1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 10:32:48 +02:00

Add support for zero-sized Scalars as a LowLevelType

Opaque values (of zero size) can be stored in memory with the
implemention of reference types in the WebAssembly backend. Since
MachineMemOperand uses LLTs we need to be able to support
zero-sized scalars types in LLTs.

Differential Revision: https://reviews.llvm.org/D105423
This commit is contained in:
Paulo Matos 2021-07-16 10:34:44 +02:00
parent 152a339cb1
commit ceddd7eb41
3 changed files with 58 additions and 49 deletions

View File

@ -41,8 +41,7 @@ class LLT {
public:
/// Get a low-level scalar or aggregate "bag of bits".
static LLT scalar(unsigned SizeInBits) {
assert(SizeInBits > 0 && "invalid scalar size");
return LLT{/*isPointer=*/false, /*isVector=*/false,
return LLT{/*isPointer=*/false, /*isVector=*/false, /*isScalar=*/true,
ElementCount::getFixed(0), SizeInBits,
/*AddressSpace=*/0};
}
@ -50,23 +49,23 @@ public:
/// Get a low-level pointer in the given address space.
static LLT pointer(unsigned AddressSpace, unsigned SizeInBits) {
assert(SizeInBits > 0 && "invalid pointer size");
return LLT{/*isPointer=*/true, /*isVector=*/false,
return LLT{/*isPointer=*/true, /*isVector=*/false, /*isScalar=*/false,
ElementCount::getFixed(0), SizeInBits, AddressSpace};
}
/// Get a low-level vector of some number of elements and element width.
static LLT vector(ElementCount EC, unsigned ScalarSizeInBits) {
assert(!EC.isScalar() && "invalid number of vector elements");
assert(ScalarSizeInBits > 0 && "invalid vector element size");
return LLT{/*isPointer=*/false, /*isVector=*/true, EC, ScalarSizeInBits,
/*AddressSpace=*/0};
return LLT{/*isPointer=*/false, /*isVector=*/true, /*isScalar=*/false,
EC, ScalarSizeInBits, /*AddressSpace=*/0};
}
/// Get a low-level vector of some number of elements and element type.
static LLT vector(ElementCount EC, LLT ScalarTy) {
assert(!EC.isScalar() && "invalid number of vector elements");
assert(!ScalarTy.isVector() && "invalid vector element type");
return LLT{ScalarTy.isPointer(), /*isVector=*/true, EC,
return LLT{ScalarTy.isPointer(), /*isVector=*/true, /*isScalar=*/false,
EC,
ScalarTy.getSizeInBits().getFixedSize(),
ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
}
@ -106,17 +105,18 @@ public:
return scalarOrVector(EC, LLT::scalar(static_cast<unsigned>(ScalarSize)));
}
explicit LLT(bool isPointer, bool isVector, ElementCount EC,
explicit LLT(bool isPointer, bool isVector, bool isScalar, ElementCount EC,
uint64_t SizeInBits, unsigned AddressSpace) {
init(isPointer, isVector, EC, SizeInBits, AddressSpace);
init(isPointer, isVector, isScalar, EC, SizeInBits, AddressSpace);
}
explicit LLT() : IsPointer(false), IsVector(false), RawData(0) {}
explicit LLT()
: IsScalar(false), IsPointer(false), IsVector(false), RawData(0) {}
explicit LLT(MVT VT);
bool isValid() const { return RawData != 0; }
bool isValid() const { return IsScalar || RawData != 0; }
bool isScalar() const { return isValid() && !IsPointer && !IsVector; }
bool isScalar() const { return IsScalar; }
bool isPointer() const { return isValid() && IsPointer && !IsVector; }
@ -196,6 +196,8 @@ public:
/// not attempt to handle cases that aren't evenly divisible.
LLT divide(int Factor) const {
assert(Factor != 1);
assert((!isScalar() || getScalarSizeInBits() != 0) &&
"cannot divide scalar of size zero");
if (isVector()) {
assert(getElementCount().isKnownMultipleOf(Factor));
return scalarOrVector(getElementCount().divideCoefficientBy(Factor),
@ -209,18 +211,17 @@ public:
bool isByteSized() const { return getSizeInBits().isKnownMultipleOf(8); }
unsigned getScalarSizeInBits() const {
assert(RawData != 0 && "Invalid Type");
if (!IsVector) {
if (!IsPointer)
return getFieldValue(ScalarSizeFieldInfo);
else
return getFieldValue(PointerSizeFieldInfo);
} else {
if (IsScalar)
return getFieldValue(ScalarSizeFieldInfo);
if (IsVector) {
if (!IsPointer)
return getFieldValue(VectorSizeFieldInfo);
else
return getFieldValue(PointerVectorSizeFieldInfo);
}
} else if (IsPointer)
return getFieldValue(PointerSizeFieldInfo);
else
llvm_unreachable("unexpected LLT");
}
unsigned getAddressSpace() const {
@ -252,7 +253,7 @@ public:
bool operator==(const LLT &RHS) const {
return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
RHS.RawData == RawData;
IsScalar == RHS.IsScalar && RHS.RawData == RawData;
}
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
@ -262,9 +263,10 @@ public:
private:
/// LLT is packed into 64 bits as follows:
/// isScalar : 1
/// isPointer : 1
/// isVector : 1
/// with 62 bits remaining for Kind-specific data, packed in bitfields
/// with 61 bits remaining for Kind-specific data, packed in bitfields
/// as described below. As there isn't a simple portable way to pack bits
/// into bitfields, here the different fields in the packed structure is
/// described in static const *Field variables. Each of these variables
@ -286,7 +288,7 @@ private:
static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
24, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
static_assert((PointerAddressSpaceFieldInfo[0] +
PointerAddressSpaceFieldInfo[1]) <= 62,
PointerAddressSpaceFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
/// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
/// NumElements: 16;
@ -297,7 +299,7 @@ private:
32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
static const constexpr BitFieldInfo VectorScalableFieldInfo{
1, VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]};
static_assert((VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]) <= 62,
static_assert((VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
/// * Vector-of-pointer (isPointer == 1 && isVector == 1):
/// NumElements: 16;
@ -314,12 +316,13 @@ private:
1, PointerVectorAddressSpaceFieldInfo[0] +
PointerVectorAddressSpaceFieldInfo[1]};
static_assert((PointerVectorAddressSpaceFieldInfo[0] +
PointerVectorAddressSpaceFieldInfo[1]) <= 62,
PointerVectorAddressSpaceFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
uint64_t IsScalar : 1;
uint64_t IsPointer : 1;
uint64_t IsVector : 1;
uint64_t RawData : 62;
uint64_t RawData : 61;
static uint64_t getMask(const BitFieldInfo FieldInfo) {
const int FieldSizeInBits = FieldInfo[0];
@ -336,19 +339,16 @@ private:
return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
}
void init(bool IsPointer, bool IsVector, ElementCount EC, uint64_t SizeInBits,
unsigned AddressSpace) {
void init(bool IsPointer, bool IsVector, bool IsScalar, ElementCount EC,
uint64_t SizeInBits, unsigned AddressSpace) {
assert(SizeInBits <= std::numeric_limits<unsigned>::max() &&
"Not enough bits in LLT to represent size");
this->IsPointer = IsPointer;
this->IsVector = IsVector;
if (!IsVector) {
if (!IsPointer)
RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
else
RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
} else {
this->IsScalar = IsScalar;
if (IsScalar)
RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
else if (IsVector) {
assert(EC.isVector() && "invalid number of vector elements");
if (!IsPointer)
RawData =
@ -363,13 +363,17 @@ private:
maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo) |
maskAndShift(EC.isScalable() ? 1 : 0,
PointerVectorScalableFieldInfo);
}
} else if (IsPointer)
RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
else
llvm_unreachable("unexpected LLT configuration");
}
public:
uint64_t getUniqueRAWLLTData() const {
return ((uint64_t)RawData) << 2 | ((uint64_t)IsPointer) << 1 |
((uint64_t)IsVector);
return ((uint64_t)RawData) << 3 | ((uint64_t)IsScalar) << 2 |
((uint64_t)IsPointer) << 1 | ((uint64_t)IsVector);
}
};

View File

@ -17,16 +17,17 @@ using namespace llvm;
LLT::LLT(MVT VT) {
if (VT.isVector()) {
init(/*IsPointer=*/false, VT.getVectorNumElements() > 1,
bool asVector = VT.getVectorNumElements() > 1;
init(/*IsPointer=*/false, asVector, /*IsScalar=*/!asVector,
VT.getVectorElementCount(), VT.getVectorElementType().getSizeInBits(),
/*AddressSpace=*/0);
} else if (VT.isValid()) {
// Aggregates are no different from real scalars as far as GlobalISel is
// concerned.
assert(VT.getSizeInBits().isNonZero() && "invalid zero-sized type");
init(/*IsPointer=*/false, /*IsVector=*/false, ElementCount::getFixed(0),
VT.getSizeInBits(), /*AddressSpace=*/0);
init(/*IsPointer=*/false, /*IsVector=*/false, /*IsScalar=*/true,
ElementCount::getFixed(0), VT.getSizeInBits(), /*AddressSpace=*/0);
} else {
IsScalar = false;
IsPointer = false;
IsVector = false;
RawData = 0;

View File

@ -22,7 +22,7 @@ TEST(LowLevelTypeTest, Scalar) {
LLVMContext C;
DataLayout DL("");
for (unsigned S : {1U, 17U, 32U, 64U, 0xfffffU}) {
for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffffU}) {
const LLT Ty = LLT::scalar(S);
// Test kind.
@ -41,8 +41,10 @@ TEST(LowLevelTypeTest, Scalar) {
EXPECT_FALSE(Ty != Ty);
// Test Type->LLT conversion.
Type *IRTy = IntegerType::get(C, S);
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
if (S != 0) {
Type *IRTy = IntegerType::get(C, S);
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
}
}
}
@ -50,7 +52,7 @@ TEST(LowLevelTypeTest, Vector) {
LLVMContext C;
DataLayout DL("");
for (unsigned S : {1U, 17U, 32U, 64U, 0xfffU}) {
for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffU}) {
for (auto EC :
{ElementCount::getFixed(2), ElementCount::getFixed(3),
ElementCount::getFixed(4), ElementCount::getFixed(32),
@ -94,9 +96,11 @@ TEST(LowLevelTypeTest, Vector) {
EXPECT_NE(VTy, STy);
// Test Type->LLT conversion.
Type *IRSTy = IntegerType::get(C, S);
Type *IRTy = VectorType::get(IRSTy, EC);
EXPECT_EQ(VTy, getLLTForType(*IRTy, DL));
if (S != 0) {
Type *IRSTy = IntegerType::get(C, S);
Type *IRTy = VectorType::get(IRSTy, EC);
EXPECT_EQ(VTy, getLLTForType(*IRTy, DL));
}
}
}
}