1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-21 18:22:53 +01:00

Reapply "[llvm] Native size estimator for training -Oz inliner"

This reverts commit 9908a3b9f521c954cbf6adcec35b14b2f6c8da49.

The fix was to exclude the content of TFUtils.h (automatically
included in the LLVM_Analysis module, when LLVM_ENABLE_MODULES is enabled).

Differential Revision: https://reviews.llvm.org/D82817
This commit is contained in:
Mircea Trofin 2020-07-13 14:12:32 -07:00
parent 58cf4b3a2d
commit d4fa8385c7
14 changed files with 11466 additions and 10 deletions

View File

@ -981,6 +981,18 @@ if (NOT TENSORFLOW_AOT_PATH STREQUAL "")
${CMAKE_ARCHIVE_OUTPUT_DIRECTORY}/tf_runtime)
endif()
set(TENSORFLOW_C_LIB_PATH "" CACHE PATH "Path to TensorFlow C library install")
find_library(tensorflow_c_api tensorflow PATHS ${TENSORFLOW_C_LIB_PATH}/lib)
# Similar to the above Tensorflow dependency, please refer to the same script.
# In this case, the latest C API library is available for download from
# https://www.tensorflow.org/install/lang_c
if (tensorflow_c_api)
set(LLVM_HAVE_TF_API "ON" CACHE BOOL "Full Tensorflow API available")
add_definitions("-DLLVM_HAVE_TF_API")
include_directories(${TENSORFLOW_C_LIB_PATH}/include)
endif()
# Put this before tblgen. Else we have a circular dependence.
add_subdirectory(lib/Demangle)
add_subdirectory(lib/Support)

View File

@ -0,0 +1,35 @@
//===- InlineSizeEstimatorAnalysis.h - ML size estimator --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
#define LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H
#include "llvm/IR/PassManager.h"
namespace llvm {
class Function;
class TFModelEvaluator;
class InlineSizeEstimatorAnalysis
: public AnalysisInfoMixin<InlineSizeEstimatorAnalysis> {
public:
InlineSizeEstimatorAnalysis();
InlineSizeEstimatorAnalysis(InlineSizeEstimatorAnalysis &&);
~InlineSizeEstimatorAnalysis();
static AnalysisKey Key;
using Result = Optional<size_t>;
Result run(const Function &F, FunctionAnalysisManager &FAM);
static bool isEvaluatorRequested();
private:
std::unique_ptr<TFModelEvaluator> Evaluator;
};
} // namespace llvm
#endif // LLVM_ANALYSIS_INLINESIZEESTIMATORANALYSIS_H

View File

@ -0,0 +1,138 @@
//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
#define LLVM_ANALYSIS_UTILS_TFUTILS_H
#ifdef LLVM_HAVE_TF_API
#include "tensorflow/c/c_api.h"
#include "llvm/IR/LLVMContext.h"
#include <memory>
#include <vector>
namespace llvm {
/// Load a SavedModel, find the given inputs and outputs, and setup storage
/// for input tensors. The user is responsible for correctly dimensioning the
/// input tensors and setting their values before calling evaluate().
/// To initialize:
/// - construct the object
/// - initialize the input tensors using initInput. Indices must correspond to
/// indices in the InputNames used at construction.
/// To use:
/// - set input values by using getInput to get each input tensor, and then
/// setting internal scalars, for all dimensions (tensors are row-major:
/// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
/// - prepare an output vector of TF_Output* type, with the correct number of
/// outputs (i.e. same as OutputNames). Initialize the vector with nullptr
/// values.
/// - call evaluate. The input tensors' values are not consumed after this, and
/// may still be read.
/// - use the outputs in the output vector
/// - deallocate each output tensor in the output vector, using TF_DeleteTensor.
class TFModelEvaluator final {
public:
/// The result of a model evaluation. Handles the lifetime of the output
/// TF_Tensor objects, which means that their values need to be used before
/// the EvaluationResult's dtor is called.
class EvaluationResult {
public:
~EvaluationResult() {
for (auto *P : Output)
if (P)
TF_DeleteTensor(P);
}
EvaluationResult(const EvaluationResult &) = delete;
EvaluationResult(EvaluationResult &&Other)
: OutputSize(Other.OutputSize), Output(std::move(Other.Output)) {
Other.Output.clear();
};
/// Get a pointer to the first element of the tensor at Index.
template <typename T> T *getTensorValue(size_t Index) {
return static_cast<T *>(TF_TensorData(Output[Index]));
}
private:
friend class TFModelEvaluator;
EvaluationResult(size_t OutputSize)
: OutputSize(OutputSize), Output(OutputSize){};
const size_t OutputSize;
std::vector<TF_Tensor *> Output;
};
using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
using TFSessionOptionsPtr =
std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
TFModelEvaluator(StringRef SavedModelPath,
const std::vector<std::string> &InputNames,
const std::vector<std::string> &OutputNames,
const char *Tags = "serve");
~TFModelEvaluator();
TFModelEvaluator(const TFModelEvaluator &) = delete;
TFModelEvaluator(TFModelEvaluator &&) = delete;
/// Evaluate the model, assuming it is valid. Returns None if the evaluation
/// fails or the model is invalid, or an EvaluationResult otherwise. The
/// inputs are assumed to have been already provided via getInput(). When
/// returning None, it also marks the object invalid. Pass an Output vector
/// with the same size as OutputNames, but with nullptr values. evaluate()
/// will populate it with tensors, matching in index the corresponding
/// OutputNames. The caller is responsible for the deallocation of those
/// tensors, using TF_DeleteTensor.
Optional<EvaluationResult> evaluate();
/// Provides access to the input vector. It is already dimensioned correctly,
/// but the values need to be allocated by the user.
std::vector<TF_Tensor *> &getInput() { return Input; }
/// Returns true if the tensorflow model was loaded successfully, false
/// otherwise.
bool isValid() const { return !!Session; }
/// Initialize the input at Index as a tensor of the given type and dimensions
void initInput(int Index, TF_DataType Type,
const std::vector<int64_t> &Dimensions);
private:
/// The objects necessary for carrying out an evaluation of the SavedModel.
/// They are expensive to set up, and we maintain them accross all the
/// evaluations of the model.
TF_Session *Session = nullptr;
TFGraphPtr Graph;
TFSessionOptionsPtr Options;
/// The specification of the input nodes.
std::vector<TF_Output> InputFeed;
/// The input tensors. They must match by index of the corresponding InputFeed
/// value. We set up the tensors once and just mutate theirs scalars before
/// each evaluation. The input tensors keep their value after an evaluation.
std::vector<TF_Tensor *> Input;
/// The specification of the output nodes. When evaluating, the tensors in the
/// output tensor vector must match by index the corresponding element in the
/// OutputFeed.
std::vector<TF_Output> OutputFeed;
/// Reusable utility for deleting the session.
void deleteSession();
/// Reusable utility for ensuring we can bind the requested Name to a node in
/// the SavedModel Graph.
bool checkReportAndReset(const TF_Output &Output, StringRef Name);
};
} // namespace llvm
#endif // LLVM_HAVE_TF_API
#endif // LLVM_ANALYSIS_UTILS_TFUTILS_H

View File

@ -1,17 +1,35 @@
set(CommonMLSources MLInlineAdvisor.cpp)
set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
set(DevelopmentModeMLSources TFUtils.cpp)
if (DEFINED LLVM_HAVE_TF_AOT)
include(TensorFlowCompile)
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
list(APPEND ReleaseModeMLSources
$<TARGET_OBJECTS:tf_xla_runtime_objects>
${GENERATED_OBJS}
)
set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
if (DEFINED LLVM_HAVE_TF_AOT OR DEFINED LLVM_HAVE_TF_API)
set(MLPolicySources ${CommonMLSources})
if (DEFINED LLVM_HAVE_TF_AOT)
include(TensorFlowCompile)
tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
list(APPEND ReleaseModeMLSources
$<TARGET_OBJECTS:tf_xla_runtime_objects>
${GENERATED_OBJS}
)
LIST(APPEND MLPolicySources ${ReleaseModeMLSources})
else()
LIST(APPEND LLVM_OPTIONAL_SOURCES ${ReleaseModeMLSources})
endif()
if (DEFINED LLVM_HAVE_TF_API)
LIST(APPEND MLPolicySources ${DevelopmentModeMLSources})
LIST(APPEND MLLinkDeps ${tensorflow_c_api})
else()
LIST(APPEND LLVM_OPTIONAL_SOURCES ${DevelopmentModeMLSources})
endif()
else()
set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
LIST(APPEND LLVM_OPTIONAL_SOURCES
${CommonMLSources}
${DevelopmentModeMLSources}
${ReleaseModeMLSources}
)
endif()
add_llvm_component_library(LLVMAnalysis
AliasAnalysis.cpp
@ -57,6 +75,7 @@ add_llvm_component_library(LLVMAnalysis
InlineCost.cpp
InlineAdvisor.cpp
InlineFeaturesAnalysis.cpp
InlineSizeEstimatorAnalysis.cpp
InstCount.cpp
InstructionPrecedenceTracking.cpp
InstructionSimplify.cpp
@ -124,4 +143,7 @@ add_llvm_component_library(LLVMAnalysis
DEPENDS
intrinsics_gen
LINK_LIBS
${MLLinkDeps}
)

View File

@ -0,0 +1,299 @@
//===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements feature and label extraction for offline supervised learning
// of a IR to native size model.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#ifdef LLVM_HAVE_TF_API
#include "llvm/Analysis/Utils/TFUtils.h"
#endif
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <deque>
using namespace llvm;
AnalysisKey InlineSizeEstimatorAnalysis::Key;
#define DEBUG_TYPE "inline-size-estimator"
#ifdef LLVM_HAVE_TF_API
cl::opt<std::string> TFIR2NativeModelPath(
"ml-inliner-ir2native-model", cl::Hidden,
cl::desc("Path to saved model evaluating native size from IR."));
namespace {
unsigned getMaxInstructionID() {
#define LAST_OTHER_INST(NR) return NR;
#include "llvm/IR/Instruction.def"
}
class IRToNativeSizeLearning {
public:
enum class NamedFeatureIndex : size_t {
InitialSize,
Blocks,
Calls,
IsLocal,
IsLinkOnceODR,
IsLinkOnce,
Loops,
MaxLoopDepth,
MaxDomTreeLevel,
NumNamedFeatures
};
static const size_t NumNamedFeatures =
static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
struct FunctionFeatures {
static std::vector<std::pair<size_t, size_t>>
ImportantInstructionSuccessions;
static const size_t FeatureCount;
std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
std::vector<int32_t> InstructionHistogram;
std::vector<int32_t> InstructionPairHistogram;
void fillTensor(int32_t *Ptr) const;
int32_t &operator[](NamedFeatureIndex Pos) {
return NamedFeatures[static_cast<size_t>(Pos)];
}
};
IRToNativeSizeLearning() = default;
static FunctionFeatures getFunctionFeatures(Function &F,
FunctionAnalysisManager &FAM);
private:
/// Sort once the feature tuples.
struct SortFeatureTuples {
bool IsSorted = false;
SortFeatureTuples() {
std::sort(FunctionFeatures::ImportantInstructionSuccessions.begin(),
FunctionFeatures::ImportantInstructionSuccessions.end());
IsSorted = true;
}
};
static llvm::ManagedStatic<SortFeatureTuples> TupleSorter;
static bool ensureSortedTuples() { return TupleSorter->IsSorted; }
};
llvm::ManagedStatic<IRToNativeSizeLearning::SortFeatureTuples>
IRToNativeSizeLearning::TupleSorter;
// This is a point in time - we determined including these pairs of
// consecutive instructions (in the IR layout available at inline time) as
// features improves the model performance. We want to move away from manual
// feature selection.
// The vector is given in opcode pairs rather than labels because 1) labels
// weren't readily available, and 2) the successions were hand - extracted
std::vector<std::pair<size_t, size_t>>
IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions =
{{1, 34}, {15, 27}, {53, 53}, {53, 34}, {1, 11}, {32, 2}, {2, 48},
{28, 48}, {1, 45}, {49, 32}, {57, 56}, {55, 53}, {1, 28}, {57, 34},
{1, 1}, {32, 28}, {32, 15}, {49, 28}, {53, 1}, {2, 53}, {48, 34},
{28, 53}, {2, 32}, {1, 40}, {32, 48}, {29, 56}, {56, 32}, {55, 56},
{48, 56}, {1, 31}, {33, 34}, {2, 28}, {1, 12}, {55, 1}, {31, 31},
{65, 1}, {33, 56}, {32, 32}, {13, 13}, {1, 26}, {13, 26}, {2, 1},
{1, 33}, {47, 49}, {64, 1}, {2, 38}, {34, 53}, {48, 2}, {55, 34},
{34, 32}, {1, 5}, {56, 13}, {2, 2}, {2, 49}, {33, 2}, {49, 39},
{56, 49}, {33, 49}, {32, 39}, {39, 57}, {29, 33}, {31, 34}, {32, 29},
{47, 15}, {13, 34}, {2, 33}, {32, 49}, {49, 34}, {56, 33}, {1, 30},
{33, 33}, {31, 33}, {2, 29}, {56, 7}, {32, 13}, {2, 55}, {56, 56},
{2, 34}, {1, 42}, {34, 49}, {1, 20}, {32, 33}, {1, 25}, {53, 28},
{1, 14}, {31, 49}, {28, 2}, {2, 13}, {2, 56}, {1, 32}, {56, 53},
{65, 65}, {33, 53}, {64, 64}, {13, 2}, {34, 33}, {1, 4}, {49, 2},
{1, 9}, {56, 1}, {33, 1}, {53, 57}, {32, 53}, {13, 56}, {32, 56},
{55, 55}, {1, 18}, {49, 56}, {34, 34}, {1, 7}, {56, 64}, {32, 1},
{13, 33}, {55, 28}, {49, 33}, {57, 57}, {56, 34}, {34, 56}, {33, 32},
{32, 40}, {1, 29}, {53, 2}, {34, 1}, {32, 34}, {49, 49}, {1, 24},
{40, 34}, {1, 13}, {38, 34}, {29, 2}, {34, 2}, {1, 39}, {1, 22},
{1, 27}, {49, 1}, {1, 8}, {56, 2}};
// We have: 9 calculated features (the features here); 1 feature for each
// instruction opcode; and 1 feature for each manually-identified sequence.
// For the latter 2, we build a histogram: we count the number of
// occurrences of each instruction opcode or succession of instructions,
// respectively.
// Note that instruction opcodes start from 1. For convenience, we also have an
// always 0 feature for the '0' opcode, hence the extra 1.
const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
IRToNativeSizeLearning::FunctionFeatures::ImportantInstructionSuccessions
.size() +
getMaxInstructionID() + 1 + IRToNativeSizeLearning::NumNamedFeatures;
size_t getSize(Function &F, TargetTransformInfo &TTI) {
size_t Ret = 0;
for (auto &BB : F)
for (auto &I : BB)
Ret += TTI.getInstructionCost(
&I, TargetTransformInfo::TargetCostKind::TCK_CodeSize);
return Ret;
}
size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
return getSize(F, TTI);
}
unsigned getMaxDominatorTreeDepth(const Function &F,
const DominatorTree &Tree) {
unsigned Ret = 0;
for (auto &BB : F)
if (auto *TN = Tree.getNode(&BB))
Ret = std::max(Ret, TN->getLevel());
return Ret;
}
} // namespace
IRToNativeSizeLearning::FunctionFeatures
IRToNativeSizeLearning::getFunctionFeatures(Function &F,
FunctionAnalysisManager &FAM) {
assert(ensureSortedTuples() && "expected lazy initialization");
auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
FunctionFeatures FF;
size_t InstrCount = getMaxInstructionID() + 1;
FF.InstructionHistogram.resize(InstrCount);
FF.InstructionPairHistogram.resize(
FunctionFeatures::ImportantInstructionSuccessions.size());
auto StartID = 0;
auto LastID = StartID;
auto getPairIndex = [](size_t a, size_t b) {
auto I =
std::find(FunctionFeatures::ImportantInstructionSuccessions.begin(),
FunctionFeatures::ImportantInstructionSuccessions.end(),
std::make_pair(a, b));
if (I == FunctionFeatures::ImportantInstructionSuccessions.end())
return -1;
return static_cast<int>(std::distance(
FunctionFeatures::ImportantInstructionSuccessions.begin(), I));
};
// We don't want debug calls, because they'd just add noise.
for (auto &BB : F) {
for (auto I = BB.instructionsWithoutDebug().begin(),
E = BB.instructionsWithoutDebug().end();
I != E; ++I) {
auto ID = I->getOpcode();
++FF.InstructionHistogram[ID];
int PairIndex = getPairIndex(LastID, ID);
if (PairIndex >= 0)
++FF.InstructionPairHistogram[PairIndex];
LastID = ID;
if (isa<CallBase>(*I))
++FF[NamedFeatureIndex::Calls];
}
}
FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
FF[NamedFeatureIndex::Blocks] =
std::distance(F.getBasicBlockList().begin(), F.getBasicBlockList().end());
auto &LI = FAM.getResult<LoopAnalysis>(F);
FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
for (auto &L : LI)
FF[NamedFeatureIndex::MaxLoopDepth] =
std::max(FF[NamedFeatureIndex::MaxLoopDepth],
static_cast<int32_t>(L->getLoopDepth()));
FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
return FF;
}
void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
Ptr += NamedFeatures.size();
std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
Ptr += InstructionHistogram.size();
std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
Ptr);
}
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
return !TFIR2NativeModelPath.empty();
}
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
if (!isEvaluatorRequested()) {
return;
}
std::vector<std::string> InputNames{"serving_default_input_1"};
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
Evaluator = std::make_unique<TFModelEvaluator>(
TFIR2NativeModelPath.getValue().c_str(), InputNames, OutputName);
if (!Evaluator || !Evaluator->isValid()) {
Evaluator.reset();
return;
}
static const std::vector<int64_t> Dim{
1, static_cast<int64_t>(
IRToNativeSizeLearning::FunctionFeatures::FeatureCount)};
Evaluator->initInput(0, TF_INT32, Dim);
}
InlineSizeEstimatorAnalysis::Result
InlineSizeEstimatorAnalysis::run(const Function &F,
FunctionAnalysisManager &FAM) {
if (!Evaluator)
return None;
auto Features = IRToNativeSizeLearning::getFunctionFeatures(
const_cast<Function &>(F), FAM);
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator->getInput()[0]));
Features.fillTensor(V);
auto ER = Evaluator->evaluate();
if (!ER)
return None;
float Ret = *ER->getTensorValue<float>(0);
if (Ret < 0.0)
Ret = 0.0;
return static_cast<size_t>(Ret);
}
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
InlineSizeEstimatorAnalysis &&Other)
: Evaluator(std::move(Other.Evaluator)) {}
#else
namespace llvm {
class TFModelEvaluator {};
} // namespace llvm
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
InlineSizeEstimatorAnalysis &&) {}
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis::Result
InlineSizeEstimatorAnalysis::run(const Function &F,
FunctionAnalysisManager &FAM) {
return None;
}
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
#endif

143
lib/Analysis/TFUtils.cpp Normal file
View File

@ -0,0 +1,143 @@
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for interfacing with tensorflow C APIs.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include "tensorflow/c/c_api_experimental.h"
#include <cassert>
using namespace llvm;
namespace {
struct TFInitializer {
TFInitializer() {
assert(!IsInitialized && "TFInitialized should be called only once");
int Argc = 1;
const char *Name = "";
const char **NamePtr = &Name;
TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
IsInitialized = true;
}
bool IsInitialized = false;
};
llvm::ManagedStatic<TFInitializer> TFLibInitializer;
bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
TFModelEvaluator::TFGraphPtr createTFGraph() {
return TFModelEvaluator::TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
}
TFModelEvaluator::TFStatusPtr createTFStatus() {
return TFModelEvaluator::TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
}
TFModelEvaluator::TFSessionOptionsPtr createTFSessionOptions() {
return TFModelEvaluator::TFSessionOptionsPtr(TF_NewSessionOptions(),
&TF_DeleteSessionOptions);
}
} // namespace
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
const std::vector<std::string> &InputNames,
const std::vector<std::string> &OutputNames,
const char *Tags)
: Graph(createTFGraph()), Options(createTFSessionOptions()),
InputFeed(InputNames.size()), Input(InputNames.size()),
OutputFeed(OutputNames.size()) {
if (!ensureInitTF()) {
errs() << "Tensorflow should have been initialized";
return;
}
auto Status = createTFStatus();
Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
SavedModelPath.str().c_str(), &Tags, 1,
Graph.get(), nullptr, Status.get());
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
errs() << TF_Message(Status.get());
deleteSession();
}
for (size_t I = 0; I < InputNames.size(); ++I) {
InputFeed[I] = {
TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0};
if (!checkReportAndReset(InputFeed[I], InputNames[I]))
return;
}
for (size_t I = 0; I < OutputNames.size(); ++I) {
OutputFeed[I] = {
TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0};
if (!checkReportAndReset(OutputFeed[I], OutputNames[I]))
return;
}
}
TFModelEvaluator::~TFModelEvaluator() {
for (auto *T : Input) {
TF_DeleteTensor(T);
}
deleteSession();
}
bool TFModelEvaluator::checkReportAndReset(const TF_Output &Output,
StringRef Name) {
if (Output.oper)
return true;
errs() << "Could not find TF_Output named: " + Name;
deleteSession();
return false;
}
void TFModelEvaluator::deleteSession() {
if (Session == nullptr)
return;
auto Status = createTFStatus();
TF_DeleteSession(Session, Status.get());
Session = nullptr;
if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
errs() << "Could not delete TF session";
}
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
if (!isValid())
return None;
EvaluationResult Ret(OutputFeed.size());
auto Status = createTFStatus();
TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), Input.size(),
OutputFeed.data(), Ret.Output.data(), Ret.Output.size(),
nullptr, 0, nullptr, Status.get());
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
errs() << TF_Message(Status.get());
deleteSession();
return None;
}
return Ret;
}
void TFModelEvaluator::initInput(int Index, TF_DataType Type,
const std::vector<int64_t> &Dimensions) {
int64_t TotalSize = TF_DataTypeSize(Type);
for (auto &D : Dimensions)
TotalSize *= D;
Input[Index] =
TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
}

View File

@ -35,6 +35,7 @@
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/InlineAdvisor.h"
#include "llvm/Analysis/InlineFeaturesAnalysis.h"
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"

View File

@ -133,6 +133,7 @@ FUNCTION_ANALYSIS("loops", LoopAnalysis())
FUNCTION_ANALYSIS("lazy-value-info", LazyValueAnalysis())
FUNCTION_ANALYSIS("da", DependenceAnalysis())
FUNCTION_ANALYSIS("inliner-features", InlineFeaturesAnalysis())
FUNCTION_ANALYSIS("inliner-size-estimator", InlineSizeEstimatorAnalysis())
FUNCTION_ANALYSIS("memdep", MemoryDependenceAnalysis())
FUNCTION_ANALYSIS("memoryssa", MemorySSAAnalysis())
FUNCTION_ANALYSIS("phi-values", PhiValuesAnalysis())

View File

@ -6,7 +6,13 @@ set(LLVM_LINK_COMPONENTS
TransformUtils
)
add_llvm_unittest(AnalysisTests
if (DEFINED LLVM_HAVE_TF_API)
LIST(APPEND EXTRA_TESTS TFUtilsTest.cpp)
else()
LIST(APPEND LLVM_OPTIONAL_SOURCES TFUtilsTest.cpp)
endif()
add_llvm_unittest_with_input_files(AnalysisTests
AliasAnalysisTest.cpp
AliasSetTrackerTest.cpp
AssumeBundleQueriesTest.cpp
@ -22,6 +28,7 @@ add_llvm_unittest(AnalysisTests
DomTreeUpdaterTest.cpp
GlobalsModRefTest.cpp
InlineFeaturesAnalysisTest.cpp
InlineSizeEstimatorAnalysisTest.cpp
IVDescriptorsTest.cpp
LazyCallGraphTest.cpp
LoadsTest.cpp
@ -40,4 +47,7 @@ add_llvm_unittest(AnalysisTests
ValueLatticeTest.cpp
ValueTrackingTest.cpp
VectorUtilsTest.cpp
${EXTRA_TESTS}
)
target_link_libraries(AnalysisTests PRIVATE LLVMTestingSupport)

View File

@ -0,0 +1,101 @@
//===- InlineSizeEstimatorAnalysisTest.cpp - test for ir2native -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
extern cl::opt<std::string> TFIR2NativeModelPath;
#if LLVM_HAVE_TF_API
static std::string getModelPath() {
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
return std::string(InputsDir);
}
#endif
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("MLAnalysisTests", errs());
return Mod;
}
static FunctionAnalysisManager buildFAM() {
FunctionAnalysisManager FAM;
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
FAM.registerPass([&] { return LoopAnalysis(); });
return FAM;
}
// Test model loading and evaluation.
TEST(InlineSizeEstimatorAnalysis, SizeIsValidTest) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
declare i32 @f1(i32)
declare i32 @f2(i32)
define i32 @branches(i32) {
%cond = icmp slt i32 %0, 3
br i1 %cond, label %then, label %else
then:
%ret.1 = call i32 @f1(i32 %0)
br label %last.block
else:
%ret.2 = call i32 @f2(i32 %0)
br label %last.block
last.block:
%ret = phi i32 [%ret.1, %then], [%ret.2, %else]
ret i32 %ret
}
define internal i32 @top() {
%1 = call i32 @branches(i32 2)
%2 = call i32 @f1(i32 %1)
ret i32 %2
}
)IR");
FunctionAnalysisManager FAM = buildFAM();
#if LLVM_HAVE_TF_API
TFIR2NativeModelPath = getModelPath();
#endif
InlineSizeEstimatorAnalysis FA;
auto SizeEstimate = FA.run(*M->getFunction("branches"), FAM);
#if LLVM_HAVE_TF_API
EXPECT_GT(*SizeEstimate, 0);
#else
EXPECT_FALSE(SizeEstimate.hasValue());
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,98 @@
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
static std::string getModelPath() {
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
return std::string(InputsDir);
}
// Test observable behavior when no model is provided.
TEST(TFUtilsTest, NoModel) {
TFModelEvaluator Evaluator("", {}, {});
EXPECT_FALSE(Evaluator.isValid());
}
// Test we can correctly load a savedmodel and evaluate it.
TEST(TFUtilsTest, LoadAndExecuteTest) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
std::vector<std::string> InputNames{"serving_default_input_1"};
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
const static int64_t KnownSize = 214;
TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
static const std::vector<int64_t> Dim{1, KnownSize};
EXPECT_TRUE(Evaluator.isValid());
Evaluator.initInput(0, TF_INT32, Dim);
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
}
// The input vector should be unchanged
for (auto I = 0; I < KnownSize; ++I) {
EXPECT_EQ(V[I], 1);
}
// Zero-out the unused position '0' of the instruction histogram, which is
// after the first 9 calculated values. Should the the same result.
V[9] = 0;
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
}
}
// Test incorrect input setup
TEST(TFUtilsTest, EvalError) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
std::vector<std::string> InputNames{"serving_default_input_1"};
std::vector<std::string> OutputName{"StatefulPartitionedCall"};
const static int64_t KnownSize = 213;
TFModelEvaluator Evaluator(getModelPath(), InputNames, OutputName);
static const std::vector<int64_t> Dim{1, KnownSize};
EXPECT_TRUE(Evaluator.isValid());
Evaluator.initInput(0, TF_INT32, Dim);
int32_t *V = static_cast<int32_t *>(TF_TensorData(Evaluator.getInput()[0]));
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
auto ER = Evaluator.evaluate();
EXPECT_FALSE(ER.hasValue());
EXPECT_FALSE(Evaluator.isValid());
}