1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00

Add MemoryAccess creation and PHI creation APIs to MemorySSA

Reviewers: george.burgess.iv, gberry, hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D21463

llvm-svn: 273295
This commit is contained in:
Daniel Berlin 2016-06-21 18:39:20 +00:00
parent 805d357d67
commit cde81efccb
3 changed files with 238 additions and 19 deletions

View File

@ -398,8 +398,6 @@ public:
MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
void setIncomingValue(unsigned I, MemoryAccess *V) {
assert(V && "PHI node got a null value!");
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
setOperand(I, V);
}
static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
@ -536,6 +534,40 @@ public:
return It == PerBlockAccesses.end() ? nullptr : It->second.get();
}
/// \brief Create an empty MemoryPhi in MemorySSA
MemoryPhi *createMemoryPhi(BasicBlock *BB);
enum InsertionPlace { Beginning, End };
/// \brief Create a MemoryAccess in MemorySSA at a specified point in a block,
/// with a specified clobbering definition.
///
/// Returns the new MemoryAccess.
/// This should be called when a memory instruction is created that is being
/// used to replace an existing memory instruction. It will *not* create PHI
/// nodes, or verify the clobbering definition. The insertion place is used
/// solely to determine where in the memoryssa access lists the instruction
/// will be placed. The caller is expected to keep ordering the same as
/// instructions.
/// It will return the new MemoryAccess.
MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
const BasicBlock *BB,
InsertionPlace Point);
/// \brief Create a MemoryAccess in MemorySSA before or after an existing
/// MemoryAccess.
///
/// Returns the new MemoryAccess.
/// This should be called when a memory instruction is created that is being
/// used to replace an existing memory instruction. It will *not* create PHI
/// nodes, or verify the clobbering definition. The clobbering definition
/// must be non-null.
MemoryAccess *createMemoryAccessBefore(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt);
MemoryAccess *createMemoryAccessAfter(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt);
/// \brief Remove a MemoryAccess from MemorySSA, including updating all
/// definitions and uses.
/// This should be called when a memory instruction that has a MemoryAccess
@ -544,8 +576,6 @@ public:
/// on the MemoryAccess for that store/load.
void removeMemoryAccess(MemoryAccess *);
enum InsertionPlace { Beginning, End };
/// \brief Given two memory accesses in the same basic block, determine
/// whether MemoryAccess \p A dominates MemoryAccess \p B.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
@ -560,6 +590,7 @@ protected:
friend class MemorySSAPrinterLegacyPass;
void verifyDefUses(Function &F) const;
void verifyDomination(Function &F) const;
void verifyOrdering(Function &F) const;
private:
void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
@ -571,13 +602,14 @@ private:
void markUnreachableAsLiveOnEntry(BasicBlock *BB);
bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
MemoryUseOrDef *createNewAccess(Instruction *);
MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
void removeFromLookups(MemoryAccess *);
MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *);
void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
SmallPtrSet<BasicBlock *, 16> &Visited);
AccessList *getOrCreateAccessList(BasicBlock *);
AccessList *getOrCreateAccessList(const BasicBlock *);
AliasAnalysis *AA;
DominatorTree *DT;
Function &F;

View File

@ -226,7 +226,7 @@ MemorySSA::~MemorySSA() {
MA.dropAllReferences();
}
MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(BasicBlock *BB) {
MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
if (Res.second)
@ -320,7 +320,7 @@ MemorySSAWalker *MemorySSA::getWalker() {
for (auto &BB : IDFBlocks) {
// Insert phi node
AccessList *Accesses = getOrCreateAccessList(BB);
MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++);
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
ValueToMemoryAccess.insert(std::make_pair(BB, Phi));
// Phi's always are placed at the front of the block.
Accesses->push_front(Phi);
@ -358,6 +358,68 @@ MemorySSAWalker *MemorySSA::getWalker() {
return Walker.get();
}
MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
AccessList *Accesses = getOrCreateAccessList(BB);
MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
ValueToMemoryAccess.insert(std::make_pair(BB, Phi));
// Phi's always are placed at the front of the block.
Accesses->push_front(Phi);
return Phi;
}
MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
MemoryAccess *Definition) {
assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
MemoryUseOrDef *NewAccess = createNewAccess(I);
assert(
NewAccess != nullptr &&
"Tried to create a memory access for a non-memory touching instruction");
NewAccess->setDefiningAccess(Definition);
return NewAccess;
}
MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I,
MemoryAccess *Definition,
const BasicBlock *BB,
InsertionPlace Point) {
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
auto *Accesses = getOrCreateAccessList(BB);
if (Point == Beginning) {
// It goes after any phi nodes
auto AI = std::find_if(
Accesses->begin(), Accesses->end(),
[](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); });
Accesses->insert(AI, NewAccess);
} else {
Accesses->push_back(NewAccess);
}
return NewAccess;
}
MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt) {
assert(I->getParent() == InsertPt->getBlock() &&
"New and old access must be in the same block");
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
auto *Accesses = getOrCreateAccessList(InsertPt->getBlock());
Accesses->insert(AccessList::iterator(InsertPt), NewAccess);
return NewAccess;
}
MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt) {
assert(I->getParent() == InsertPt->getBlock() &&
"New and old access must be in the same block");
MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition);
auto *Accesses = getOrCreateAccessList(InsertPt->getBlock());
Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess);
return NewAccess;
}
/// \brief Helper function to create new memory accesses
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
// The assume intrinsic has a control dependency which we model by claiming
@ -518,6 +580,45 @@ void MemorySSA::dump() const {
void MemorySSA::verifyMemorySSA() const {
verifyDefUses(F);
verifyDomination(F);
verifyOrdering(F);
}
/// \brief Verify that the order and existence of MemoryAccesses matches the
/// order and existence of memory affecting instructions.
void MemorySSA::verifyOrdering(Function &F) const {
// Walk all the blocks, comparing what the lookups think and what the access
// lists think, as well as the order in the blocks vs the order in the access
// lists.
SmallVector<MemoryAccess *, 32> ActualAccesses;
for (BasicBlock &B : F) {
const AccessList *AL = getBlockAccesses(&B);
MemoryAccess *Phi = getMemoryAccess(&B);
if (Phi)
ActualAccesses.push_back(Phi);
for (Instruction &I : B) {
MemoryAccess *MA = getMemoryAccess(&I);
assert((!MA || AL) && "We have memory affecting instructions "
"in this block but they are not in the "
"access list");
if (MA)
ActualAccesses.push_back(MA);
}
// Either we hit the assert, really have no accesses, or we have both
// accesses and an access list
if (!AL)
continue;
assert(AL->size() == ActualAccesses.size() &&
"We don't have the same number of accesses in the block as on the "
"access list");
auto ALI = AL->begin();
auto AAI = ActualAccesses.begin();
while (ALI != AL->end() && AAI != ActualAccesses.end()) {
assert(&*ALI == *AAI && "Not the same accesses in the same order");
++ALI;
++AAI;
}
ActualAccesses.clear();
}
}
/// \brief Verify the domination properties of MemorySSA by checking that each
@ -595,9 +696,13 @@ void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
void MemorySSA::verifyDefUses(Function &F) const {
for (BasicBlock &B : F) {
// Phi nodes are attached to basic blocks
if (MemoryPhi *Phi = getMemoryAccess(&B))
if (MemoryPhi *Phi = getMemoryAccess(&B)) {
assert(Phi->getNumOperands() ==
std::distance(pred_begin(&B), pred_end(&B)) &&
"Incomplete MemoryPhi Node");
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
verifyUseInDefs(Phi->getIncomingValue(I), Phi);
}
for (Instruction &I : B) {
if (MemoryAccess *MA = getMemoryAccess(&I)) {

View File

@ -6,11 +6,11 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/DataLayout.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
@ -65,6 +65,90 @@ public:
: M("MemorySSATest", C), B(C), DL(DLString), TLI(TLII), F(nullptr) {}
};
TEST_F(MemorySSATest, CreateALoadAndPhi) {
// We create a diamond where there is a store on one side, and then after
// running memory ssa, create a load after the merge point, and use it to test
// updating by creating an access for the load and a memoryphi.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
// Add the load
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
// Should be no phi to start
EXPECT_EQ(MSSA.getMemoryAccess(Merge), nullptr);
// Create the phi
MemoryPhi *MP = MSSA.createMemoryPhi(Merge);
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MP->addIncoming(StoreAccess, Left);
MP->addIncoming(MSSA.getLiveOnEntryDef(), Right);
// Create the load memory acccess
MemoryUse *LoadAccess = cast<MemoryUse>(
MSSA.createMemoryAccessInBB(LoadInst, MP, Merge, MemorySSA::Beginning));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveAPhi) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
// removal cases.
F = Function::Create(
FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false),
GlobalValue::ExternalLinkage, "F", &M);
BasicBlock *Entry(BasicBlock::Create(C, "", F));
BasicBlock *Left(BasicBlock::Create(C, "", F));
BasicBlock *Right(BasicBlock::Create(C, "", F));
BasicBlock *Merge(BasicBlock::Create(C, "", F));
B.SetInsertPoint(Entry);
B.CreateCondBr(B.getTrue(), Left, Right);
B.SetInsertPoint(Left);
Argument *PointerArg = &*F->arg_begin();
StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg);
BranchInst::Create(Merge, Left);
BranchInst::Create(Merge, Right);
B.SetInsertPoint(Merge);
LoadInst *LoadInst = B.CreateLoad(PointerArg);
setupAnalyses();
MemorySSA &MSSA = Analyses->MSSA;
// Before, the load will be a use of a phi<store, liveonentry>.
MemoryUse *LoadAccess = cast<MemoryUse>(MSSA.getMemoryAccess(LoadInst));
MemoryDef *StoreAccess = cast<MemoryDef>(MSSA.getMemoryAccess(StoreInst));
MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess();
EXPECT_TRUE(isa<MemoryPhi>(DefiningAccess));
// Kill the store
MSSA.removeMemoryAccess(StoreAccess);
MemoryPhi *MP = cast<MemoryPhi>(DefiningAccess);
// Verify the phi ended up as liveonentry, liveonentry
for (auto &Op : MP->incoming_values())
EXPECT_TRUE(MSSA.isLiveOnEntryDef(cast<MemoryAccess>(Op.get())));
// Replace the phi uses with the live on entry def
MP->replaceAllUsesWith(MSSA.getLiveOnEntryDef());
// Verify the load is now defined by liveOnEntryDef
EXPECT_TRUE(MSSA.isLiveOnEntryDef(LoadAccess->getDefiningAccess()));
// Remove the PHI
MSSA.removeMemoryAccess(MP);
MSSA.verifyMemorySSA();
}
TEST_F(MemorySSATest, RemoveMemoryAccess) {
// We create a diamond where there is a store on one side, and then a load
// after the merge point. This enables us to test a bunch of different
@ -136,9 +220,8 @@ TEST_F(MemorySSATest, RemoveMemoryAccess) {
// store i8 2, i8* %A
// }
TEST_F(MemorySSATest, TestTripleStore) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
@ -169,9 +252,8 @@ TEST_F(MemorySSATest, TestTripleStore) {
// mostly redundant) unless the initial node being walked is a clobber for the
// query. In that case, we'd cache that the node clobbered itself.
TEST_F(MemorySSATest, TestStoreAndLoad) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
@ -200,9 +282,8 @@ TEST_F(MemorySSATest, TestStoreAndLoad) {
// This test checks that repeated calls to either function returns what they're
// meant to.
TEST_F(MemorySSATest, TestStoreDoubleQuery) {
F = Function::Create(
FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
F = Function::Create(FunctionType::get(B.getVoidTy(), {}, false),
GlobalValue::ExternalLinkage, "F", &M);
B.SetInsertPoint(BasicBlock::Create(C, "", F));
Type *Int8 = Type::getInt8Ty(C);
Value *Alloca = B.CreateAlloca(Int8, ConstantInt::get(Int8, 1), "A");
@ -214,7 +295,8 @@ TEST_F(MemorySSATest, TestStoreDoubleQuery) {
MemoryAccess *StoreAccess = MSSA.getMemoryAccess(SI);
MemoryLocation StoreLoc = MemoryLocation::get(SI);
MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
MemoryAccess *Clobber =
Walker->getClobberingMemoryAccess(StoreAccess, StoreLoc);
MemoryAccess *LiveOnEntry = Walker->getClobberingMemoryAccess(SI);
EXPECT_EQ(Clobber, StoreAccess);