1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[AArch64][SVE] Wire up vscale_range attribute to SVE min/max vector queries

Differential Revision: https://reviews.llvm.org/D103702
This commit is contained in:
Bradley Smith 2021-06-04 15:24:35 +01:00
parent 1cebcabcfe
commit d2336f2398
4 changed files with 221 additions and 43 deletions

View File

@ -47,18 +47,6 @@ static cl::opt<bool>
cl::desc("Call nonlazybind functions via direct GOT load"), cl::desc("Call nonlazybind functions via direct GOT load"),
cl::init(false), cl::Hidden); cl::init(false), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMax(
"aarch64-sve-vector-bits-max",
cl::desc("Assume SVE vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMin(
"aarch64-sve-vector-bits-min",
cl::desc("Assume SVE vector registers are at least this big, "
"with zero meaning no minimum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true), static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
cl::desc("Enable the use of AA during codegen.")); cl::desc("Enable the use of AA during codegen."));
@ -210,14 +198,17 @@ void AArch64Subtarget::initializeProperties() {
AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU, AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const std::string &FS,
const TargetMachine &TM, bool LittleEndian) const TargetMachine &TM, bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride,
unsigned MaxSVEVectorSizeInBitsOverride)
: AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), : AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()), ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()), CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian), IsLittle(LittleEndian),
TargetTriple(TT), FrameLowering(), MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
InstrInfo(initializeSubtargetDependencies(FS, CPU)), TSInfo(), MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
TLInfo(TM, *this) { FrameLowering(), InstrInfo(initializeSubtargetDependencies(FS, CPU)),
TSInfo(), TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT)) if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18); ReserveXRegister.set(18);
@ -356,28 +347,6 @@ void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
MFI.computeMaxCallFrameSize(MF); MFI.computeMaxCallFrameSize(MF);
} }
unsigned AArch64Subtarget::getMaxSVEVectorSizeInBits() const {
assert(HasSVE && "Tried to get SVE vector length without SVE support!");
assert(SVEVectorBitsMax % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
if (SVEVectorBitsMax == 0)
return 0;
return (std::max(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
}
unsigned AArch64Subtarget::getMinSVEVectorSizeInBits() const {
assert(HasSVE && "Tried to get SVE vector length without SVE support!");
assert(SVEVectorBitsMin % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
if (SVEVectorBitsMax == 0)
return (SVEVectorBitsMin / 128) * 128;
return (std::min(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
}
bool AArch64Subtarget::useSVEForFixedLengthVectors() const { bool AArch64Subtarget::useSVEForFixedLengthVectors() const {
// Prefer NEON unless larger SVE registers are available. // Prefer NEON unless larger SVE registers are available.
return hasSVE() && getMinSVEVectorSizeInBits() >= 256; return hasSVE() && getMinSVEVectorSizeInBits() >= 256;

View File

@ -261,6 +261,9 @@ protected:
bool IsLittle; bool IsLittle;
unsigned MinSVEVectorSizeInBits;
unsigned MaxSVEVectorSizeInBits;
/// TargetTriple - What processor and OS we're targeting. /// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple; Triple TargetTriple;
@ -291,7 +294,9 @@ public:
/// of the specified triple. /// of the specified triple.
AArch64Subtarget(const Triple &TT, const std::string &CPU, AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM, const std::string &FS, const TargetMachine &TM,
bool LittleEndian); bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride = 0,
unsigned MaxSVEVectorSizeInBitsOverride = 0);
const AArch64SelectionDAGInfo *getSelectionDAGInfo() const override { const AArch64SelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo; return &TSInfo;
@ -585,8 +590,16 @@ public:
// Return the known range for the bit length of SVE data registers. A value // Return the known range for the bit length of SVE data registers. A value
// of 0 means nothing is known about that particular limit beyong what's // of 0 means nothing is known about that particular limit beyong what's
// implied by the architecture. // implied by the architecture.
unsigned getMaxSVEVectorSizeInBits() const; unsigned getMaxSVEVectorSizeInBits() const {
unsigned getMinSVEVectorSizeInBits() const; assert(HasSVE && "Tried to get SVE vector length without SVE support!");
return MaxSVEVectorSizeInBits;
}
unsigned getMinSVEVectorSizeInBits() const {
assert(HasSVE && "Tried to get SVE vector length without SVE support!");
return MinSVEVectorSizeInBits;
}
bool useSVEForFixedLengthVectors() const; bool useSVEForFixedLengthVectors() const;
}; };
} // End llvm namespace } // End llvm namespace

View File

@ -161,6 +161,18 @@ static cl::opt<bool>
cl::desc("Enable the AAcrh64 branch target pass"), cl::desc("Enable the AAcrh64 branch target pass"),
cl::init(true)); cl::init(true));
static cl::opt<unsigned> SVEVectorBitsMaxOpt(
"aarch64-sve-vector-bits-max",
cl::desc("Assume SVE vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<unsigned> SVEVectorBitsMinOpt(
"aarch64-sve-vector-bits-min",
cl::desc("Assume SVE vector registers are at least this big, "
"with zero meaning no minimum size is assumed."),
cl::init(0), cl::Hidden);
extern cl::opt<bool> EnableHomogeneousPrologEpilog; extern cl::opt<bool> EnableHomogeneousPrologEpilog;
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() {
@ -349,14 +361,54 @@ AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
std::string FS = std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
auto &I = SubtargetMap[CPU + FS]; SmallString<512> Key;
unsigned MinSVEVectorSize = 0;
unsigned MaxSVEVectorSize = 0;
Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange);
if (VScaleRangeAttr.isValid()) {
std::tie(MinSVEVectorSize, MaxSVEVectorSize) =
VScaleRangeAttr.getVScaleRangeArgs();
MinSVEVectorSize *= 128;
MaxSVEVectorSize *= 128;
} else {
MinSVEVectorSize = SVEVectorBitsMinOpt;
MaxSVEVectorSize = SVEVectorBitsMaxOpt;
}
assert(MinSVEVectorSize % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert(MaxSVEVectorSize % 128 == 0 &&
"SVE requires vector length in multiples of 128!");
assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) &&
"Minimum SVE vector size should not be larger than its maximum!");
// Sanitize user input in case of no asserts
if (MaxSVEVectorSize == 0)
MinSVEVectorSize = (MinSVEVectorSize / 128) * 128;
else {
MinSVEVectorSize =
(std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128;
MaxSVEVectorSize =
(std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128;
}
Key += "SVEMin";
Key += std::to_string(MinSVEVectorSize);
Key += "SVEMax";
Key += std::to_string(MaxSVEVectorSize);
Key += CPU;
Key += FS;
auto &I = SubtargetMap[Key];
if (!I) { if (!I) {
// This needs to be done before we create a new subtarget since any // This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the // creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions. // function that reside in TargetOptions.
resetTargetOptions(F); resetTargetOptions(F);
I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this,
isLittle); isLittle, MinSVEVectorSize,
MaxSVEVectorSize);
} }
return I.get(); return I.get();
} }

View File

@ -0,0 +1,144 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s | FileCheck %s --check-prefixes=CHECK,CHECK-NOARG
; RUN: llc -aarch64-sve-vector-bits-min=512 < %s | FileCheck %s --check-prefixes=CHECK,CHECK-ARG
target triple = "aarch64-unknown-linux-gnu"
define void @func_vscale_none(<16 x i32>* %a, <16 x i32>* %b) #0 {
; CHECK-NOARG-LABEL: func_vscale_none:
; CHECK-NOARG: // %bb.0:
; CHECK-NOARG-NEXT: ldp q0, q1, [x0]
; CHECK-NOARG-NEXT: ldp q2, q3, [x1]
; CHECK-NOARG-NEXT: ldp q4, q5, [x0, #32]
; CHECK-NOARG-NEXT: ldp q7, q6, [x1, #32]
; CHECK-NOARG-NEXT: add v1.4s, v1.4s, v3.4s
; CHECK-NOARG-NEXT: add v0.4s, v0.4s, v2.4s
; CHECK-NOARG-NEXT: add v2.4s, v5.4s, v6.4s
; CHECK-NOARG-NEXT: add v3.4s, v4.4s, v7.4s
; CHECK-NOARG-NEXT: stp q3, q2, [x0, #32]
; CHECK-NOARG-NEXT: stp q0, q1, [x0]
; CHECK-NOARG-NEXT: ret
;
; CHECK-ARG-LABEL: func_vscale_none:
; CHECK-ARG: // %bb.0:
; CHECK-ARG-NEXT: ptrue p0.s, vl16
; CHECK-ARG-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-ARG-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-ARG-NEXT: add z0.s, p0/m, z0.s, z1.s
; CHECK-ARG-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-ARG-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #0 = { "target-features"="+sve" }
define void @func_vscale1_1(<16 x i32>* %a, <16 x i32>* %b) #1 {
; CHECK-LABEL: func_vscale1_1:
; CHECK: // %bb.0:
; CHECK-NEXT: ldp q0, q1, [x0]
; CHECK-NEXT: ldp q2, q3, [x1]
; CHECK-NEXT: ldp q4, q5, [x0, #32]
; CHECK-NEXT: ldp q7, q6, [x1, #32]
; CHECK-NEXT: add v1.4s, v1.4s, v3.4s
; CHECK-NEXT: add v0.4s, v0.4s, v2.4s
; CHECK-NEXT: add v2.4s, v5.4s, v6.4s
; CHECK-NEXT: add v3.4s, v4.4s, v7.4s
; CHECK-NEXT: stp q3, q2, [x0, #32]
; CHECK-NEXT: stp q0, q1, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #1 = { "target-features"="+sve" vscale_range(1,1) }
define void @func_vscale2_2(<16 x i32>* %a, <16 x i32>* %b) #2 {
; CHECK-LABEL: func_vscale2_2:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl8
; CHECK-NEXT: add x8, x0, #32 // =32
; CHECK-NEXT: add x9, x1, #32 // =32
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x8]
; CHECK-NEXT: ld1w { z2.s }, p0/z, [x1]
; CHECK-NEXT: ld1w { z3.s }, p0/z, [x9]
; CHECK-NEXT: add z0.s, p0/m, z0.s, z2.s
; CHECK-NEXT: add z1.s, p0/m, z1.s, z3.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: st1w { z1.s }, p0, [x8]
; CHECK-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #2 = { "target-features"="+sve" vscale_range(2,2) }
define void @func_vscale2_4(<16 x i32>* %a, <16 x i32>* %b) #3 {
; CHECK-LABEL: func_vscale2_4:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl8
; CHECK-NEXT: add x8, x0, #32 // =32
; CHECK-NEXT: add x9, x1, #32 // =32
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x8]
; CHECK-NEXT: ld1w { z2.s }, p0/z, [x1]
; CHECK-NEXT: ld1w { z3.s }, p0/z, [x9]
; CHECK-NEXT: add z0.s, p0/m, z0.s, z2.s
; CHECK-NEXT: add z1.s, p0/m, z1.s, z3.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: st1w { z1.s }, p0, [x8]
; CHECK-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #3 = { "target-features"="+sve" vscale_range(2,4) }
define void @func_vscale4_4(<16 x i32>* %a, <16 x i32>* %b) #4 {
; CHECK-LABEL: func_vscale4_4:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl16
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: add z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #4 = { "target-features"="+sve" vscale_range(4,4) }
define void @func_vscale8_8(<16 x i32>* %a, <16 x i32>* %b) #5 {
; CHECK-LABEL: func_vscale8_8:
; CHECK: // %bb.0:
; CHECK-NEXT: ptrue p0.s, vl16
; CHECK-NEXT: ld1w { z0.s }, p0/z, [x0]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [x1]
; CHECK-NEXT: add z0.s, p0/m, z0.s, z1.s
; CHECK-NEXT: st1w { z0.s }, p0, [x0]
; CHECK-NEXT: ret
%op1 = load <16 x i32>, <16 x i32>* %a
%op2 = load <16 x i32>, <16 x i32>* %b
%res = add <16 x i32> %op1, %op2
store <16 x i32> %res, <16 x i32>* %a
ret void
}
attributes #5 = { "target-features"="+sve" vscale_range(8,8) }