterator, bool>
insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) {
return Vertices.insert(Val);
}
std::pair<VertexIterator, bool>
insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) {
return Vertices.insert(std::move(Val));
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) {
const auto &p = Edges.insert(Val);
if (p.second) {
const auto &EI = Val.first;
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) {
auto EI = Val.first;
const auto &p = Edges.insert(std::move(Val));
if (p.second) {
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
};
}
}
#endif

View File

@ -1,4 +1,4 @@
//===-- xray-graph.c - XRay Function Call Graph Renderer ------------------===//
//===-- xray-graph.cc - XRay Function Call Graph Renderer -----------------===//
//
// The LLVM Compiler Infrastructure
//
@ -30,45 +30,47 @@ using namespace llvm;
using namespace llvm::xray;
// Setup llvm-xray graph subcommand and its options.
static cl::SubCommand Graph("graph", "Generate function-call graph");
static cl::SubCommand GraphC("graph", "Generate function-call graph");
static cl::opt<std::string> GraphInput(cl::Positional,
cl::desc("<xray log file>"),
cl::Required, cl::sub(Graph));
cl::Required, cl::sub(GraphC));
static cl::opt<bool>
GraphKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
cl::sub(Graph), cl::init(false));
cl::sub(GraphC), cl::init(false));
static cl::alias GraphKeepGoing2("k", cl::aliasopt(GraphKeepGoing),
cl::desc("Alias for -keep-going"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<std::string>
GraphOutput("output", cl::value_desc("Output file"), cl::init("-"),
cl::desc("output file; use '-' for stdout"), cl::sub(Graph));
cl::desc("output file; use '-' for stdout"), cl::sub(GraphC));
static cl::alias GraphOutput2("o", cl::aliasopt(GraphOutput),
cl::desc("Alias for -output"), cl::sub(Graph));
cl::desc("Alias for -output"), cl::sub(GraphC));
static cl::opt<std::string> GraphInstrMap(
"instr_map", cl::desc("binary with the instrumrntation map, or "
"a separate instrumentation map"),
cl::value_desc("binary with xray_instr_map"), cl::sub(Graph), cl::init(""));
static cl::opt<std::string>
GraphInstrMap("instr_map",
cl::desc("binary with the instrumrntation map, or "
"a separate instrumentation map"),
cl::value_desc("binary with xray_instr_map"), cl::sub(GraphC),
cl::init(""));
static cl::alias GraphInstrMap2("m", cl::aliasopt(GraphInstrMap),
cl::desc("alias for -instr_map"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<bool> GraphDeduceSiblingCalls(
"deduce-sibling-calls",
cl::desc("Deduce sibling calls when unrolling function call stacks"),
cl::sub(Graph), cl::init(false));
cl::sub(GraphC), cl::init(false));
static cl::alias
GraphDeduceSiblingCalls2("d", cl::aliasopt(GraphDeduceSiblingCalls),
cl::desc("Alias for -deduce-sibling-calls"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<GraphRenderer::StatType>
GraphEdgeLabel("edge-label",
cl::desc("Output graphs with edges labeled with this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::value_desc("field"), cl::sub(GraphC),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
@ -88,12 +90,12 @@ static cl::opt<GraphRenderer::StatType>
"sum of call durations")));
static cl::alias GraphEdgeLabel2("e", cl::aliasopt(GraphEdgeLabel),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<GraphRenderer::StatType> GraphVertexLabel(
"vertex-label",
cl::desc("Output graphs with vertices labeled with this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::value_desc("field"), cl::sub(GraphC),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
@ -113,12 +115,12 @@ static cl::opt<GraphRenderer::StatType> GraphVertexLabel(
"sum of call durations")));
static cl::alias GraphVertexLabel2("v", cl::aliasopt(GraphVertexLabel),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<GraphRenderer::StatType> GraphEdgeColorType(
"color-edges",
cl::desc("Output graphs with edge colors determined by this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::value_desc("field"), cl::sub(GraphC),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
@ -138,12 +140,12 @@ static cl::opt<GraphRenderer::StatType> GraphEdgeColorType(
"sum of call durations")));
static cl::alias GraphEdgeColorType2("c", cl::aliasopt(GraphEdgeColorType),
cl::desc("Alias for -color-edges"),
cl::sub(Graph));
cl::sub(GraphC));
static cl::opt<GraphRenderer::StatType> GraphVertexColorType(
"color-vertices",
cl::desc("Output graphs with vertex colors determined by this field"),
cl::value_desc("field"), cl::sub(Graph),
cl::value_desc("field"), cl::sub(GraphC),
cl::init(GraphRenderer::StatType::NONE),
cl::values(clEnumValN(GraphRenderer::StatType::NONE, "none",
"Do not label Edges"),
@ -163,7 +165,7 @@ static cl::opt<GraphRenderer::StatType> GraphVertexColorType(
"sum of call durations")));
static cl::alias GraphVertexColorType2("b", cl::aliasopt(GraphVertexColorType),
cl::desc("Alias for -edge-label"),
cl::sub(Graph));
cl::sub(GraphC));
template <class T> T diff(T L, T R) { return std::max(L, R) - std::min(L, R); }
@ -208,14 +210,13 @@ Error GraphRenderer::accountRecord(const XRayRecord &Record) {
auto &ThreadStack = PerThreadFunctionStack[Record.TId];
switch (Record.Type) {
case RecordTypes::ENTER: {
if (VertexAttrs.count(Record.FuncId) == 0)
VertexAttrs[Record.FuncId].SymbolName =
FuncIdHelper.SymbolOrNumber(Record.FuncId);
if (G.count(Record.FuncId) == 0)
G[Record.FuncId].SymbolName = FuncIdHelper.SymbolOrNumber(Record.FuncId);
ThreadStack.push_back({Record.FuncId, Record.TSC});
break;
}
case RecordTypes::EXIT: {
// FIXME: Refactor this and the account subcommand to reducr code
// FIXME: Refactor this and the account subcommand to reduce code
// duplication
if (ThreadStack.size() == 0 || ThreadStack.back().FuncId != Record.FuncId) {
if (!DeduceSiblingCalls)
@ -230,23 +231,25 @@ Error GraphRenderer::accountRecord(const XRayRecord &Record) {
make_error_code(errc::invalid_argument)); // There is no matching
// Function for this exit.
while (ThreadStack.back().FuncId != Record.FuncId) {
uint64_t D = diff(ThreadStack.back().TSC, Record.TSC);
int32_t TopFuncId = ThreadStack.back().FuncId;
TimestampT D = diff(ThreadStack.back().TSC, Record.TSC);
VertexIdentifier TopFuncId = ThreadStack.back().FuncId;
ThreadStack.pop_back();
assert(ThreadStack.size() != 0);
auto &EA = Graph[ThreadStack.back().FuncId][TopFuncId];
EdgeIdentifier EI(ThreadStack.back().FuncId, TopFuncId);
auto &EA = G[EI];
EA.Timings.push_back(D);
updateStat(EA.S, D);
updateStat(VertexAttrs[TopFuncId].S, D);
updateStat(G[TopFuncId].S, D);
}
}
uint64_t D = diff(ThreadStack.back().TSC, Record.TSC);
ThreadStack.pop_back();
auto &V = Graph[ThreadStack.empty() ? 0 : ThreadStack.back().FuncId];
auto &EA = V[Record.FuncId];
VertexIdentifier VI = ThreadStack.empty() ? 0 : ThreadStack.back().FuncId;
EdgeIdentifier EI(VI, Record.FuncId);
auto &EA = G[EI];
EA.Timings.push_back(D);
updateStat(EA.S, D);
updateStat(VertexAttrs[Record.FuncId].S, D);
updateStat(G[Record.FuncId].S, D);
break;
}
}
@ -280,38 +283,34 @@ void GraphRenderer::updateMaxStats(const GraphRenderer::TimeStat &S,
}
void GraphRenderer::calculateEdgeStatistics() {
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &A = E.second;
getStats(A.Timings.begin(), A.Timings.end(), A.S);
updateMaxStats(A.S, GraphEdgeMax);
}
assert(!G.edges().empty());
for (auto &E : G.edges()) {
auto &A = E.second;
assert(!A.Timings.empty());
assert((A.Timings[0] > 0));
getStats(A.Timings.begin(), A.Timings.end(), A.S);
assert(A.S.Sum > 0);
updateMaxStats(A.S, G.GraphEdgeMax);
}
}
void GraphRenderer::calculateVertexStatistics() {
DenseMap<int32_t, std::pair<uint64_t, SmallVector<EdgeAttribute *, 4>>>
IncommingEdges;
uint64_t MaxCount = 0;
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &IEV = IncommingEdges[E.first];
IEV.second.push_back(&E.second);
IEV.first += E.second.S.Count;
if (IEV.first > MaxCount)
MaxCount = IEV.first;
}
}
std::vector<uint64_t> TempTimings;
TempTimings.reserve(MaxCount);
for (auto &V : IncommingEdges) {
for (auto &P : V.second.second) {
TempTimings.insert(TempTimings.end(), P->Timings.begin(),
P->Timings.end());
for (auto &V : G.vertices()) {
assert(V.first == 0 ||
G[V.first].S.Sum != 0 &&
"Every non-root vertex should have at least one call");
if (V.first != 0) {
for (auto &E : G.inEdges(V.first)) {
auto &A = E.second;
TempTimings.insert(TempTimings.end(), A.Timings.begin(),
A.Timings.end());
}
assert(!TempTimings.empty() && TempTimings[0] > 0);
getStats(TempTimings.begin(), TempTimings.end(), G[V.first].S);
updateMaxStats(G[V.first].S, G.GraphVertexMax);
TempTimings.clear();
}
getStats(TempTimings.begin(), TempTimings.end(), VertexAttrs[V.first].S);
updateMaxStats(VertexAttrs[V.first].S, GraphVertexMax);
TempTimings.clear();
}
}
@ -329,19 +328,17 @@ static void normalizeTimeStat(GraphRenderer::TimeStat &S,
// Normalises the statistics in the graph for a given TSC frequency.
void GraphRenderer::normalizeStatistics(double CycleFrequency) {
for (auto &V : Graph) {
for (auto &E : V.second) {
auto &S = E.second.S;
normalizeTimeStat(S, CycleFrequency);
}
for (auto &E : G.edges()) {
auto &S = E.second.S;
normalizeTimeStat(S, CycleFrequency);
}
for (auto &V : VertexAttrs) {
for (auto &V : G.vertices()) {
auto &S = V.second.S;
normalizeTimeStat(S, CycleFrequency);
}
normalizeTimeStat(GraphEdgeMax, CycleFrequency);
normalizeTimeStat(GraphVertexMax, CycleFrequency);
normalizeTimeStat(G.GraphEdgeMax, CycleFrequency);
normalizeTimeStat(G.GraphVertexMax, CycleFrequency);
}
// Returns a string containing the value of statistic field T
@ -477,8 +474,11 @@ double GraphRenderer::TimeStat::compare(StatType T, const TimeStat &O) const {
void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H,
StatType ET, StatType EC, StatType VT,
StatType VC) {
G.GraphEdgeMax = {};
G.GraphVertexMax = {};
calculateEdgeStatistics();
calculateVertexStatistics();
if (H.CycleFrequency)
normalizeStatistics(H.CycleFrequency);
@ -487,18 +487,19 @@ void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H,
if (VT != StatType::NONE)
OS << "node [shape=record];\n";
for (const auto &V : Graph)
for (const auto &E : V.second) {
const auto &S = E.second.S;
OS << "F" << V.first << " -> "
<< "F" << E.first << " [label=\"" << S.getAsString(ET) << "\"";
if (EC != StatType::NONE)
OS << " color=\"" << getColor(S.compare(EC, GraphEdgeMax)) << "\"";
OS << "];\n";
}
for (const auto &E : G.edges()) {
const auto &S = E.second.S;
OS << "F" << E.first.first << " -> "
<< "F" << E.first.second << " [label=\"" << S.getAsString(ET) << "\"";
if (EC != StatType::NONE)
OS << " color=\"" << getColor(S.compare(EC, G.GraphEdgeMax)) << "\"";
OS << "];\n";
}
for (const auto &V : VertexAttrs) {
for (const auto &V : G.vertices()) {
const auto &VA = V.second;
if (V.first == 0)
continue;
OS << "F" << V.first << " [label=\"" << (VT != StatType::NONE ? "{" : "")
<< (VA.SymbolName.size() > 40 ? VA.SymbolName.substr(0, 40) + "..."
: VA.SymbolName);
@ -507,7 +508,7 @@ void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H,
else
OS << "\"";
if (VC != StatType::NONE)
OS << " color=\"" << getColor(VA.S.compare(VC, GraphVertexMax)) << "\"";
OS << " color=\"" << getColor(VA.S.compare(VC, G.GraphVertexMax)) << "\"";
OS << "];\n";
}
OS << "}\n";
@ -521,7 +522,7 @@ void GraphRenderer::exportGraphAsDOT(raw_ostream &OS, const XRayFileHeader &H,
//
// FIXME: include additional filtering and annalysis passes to provide more
// specific useful information.
static CommandRegistration Unused(&Graph, []() -> Error {
static CommandRegistration Unused(&GraphC, []() -> Error {
InstrumentationMap Map;
if (!GraphInstrMap.empty()) {
auto InstrumentationMapOrError = loadInstrumentationMap(GraphInstrMap);
@ -581,7 +582,6 @@ static CommandRegistration Unused(&Graph, []() -> Error {
handleAllErrors(std::move(E),
[&](const ErrorInfoBase &E) { E.log(errs()); });
}
GR.exportGraphAsDOT(OS, Header, GraphEdgeLabel, GraphEdgeColorType,
GraphVertexLabel, GraphVertexColorType);
return Error::success();

View File

@ -24,6 +24,7 @@
#include "llvm/Support/Errc.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/XRay/Graph.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/XRayRecord.h"
@ -49,21 +50,22 @@ public:
std::string getAsString(StatType T) const;
double compare(StatType T, const TimeStat &Other) const;
};
typedef uint64_t TimestampT;
/// An inner struct for storing edge attributes for our graph. Here the
/// attributes are mainly function call statistics.
///
/// FIXME: expand to contain more information eg call latencies.
struct EdgeAttribute {
struct CallStats {
TimeStat S;
std::vector<uint64_t> Timings;
std::vector<TimestampT> Timings;
};
/// An Inner Struct for storing vertex attributes, at the moment just
/// SymbolNames, however in future we could store bulk function statistics.
///
/// FIXME: Store more attributes based on instrumentation map.
struct VertexAttribute {
struct FunctionStats {
std::string SymbolName;
TimeStat S;
};
@ -78,17 +80,15 @@ public:
typedef DenseMap<llvm::sys::ProcessInfo::ProcessId, FunctionStack>
PerThreadFunctionStackMap;
private:
/// The Graph stored in an edge-list like format, with the edges also having
/// An attached set of attributes.
DenseMap<int32_t, DenseMap<int32_t, EdgeAttribute>> Graph;
class GraphT : public Graph<FunctionStats, CallStats, int32_t> {
public:
TimeStat GraphEdgeMax = {};
TimeStat GraphVertexMax = {};
};
/// Graph Vertex Attributes. These are presently stored seperate from the
/// main graph.
DenseMap<int32_t, VertexAttribute> VertexAttrs;
TimeStat GraphEdgeMax;
TimeStat GraphVertexMax;
GraphT G;
typedef typename decltype(G)::VertexIdentifier VertexIdentifier;
typedef typename decltype(G)::EdgeIdentifier EdgeIdentifier;
/// Use a Map to store the Function stack for each thread whilst building the
/// graph.
@ -99,7 +99,7 @@ private:
/// Usefull object for getting human readable Symbol Names.
FuncIdConversionHelper &FuncIdHelper;
bool DeduceSiblingCalls = false;
uint64_t CurrentMaxTSC = 0;
TimestampT CurrentMaxTSC = 0;
/// A private function to help implement the statistic generation functions;
template <typename U>
@ -121,7 +121,9 @@ public:
/// Takes in a reference to a FuncIdHelper in order to have ready access to
/// Symbol names.
explicit GraphRenderer(FuncIdConversionHelper &FuncIdHelper, bool DSC)
: FuncIdHelper(FuncIdHelper), DeduceSiblingCalls(DSC) {}
: FuncIdHelper(FuncIdHelper), DeduceSiblingCalls(DSC) {
G[0] = {};
}
/// Process an Xray record and expand the graph.
///
@ -132,7 +134,7 @@ public:
/// FIXME: Make this more robust against small irregularities.
Error accountRecord(const XRayRecord &Record);
const PerThreadFunctionStackMap getPerThreadFunctionStack() const {
const PerThreadFunctionStackMap &getPerThreadFunctionStack() const {
return PerThreadFunctionStack;
}
@ -143,6 +145,13 @@ public:
StatType EdgeColor = StatType::NONE,
StatType VertexLabel = StatType::NONE,
StatType VertexColor = StatType::NONE);
/// Get a reference to the internal graph.
const GraphT &getGraph() {
calculateEdgeStatistics();
calculateVertexStatistics();
return G;
}
};
}
}

View File

@ -24,3 +24,4 @@ add_subdirectory(ProfileData)
add_subdirectory(Support)
add_subdirectory(Target)
add_subdirectory(Transforms)
add_subdirectory(XRay)

View File

@ -0,0 +1,13 @@
set(LLVM_LINK_COMPONENTS
Support
)
set(XRAYSources
GraphTest.cpp
)
add_llvm_unittest(XRayTests
${XRAYSources}
)
add_dependencies(XRayTests intrinsics_gen)

View File

@ -0,0 +1,256 @@
//===- llvm/unittest/XRay/GraphTest.cpp - XRay Graph unit tests -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Graph.h"
#include "gtest/gtest.h"
#include <iostream>
#include <set>
#include <type_traits>
using namespace llvm;
using namespace xray;
namespace {
struct VA {
unsigned VA;
};
struct EA {
unsigned EA;
};
typedef Graph<VA, EA, unsigned> GraphT;
typedef typename GraphT::VertexIdentifier VI;
typedef typename GraphT::EdgeIdentifier EI;
// Test Fixture
template <typename T> class GraphTest : public testing::Test {
protected:
T Graph = getTestGraph();
private:
static T getTestGraph() {
using std::make_pair;
typename std::remove_const<T>::type G;
G.insert(make_pair(1u, VA({3u})));
G.insert(make_pair(2u, VA({5u})));
G.insert(make_pair(3u, VA({7u})));
G.insert(make_pair(4u, VA({11u})));
G.insert(make_pair(5u, VA({13u})));
G.insert(make_pair(6u, VA({17u})));
G.insert(std::make_pair(EI(1u, 2u), EA({3u * 5u})));
G.insert(std::make_pair(EI(2u, 3u), EA({5u * 7u})));
G.insert(std::make_pair(EI(6u, 3u), EA({2u * 7u * 17u})));
G.insert(std::make_pair(EI(4u, 6u), EA({11u * 17u})));
G.insert(std::make_pair(EI(2u, 4u), EA({5u * 11u})));
G.insert(std::make_pair(EI(2u, 5u), EA({5u * 13u})));
G.insert(std::make_pair(EI(4u, 5u), EA({11u * 13u})));
return G;
}
};
typedef ::testing::Types<GraphT, const GraphT> GraphTestTypes;
using VVT = typename GraphT::VertexValueType;
using EVT = typename GraphT::EdgeValueType;
TYPED_TEST_CASE(GraphTest, GraphTestTypes);
template <typename T> void graphVertexTester(T &G) {
std::set<unsigned> V({1u, 2u, 3u, 4u, 5u, 6u});
std::vector<unsigned> VA({0u, 3u, 5u, 7u, 11u, 13u, 17u});
EXPECT_EQ(V.size(), G.vertices().size());
EXPECT_FALSE(G.vertices().empty());
for (unsigned u : V) {
auto EVV = G.at(u);
ASSERT_TRUE(bool{EVV});
EXPECT_EQ(1u, G.count(u));
EXPECT_EQ(VA[u], EVV->VA);
EXPECT_NE(G.vertices().end(),
std::find_if(G.vertices().begin(), G.vertices().end(),
[&](const VVT &VV) { return VV.first == u; }));
consumeError(EVV.takeError());
}
for (auto &VVT : G.vertices()) {
EXPECT_EQ(1u, V.count(VVT.first));
EXPECT_EQ(VA[VVT.first], VVT.second.VA);
}
}
template <typename T> void graphEdgeTester(T &G) {
std::set<unsigned> V({1u, 2u, 3u, 4u, 5u, 6u});
std::set<std::pair<unsigned, unsigned>> E(
{{1u, 2u}, {2u, 3u}, {6u, 3u}, {4u, 6u}, {2u, 4u}, {2u, 5u}, {4u, 5u}});
std::vector<unsigned> VA({0u, 3u, 5u, 7u, 11u, 13u, 17u});
EXPECT_EQ(E.size(), G.edges().size());
EXPECT_FALSE(G.edges().empty());
for (std::pair<unsigned, unsigned> u : E) {
auto EEV = G.at(u);
ASSERT_TRUE(bool{EEV});
EXPECT_EQ(1u, G.count(u));
EXPECT_EQ(VA[u.first] * VA[u.second] * ((u.first > u.second) ? 2 : 1),
EEV->EA);
EXPECT_NE(G.edges().end(),
std::find_if(G.edges().begin(), G.edges().end(),
[&](const EVT &EV) { return EV.first == u; }));
consumeError(EEV.takeError());
}
for (auto &EV : G.edges()) {
EXPECT_EQ(1u, E.count(EV.first));
EXPECT_EQ(VA[EV.first.first] * VA[EV.first.second] *
((EV.first.first > EV.first.second) ? 2 : 1),
EV.second.EA);
const auto &IE = G.inEdges(EV.first.second);
const auto &OE = G.outEdges(EV.first.first);
EXPECT_NE(IE.size(), 0u);
EXPECT_NE(OE.size(), 0u);
EXPECT_NE(IE.begin(), IE.end());
EXPECT_NE(OE.begin(), OE.end());
EXPECT_NE(
G.inEdges(EV.first.second).end(),
std::find_if(G.inEdges(EV.first.second).begin(),
G.inEdges(EV.first.second).end(),
[&](const EVT &EVI) { return EVI.first == EV.first; }));
EXPECT_EQ(
G.inEdges(EV.first.first).end(),
std::find_if(G.inEdges(EV.first.first).begin(),
G.inEdges(EV.first.first).end(),
[&](const EVT &EVI) { return EVI.first == EV.first; }));
EXPECT_EQ(
G.outEdges(EV.first.second).end(),
std::find_if(G.outEdges(EV.first.second).begin(),
G.outEdges(EV.first.second).end(),
[&](const EVT &EVI) { return EVI.first == EV.first; }));
EXPECT_NE(
G.outEdges(EV.first.first).end(),
std::find_if(G.outEdges(EV.first.first).begin(),
G.outEdges(EV.first.first).end(),
[&](const EVT &EVI) { return EVI.first == EV.first; }));
}
}
TYPED_TEST(GraphTest, TestGraphEdge) {
auto &G = this->Graph;
graphEdgeTester(G);
}
TYPED_TEST(GraphTest, TestGraphVertex) {
auto &G = this->Graph;
graphVertexTester(G);
}
TYPED_TEST(GraphTest, TestCopyConstructor) {
TypeParam G(this->Graph);
graphEdgeTester(G);
graphVertexTester(G);
}
TYPED_TEST(GraphTest, TestCopyAssign) {
TypeParam G = this->Graph;
graphEdgeTester(G);
graphVertexTester(G);
}
TYPED_TEST(GraphTest, TestMoveConstructor) {
TypeParam G(std::move(this->Graph));
graphEdgeTester(G);
graphVertexTester(G);
}
// Tests the incremental Construction of a graph
TEST(GraphTest, TestConstruction) {
GraphT MG;
const GraphT &G = MG;
EXPECT_EQ(0u, G.count(0u));
EXPECT_EQ(0u, G.count({0u, 1u}));
auto VE = G.at(0);
auto EE = G.at({0, 0});
EXPECT_FALSE(VE); // G.at[0] returns an error
EXPECT_FALSE(EE); // G.at[{0,0}] returns an error
consumeError(VE.takeError());
consumeError(EE.takeError());
EXPECT_TRUE(G.vertices().empty());
EXPECT_TRUE(G.edges().empty());
EXPECT_EQ(G.vertices().begin(), G.vertices().end());
EXPECT_EQ(G.edges().begin(), G.edges().end());
}
TEST(GraphTest, TestiVertexAccessOperator) {
GraphT MG;
const GraphT &G = MG;
MG[0u] = {1u};
EXPECT_EQ(1u, MG[0u].VA);
EXPECT_EQ(1u, G.count(0u));
EXPECT_EQ(0u, G.count(1u));
EXPECT_EQ(1u, MG[0u].VA);
auto T = G.at(0u);
EXPECT_TRUE(bool{T});
EXPECT_EQ(1u, T->VA);
EXPECT_EQ(1u, G.vertices().size());
EXPECT_EQ(0u, G.edges().size());
EXPECT_FALSE(G.vertices().empty());
EXPECT_TRUE(G.edges().empty());
EXPECT_NE(G.vertices().begin(), G.vertices().end());
EXPECT_EQ(G.edges().begin(), G.edges().end());
EXPECT_EQ(1u, G.vertices().begin()->second.VA);
EXPECT_EQ(0u, G.vertices().begin()->first);
EXPECT_EQ(0u, G.outEdges(0u).size());
EXPECT_TRUE(G.outEdges(0u).empty());
EXPECT_EQ(G.outEdges(0u).begin(), G.outEdges(0u).end());
EXPECT_EQ(0u, G.inEdges(0u).size());
EXPECT_TRUE(G.inEdges(0u).empty());
EXPECT_EQ(G.inEdges(0u).begin(), G.inEdges(0u).end());
}
TEST(GraphTest, TestEdgeAccessOperator) {
GraphT MG;
const GraphT &G = MG;
MG[{0u, 0u}] = {2u};
EI EdgeIdent({0u, 0u});
EXPECT_EQ(2u, MG[EdgeIdent].EA);
EXPECT_EQ(1u, G.count({0u, 0u}));
EXPECT_EQ(0u, G.count({0u, 1u}));
EXPECT_EQ(1u, G.count(0u));
EXPECT_NE(1u, G.count(1u));
auto T = G.at({0u, 0u});
EXPECT_TRUE(T && T->EA == 2u);
EXPECT_EQ(1u, G.edges().size());
EXPECT_EQ(1u, G.vertices().size());
EXPECT_FALSE(G.edges().empty());
EXPECT_FALSE(G.vertices().empty());
EXPECT_NE(G.edges().begin(), G.edges().end());
EXPECT_EQ(EI(0u, 0u), G.edges().begin()->first);
EXPECT_EQ(2u, G.edges().begin()->second.EA);
EXPECT_EQ(1u, G.outEdges(0u).size());
EXPECT_FALSE(G.outEdges(0u).empty());
EXPECT_NE(G.outEdges(0u).begin(), G.outEdges(0u).end());
EXPECT_EQ(EI(0u, 0u), G.outEdges(0u).begin()->first);
EXPECT_EQ(2u, G.outEdges(0u).begin()->second.EA);
EXPECT_EQ(++(G.outEdges(0u).begin()), G.outEdges(0u).end());
EXPECT_EQ(1u, G.inEdges(0u).size());
EXPECT_FALSE(G.inEdges(0u).empty());
EXPECT_NE(G.inEdges(0u).begin(), G.inEdges(0u).end());
EXPECT_EQ(EI(0u, 0u), G.inEdges(0u).begin()->first);
EXPECT_EQ(2u, G.inEdges(0u).begin()->second.EA);
EXPECT_EQ(++(G.inEdges(0u).begin()), G.inEdges(0u).end());
}
}