1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00

Move EliminateDuplicatePHINodes() from SimplifyCFG.cpp to Local.cpp

llvm-svn: 90324
This commit is contained in:
Jim Grosbach 2009-12-02 17:06:45 +00:00
parent e70972f8d5
commit ccb304105a
2 changed files with 62 additions and 63 deletions

View File

@ -603,3 +603,65 @@ bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
return true;
}
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
bool Changed = false;
// This implementation doesn't currently consider undef operands
// specially. Theroetically, two phis which are identical except for
// one having an undef where the other doesn't could be collapsed.
// Map from PHI hash values to PHI nodes. If multiple PHIs have
// the same hash value, the element is the first PHI in the
// linked list in CollisionMap.
DenseMap<uintptr_t, PHINode *> HashMap;
// Maintain linked lists of PHI nodes with common hash values.
DenseMap<PHINode *, PHINode *> CollisionMap;
// Examine each PHI.
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I++); ) {
// Compute a hash value on the operands. Instcombine will likely have sorted
// them, which helps expose duplicates, but we have to check all the
// operands to be safe in case instcombine hasn't run.
uintptr_t Hash = 0;
for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
// This hash algorithm is quite weak as hash functions go, but it seems
// to do a good enough job for this particular purpose, and is very quick.
Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
}
// If we've never seen this hash value before, it's a unique PHI.
std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
HashMap.insert(std::make_pair(Hash, PN));
if (Pair.second) continue;
// Otherwise it's either a duplicate or a hash collision.
for (PHINode *OtherPN = Pair.first->second; ; ) {
if (OtherPN->isIdenticalTo(PN)) {
// A duplicate. Replace this PHI with its duplicate.
PN->replaceAllUsesWith(OtherPN);
PN->eraseFromParent();
Changed = true;
break;
}
// A non-duplicate hash collision.
DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
if (I == CollisionMap.end()) {
// Set this PHI to be the head of the linked list of colliding PHIs.
PHINode *Old = Pair.first->second;
Pair.first->second = PN;
CollisionMap[PN] = Old;
break;
}
// Procede to the next PHI in the list.
OtherPN = I->second;
}
}
return Changed;
}

View File

@ -1589,69 +1589,6 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
return true;
}
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
bool Changed = false;
// This implementation doesn't currently consider undef operands
// specially. Theroetically, two phis which are identical except for
// one having an undef where the other doesn't could be collapsed.
// Map from PHI hash values to PHI nodes. If multiple PHIs have
// the same hash value, the element is the first PHI in the
// linked list in CollisionMap.
DenseMap<uintptr_t, PHINode *> HashMap;
// Maintain linked lists of PHI nodes with common hash values.
DenseMap<PHINode *, PHINode *> CollisionMap;
// Examine each PHI.
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I++); ) {
// Compute a hash value on the operands. Instcombine will likely have sorted
// them, which helps expose duplicates, but we have to check all the
// operands to be safe in case instcombine hasn't run.
uintptr_t Hash = 0;
for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
// This hash algorithm is quite weak as hash functions go, but it seems
// to do a good enough job for this particular purpose, and is very quick.
Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
}
// If we've never seen this hash value before, it's a unique PHI.
std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
HashMap.insert(std::make_pair(Hash, PN));
if (Pair.second) continue;
// Otherwise it's either a duplicate or a hash collision.
for (PHINode *OtherPN = Pair.first->second; ; ) {
if (OtherPN->isIdenticalTo(PN)) {
// A duplicate. Replace this PHI with its duplicate.
PN->replaceAllUsesWith(OtherPN);
PN->eraseFromParent();
Changed = true;
break;
}
// A non-duplicate hash collision.
DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
if (I == CollisionMap.end()) {
// Set this PHI to be the head of the linked list of colliding PHIs.
PHINode *Old = Pair.first->second;
Pair.first->second = PN;
CollisionMap[PN] = Old;
break;
}
// Procede to the next PHI in the list.
OtherPN = I->second;
}
}
return Changed;
}
/// SimplifyCFG - This function is used to do simplification of a CFG. For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization