mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 20:51:52 +01:00
MEGAPATCH checkin.
For details, See: docs/2002-06-25-MegaPatchInfo.txt llvm-svn: 2778
This commit is contained in:
parent
cee706572b
commit
d7cbd7d5d2
@ -18,7 +18,6 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Argument.h"
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/mman.h>
|
||||
@ -312,7 +311,7 @@ bool BytecodeParser::ParseMethod(const uchar *&Buf, const uchar *EndBuf,
|
||||
delete M; return failure(true); // Parse error... :(
|
||||
}
|
||||
|
||||
M->getBasicBlocks().push_back(BB);
|
||||
M->getBasicBlockList().push_back(BB);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -368,7 +367,7 @@ bool BytecodeParser::ParseMethod(const uchar *&Buf, const uchar *EndBuf,
|
||||
|
||||
// If the method is empty, we don't need the method argument entries...
|
||||
if (M->isExternal())
|
||||
M->getArgumentList().delete_all();
|
||||
M->getArgumentList().clear();
|
||||
|
||||
DeclareNewGlobalValue(M, MethSlot);
|
||||
|
||||
|
@ -169,15 +169,15 @@ static void outputInstructionFormat3(const Instruction *I,
|
||||
output(Bits, Out);
|
||||
}
|
||||
|
||||
void BytecodeWriter::processInstruction(const Instruction *I) {
|
||||
assert(I->getOpcode() < 64 && "Opcode too big???");
|
||||
void BytecodeWriter::processInstruction(const Instruction &I) {
|
||||
assert(I.getOpcode() < 64 && "Opcode too big???");
|
||||
|
||||
unsigned NumOperands = I->getNumOperands();
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
int MaxOpSlot = 0;
|
||||
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i < NumOperands; ++i) {
|
||||
const Value *Def = I->getOperand(i);
|
||||
const Value *Def = I.getOperand(i);
|
||||
int slot = Table.getValSlot(Def);
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (slot > MaxOpSlot) MaxOpSlot = slot;
|
||||
@ -191,17 +191,17 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
|
||||
// we take the type of the instruction itself.
|
||||
//
|
||||
const Type *Ty;
|
||||
switch (I->getOpcode()) {
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Malloc:
|
||||
case Instruction::Alloca:
|
||||
Ty = I->getType(); // Malloc & Alloca ALWAYS want to encode the return type
|
||||
Ty = I.getType(); // Malloc & Alloca ALWAYS want to encode the return type
|
||||
break;
|
||||
case Instruction::Store:
|
||||
Ty = I->getOperand(1)->getType(); // Encode the pointer type...
|
||||
Ty = I.getOperand(1)->getType(); // Encode the pointer type...
|
||||
assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
|
||||
break;
|
||||
default: // Otherwise use the default behavior...
|
||||
Ty = NumOperands ? I->getOperand(0)->getType() : I->getType();
|
||||
Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
|
||||
break;
|
||||
}
|
||||
|
||||
@ -219,20 +219,20 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
|
||||
if (isa<CastInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getValSlot(I->getType());
|
||||
Slots[1] = Table.getValSlot(I.getType());
|
||||
assert(Slots[1] != -1 && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {// Handle VarArg calls
|
||||
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
|
||||
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(I, Table, Type, Out);
|
||||
outputInstrVarArgsCall(CI, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { // ... & Invokes
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
|
||||
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(I, Table, Type, Out);
|
||||
outputInstrVarArgsCall(II, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -246,21 +246,21 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(I, Table, Slots, Type, Out);
|
||||
outputInstructionFormat1(&I, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(I, Table, Slots, Type, Out);
|
||||
outputInstructionFormat2(&I, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(I, Table, Slots, Type, Out);
|
||||
outputInstructionFormat3(&I, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
@ -268,5 +268,5 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
|
||||
|
||||
// If we weren't handled before here, we either have a large number of
|
||||
// operands or a large operand index that we are refering to.
|
||||
outputInstructionFormat0(I, Table, Type, Out);
|
||||
outputInstructionFormat0(&I, Table, Type, Out);
|
||||
}
|
||||
|
@ -21,9 +21,6 @@
|
||||
|
||||
#include "WriterInternals.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/GlobalVariable.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/SymbolTable.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "Support/STLExtras.h"
|
||||
@ -49,8 +46,8 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
||||
outputModuleInfoBlock(M);
|
||||
|
||||
// Do the whole module now! Process each function at a time...
|
||||
for_each(M->begin(), M->end(),
|
||||
bind_obj(this, &BytecodeWriter::processMethod));
|
||||
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
processMethod(I);
|
||||
|
||||
// If needed, output the symbol table for the module...
|
||||
if (M->hasSymbolTable())
|
||||
@ -112,19 +109,18 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
|
||||
|
||||
// Output the types for the global variables in the module...
|
||||
for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
|
||||
const GlobalVariable *GV = *I;
|
||||
int Slot = Table.getValSlot(GV->getType());
|
||||
int Slot = Table.getValSlot(I->getType());
|
||||
assert(Slot != -1 && "Module global vars is broken!");
|
||||
|
||||
// Fields: bit0 = isConstant, bit1 = hasInitializer, bit2=InternalLinkage,
|
||||
// bit3+ = slot#
|
||||
unsigned oSlot = ((unsigned)Slot << 3) | (GV->hasInternalLinkage() << 2) |
|
||||
(GV->hasInitializer() << 1) | GV->isConstant();
|
||||
unsigned oSlot = ((unsigned)Slot << 3) | (I->hasInternalLinkage() << 2) |
|
||||
(I->hasInitializer() << 1) | I->isConstant();
|
||||
output_vbr(oSlot, Out);
|
||||
|
||||
// If we have an initializer, output it now.
|
||||
if (GV->hasInitializer()) {
|
||||
Slot = Table.getValSlot((Value*)GV->getInitializer());
|
||||
if (I->hasInitializer()) {
|
||||
Slot = Table.getValSlot((Value*)I->getInitializer());
|
||||
assert(Slot != -1 && "No slot for global var initializer!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
@ -133,7 +129,7 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
|
||||
|
||||
// Output the types of the functions in this module...
|
||||
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
|
||||
int Slot = Table.getValSlot((*I)->getType());
|
||||
int Slot = Table.getValSlot(I->getType());
|
||||
assert(Slot != -1 && "Module const pool is broken!");
|
||||
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
@ -144,36 +140,36 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
|
||||
align32(Out);
|
||||
}
|
||||
|
||||
void BytecodeWriter::processMethod(const Function *M) {
|
||||
void BytecodeWriter::processMethod(const Function *F) {
|
||||
BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out);
|
||||
output_vbr((unsigned)M->hasInternalLinkage(), Out);
|
||||
output_vbr((unsigned)F->hasInternalLinkage(), Out);
|
||||
// Only output the constant pool and other goodies if needed...
|
||||
if (!M->isExternal()) {
|
||||
if (!F->isExternal()) {
|
||||
|
||||
// Get slot information about the function...
|
||||
Table.incorporateFunction(M);
|
||||
Table.incorporateFunction(F);
|
||||
|
||||
// Output information about the constants in the function...
|
||||
outputConstants(true);
|
||||
|
||||
// Output basic block nodes...
|
||||
for_each(M->begin(), M->end(),
|
||||
bind_obj(this, &BytecodeWriter::processBasicBlock));
|
||||
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
processBasicBlock(*I);
|
||||
|
||||
// If needed, output the symbol table for the function...
|
||||
if (M->hasSymbolTable())
|
||||
outputSymbolTable(*M->getSymbolTable());
|
||||
if (F->hasSymbolTable())
|
||||
outputSymbolTable(*F->getSymbolTable());
|
||||
|
||||
Table.purgeFunction();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void BytecodeWriter::processBasicBlock(const BasicBlock *BB) {
|
||||
void BytecodeWriter::processBasicBlock(const BasicBlock &BB) {
|
||||
BytecodeBlock FunctionBlock(BytecodeFormat::BasicBlock, Out);
|
||||
// Process all the instructions in the bb...
|
||||
for_each(BB->begin(), BB->end(),
|
||||
bind_obj(this, &BytecodeWriter::processInstruction));
|
||||
for(BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I)
|
||||
processInstruction(*I);
|
||||
}
|
||||
|
||||
void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
|
||||
|
@ -27,8 +27,8 @@ public:
|
||||
protected:
|
||||
void outputConstants(bool isMethod);
|
||||
void processMethod(const Function *F);
|
||||
void processBasicBlock(const BasicBlock *BB);
|
||||
void processInstruction(const Instruction *I);
|
||||
void processBasicBlock(const BasicBlock &BB);
|
||||
void processInstruction(const Instruction &I);
|
||||
|
||||
private :
|
||||
inline void outputSignature() {
|
||||
|
@ -25,7 +25,6 @@
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/Constant.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "Support/STLExtras.h"
|
||||
@ -188,10 +187,9 @@ LabelNode::dumpNode(int indent) const
|
||||
|
||||
InstrForest::InstrForest(Function *F)
|
||||
{
|
||||
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
|
||||
BasicBlock *BB = *FI;
|
||||
for_each(BB->begin(), BB->end(),
|
||||
bind_obj(this, &InstrForest::buildTreeForInstruction));
|
||||
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
|
||||
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
buildTreeForInstruction(I);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,14 +123,10 @@ SelectInstructionsForMethod(Function *F, TargetMachine &target)
|
||||
// Record instructions in the vector for each basic block
|
||||
//
|
||||
for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
|
||||
{
|
||||
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
|
||||
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II)
|
||||
{
|
||||
MachineCodeForInstruction &mvec =MachineCodeForInstruction::get(*II);
|
||||
for (unsigned i=0; i < mvec.size(); i++)
|
||||
bbMvec.push_back(mvec[i]);
|
||||
}
|
||||
for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
|
||||
MachineCodeForInstruction &mvec =MachineCodeForInstruction::get(II);
|
||||
for (unsigned i=0; i < mvec.size(); i++)
|
||||
BI->getMachineInstrVec().push_back(mvec[i]);
|
||||
}
|
||||
|
||||
// Insert phi elimination code -- added by Ruchira
|
||||
@ -191,49 +187,38 @@ InsertCode4AllPhisInMeth(Function *F, TargetMachine &target)
|
||||
{
|
||||
// for all basic blocks in function
|
||||
//
|
||||
for (Function::iterator BI = F->begin(); BI != F->end(); ++BI) {
|
||||
|
||||
BasicBlock *BB = *BI;
|
||||
const BasicBlock::InstListType &InstList = BB->getInstList();
|
||||
BasicBlock::InstListType::const_iterator IIt = InstList.begin();
|
||||
|
||||
// for all instructions in the basic block
|
||||
//
|
||||
for( ; IIt != InstList.end(); ++IIt ) {
|
||||
|
||||
if (PHINode *PN = dyn_cast<PHINode>(*IIt)) {
|
||||
// FIXME: This is probably wrong...
|
||||
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
|
||||
for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
|
||||
BasicBlock::InstListType &InstList = BB->getInstList();
|
||||
for (BasicBlock::iterator IIt = InstList.begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(&*IIt); ++IIt) {
|
||||
// FIXME: This is probably wrong...
|
||||
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
|
||||
|
||||
// for each incoming value of the phi, insert phi elimination
|
||||
//
|
||||
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
|
||||
{ // insert the copy instruction to the predecessor BB
|
||||
vector<MachineInstr*> mvec, CpVec;
|
||||
target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
|
||||
mvec);
|
||||
for (vector<MachineInstr*>::iterator MI=mvec.begin();
|
||||
MI != mvec.end(); ++MI)
|
||||
{
|
||||
vector<MachineInstr*> CpVec2 =
|
||||
FixConstantOperandsForInstr(PN, *MI, target);
|
||||
CpVec2.push_back(*MI);
|
||||
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
|
||||
}
|
||||
|
||||
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
|
||||
}
|
||||
// for each incoming value of the phi, insert phi elimination
|
||||
//
|
||||
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
|
||||
// insert the copy instruction to the predecessor BB
|
||||
vector<MachineInstr*> mvec, CpVec;
|
||||
target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
|
||||
mvec);
|
||||
for (vector<MachineInstr*>::iterator MI=mvec.begin();
|
||||
MI != mvec.end(); ++MI) {
|
||||
vector<MachineInstr*> CpVec2 =
|
||||
FixConstantOperandsForInstr(PN, *MI, target);
|
||||
CpVec2.push_back(*MI);
|
||||
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
|
||||
}
|
||||
|
||||
vector<MachineInstr*> mvec;
|
||||
target.getRegInfo().cpValue2Value(PhiCpRes, PN, mvec);
|
||||
|
||||
// get an iterator to machine instructions in the BB
|
||||
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
|
||||
|
||||
bbMvec.insert( bbMvec.begin(), mvec.begin(), mvec.end());
|
||||
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
|
||||
}
|
||||
else break; // since PHI nodes can only be at the top
|
||||
|
||||
vector<MachineInstr*> mvec;
|
||||
target.getRegInfo().cpValue2Value(PhiCpRes, PN, mvec);
|
||||
|
||||
// get an iterator to machine instructions in the BB
|
||||
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
|
||||
|
||||
bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end());
|
||||
} // for each Phi Instr in BB
|
||||
} // for all BBs in function
|
||||
}
|
||||
|
@ -60,43 +60,40 @@ ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F,
|
||||
{
|
||||
const MachineFrameInfo& frameInfo = target.getFrameInfo();
|
||||
|
||||
unsigned int maxSize = 0;
|
||||
unsigned maxSize = 0;
|
||||
|
||||
for (Function::const_iterator MI = F->begin(), ME = F->end(); MI != ME; ++MI)
|
||||
{
|
||||
const BasicBlock *BB = *MI;
|
||||
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
||||
if (CallInst *callInst = dyn_cast<CallInst>(*I))
|
||||
{
|
||||
unsigned int numOperands = callInst->getNumOperands() - 1;
|
||||
int numExtra =(int)numOperands-frameInfo.getNumFixedOutgoingArgs();
|
||||
if (numExtra <= 0)
|
||||
continue;
|
||||
|
||||
unsigned int sizeForThisCall;
|
||||
if (frameInfo.argsOnStackHaveFixedSize())
|
||||
{
|
||||
int argSize = frameInfo.getSizeOfEachArgOnStack();
|
||||
sizeForThisCall = numExtra * (unsigned) argSize;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(0 && "UNTESTED CODE: Size per stack argument is not "
|
||||
"fixed on this architecture: use actual arg sizes to "
|
||||
"compute MaxOptionalArgsSize");
|
||||
sizeForThisCall = 0;
|
||||
for (unsigned i=0; i < numOperands; ++i)
|
||||
sizeForThisCall += target.findOptimalStorageSize(callInst->
|
||||
getOperand(i)->getType());
|
||||
}
|
||||
|
||||
if (maxSize < sizeForThisCall)
|
||||
maxSize = sizeForThisCall;
|
||||
|
||||
if (((int) maxOptionalNumArgs) < numExtra)
|
||||
maxOptionalNumArgs = (unsigned) numExtra;
|
||||
}
|
||||
}
|
||||
for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB)
|
||||
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
if (const CallInst *callInst = dyn_cast<CallInst>(&*I))
|
||||
{
|
||||
unsigned numOperands = callInst->getNumOperands() - 1;
|
||||
int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs();
|
||||
if (numExtra <= 0)
|
||||
continue;
|
||||
|
||||
unsigned int sizeForThisCall;
|
||||
if (frameInfo.argsOnStackHaveFixedSize())
|
||||
{
|
||||
int argSize = frameInfo.getSizeOfEachArgOnStack();
|
||||
sizeForThisCall = numExtra * (unsigned) argSize;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(0 && "UNTESTED CODE: Size per stack argument is not "
|
||||
"fixed on this architecture: use actual arg sizes to "
|
||||
"compute MaxOptionalArgsSize");
|
||||
sizeForThisCall = 0;
|
||||
for (unsigned i = 0; i < numOperands; ++i)
|
||||
sizeForThisCall += target.findOptimalStorageSize(callInst->
|
||||
getOperand(i)->getType());
|
||||
}
|
||||
|
||||
if (maxSize < sizeForThisCall)
|
||||
maxSize = sizeForThisCall;
|
||||
|
||||
if ((int)maxOptionalNumArgs < numExtra)
|
||||
maxOptionalNumArgs = (unsigned) numExtra;
|
||||
}
|
||||
|
||||
return maxSize;
|
||||
}
|
||||
@ -278,12 +275,11 @@ MachineCodeForMethod::dump() const
|
||||
std::cerr << "\n" << method->getReturnType()
|
||||
<< " \"" << method->getName() << "\"\n";
|
||||
|
||||
for (Function::const_iterator BI = method->begin(); BI != method->end(); ++BI)
|
||||
for (Function::const_iterator BB = method->begin(); BB != method->end(); ++BB)
|
||||
{
|
||||
BasicBlock* bb = *BI;
|
||||
std::cerr << "\n" << bb->getName() << " (" << bb << ")" << ":\n";
|
||||
std::cerr << "\n" << BB->getName() << " (" << *BB << ")" << ":\n";
|
||||
|
||||
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
|
||||
MachineCodeForBasicBlock& mvec = BB->getMachineInstrVec();
|
||||
for (unsigned i=0; i < mvec.size(); i++)
|
||||
std::cerr << "\t" << *mvec[i];
|
||||
}
|
||||
|
@ -168,7 +168,7 @@ void Interpreter::initializeExecutionEngine() {
|
||||
// InitializeMemory - Recursive function to apply a Constant value into the
|
||||
// specified memory location...
|
||||
//
|
||||
static void InitializeMemory(Constant *Init, char *Addr) {
|
||||
static void InitializeMemory(const Constant *Init, char *Addr) {
|
||||
#define INITIALIZE_MEMORY(TYID, CLASS, TY) \
|
||||
case Type::TYID##TyID: { \
|
||||
TY Tmp = cast<CLASS>(Init)->getValue(); \
|
||||
@ -190,7 +190,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
|
||||
#undef INITIALIZE_MEMORY
|
||||
|
||||
case Type::ArrayTyID: {
|
||||
ConstantArray *CPA = cast<ConstantArray>(Init);
|
||||
const ConstantArray *CPA = cast<ConstantArray>(Init);
|
||||
const vector<Use> &Val = CPA->getValues();
|
||||
unsigned ElementSize =
|
||||
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
|
||||
@ -200,7 +200,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
|
||||
}
|
||||
|
||||
case Type::StructTyID: {
|
||||
ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
||||
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
||||
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
|
||||
const vector<Use> &Val = CPS->getValues();
|
||||
for (unsigned i = 0; i < Val.size(); ++i)
|
||||
@ -212,7 +212,8 @@ static void InitializeMemory(Constant *Init, char *Addr) {
|
||||
case Type::PointerTyID:
|
||||
if (isa<ConstantPointerNull>(Init)) {
|
||||
*(void**)Addr = 0;
|
||||
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Init)) {
|
||||
} else if (const ConstantPointerRef *CPR =
|
||||
dyn_cast<ConstantPointerRef>(Init)) {
|
||||
GlobalAddress *Address =
|
||||
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
|
||||
*(void**)Addr = (GenericValue*)Address->Ptr;
|
||||
@ -266,9 +267,9 @@ Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
|
||||
#define IMPLEMENT_UNARY_OPERATOR(OP, TY) \
|
||||
case Type::TY##TyID: Dest.TY##Val = OP Src.TY##Val; break
|
||||
|
||||
static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getOperand(0)->getType();
|
||||
GenericValue Src = getOperandValue(I->getOperand(0), SF);
|
||||
static void executeNotInst(UnaryOperator &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getOperand(0)->getType();
|
||||
GenericValue Src = getOperandValue(I.getOperand(0), SF);
|
||||
GenericValue Dest;
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
IMPLEMENT_UNARY_OPERATOR(~, UByte);
|
||||
@ -283,7 +284,7 @@ static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
|
||||
default:
|
||||
cout << "Unhandled type for Not instruction: " << Ty << "\n";
|
||||
}
|
||||
SetValue(I, Dest, SF);
|
||||
SetValue(&I, Dest, SF);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -592,13 +593,13 @@ static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
|
||||
return Dest;
|
||||
}
|
||||
|
||||
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
|
||||
static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
||||
GenericValue R; // Result
|
||||
|
||||
switch (I->getOpcode()) {
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break;
|
||||
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break;
|
||||
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break;
|
||||
@ -618,7 +619,7 @@ static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
|
||||
R = Src1;
|
||||
}
|
||||
|
||||
SetValue(I, R, SF);
|
||||
SetValue(&I, R, SF);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -683,14 +684,14 @@ void Interpreter::exitCalled(GenericValue GV) {
|
||||
PerformExitStuff();
|
||||
}
|
||||
|
||||
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
|
||||
void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) {
|
||||
const Type *RetTy = 0;
|
||||
GenericValue Result;
|
||||
|
||||
// Save away the return value... (if we are not 'ret void')
|
||||
if (I->getNumOperands()) {
|
||||
RetTy = I->getReturnValue()->getType();
|
||||
Result = getOperandValue(I->getReturnValue(), SF);
|
||||
if (I.getNumOperands()) {
|
||||
RetTy = I.getReturnValue()->getType();
|
||||
Result = getOperandValue(I.getReturnValue(), SF);
|
||||
}
|
||||
|
||||
// Save previously executing meth
|
||||
@ -737,16 +738,16 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
|
||||
}
|
||||
}
|
||||
|
||||
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
|
||||
void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) {
|
||||
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
|
||||
BasicBlock *Dest;
|
||||
|
||||
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
|
||||
if (!I->isUnconditional()) {
|
||||
Value *Cond = I->getCondition();
|
||||
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
|
||||
if (!I.isUnconditional()) {
|
||||
Value *Cond = I.getCondition();
|
||||
GenericValue CondVal = getOperandValue(Cond, SF);
|
||||
if (CondVal.BoolVal == 0) // If false cond...
|
||||
Dest = I->getSuccessor(1);
|
||||
Dest = I.getSuccessor(1);
|
||||
}
|
||||
SF.CurBB = Dest; // Update CurBB to branch destination
|
||||
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
|
||||
@ -756,11 +757,11 @@ void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
|
||||
// Memory Instruction Implementations
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getType()->getElementType(); // Type to be allocated
|
||||
void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
|
||||
|
||||
// Get the number of elements being allocated by the array...
|
||||
unsigned NumElements = getOperandValue(I->getOperand(0), SF).UIntVal;
|
||||
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
|
||||
|
||||
// Allocate enough memory to hold the type...
|
||||
// FIXME: Don't use CALLOC, use a tainted malloc.
|
||||
@ -769,15 +770,15 @@ void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
|
||||
GenericValue Result;
|
||||
Result.PointerVal = (PointerTy)Memory;
|
||||
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
|
||||
SetValue(I, Result, SF);
|
||||
SetValue(&I, Result, SF);
|
||||
|
||||
if (I->getOpcode() == Instruction::Alloca)
|
||||
if (I.getOpcode() == Instruction::Alloca)
|
||||
ECStack.back().Allocas.add(Memory);
|
||||
}
|
||||
|
||||
static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
|
||||
assert(isa<PointerType>(I->getOperand(0)->getType()) && "Freeing nonptr?");
|
||||
GenericValue Value = getOperandValue(I->getOperand(0), SF);
|
||||
static void executeFreeInst(FreeInst &I, ExecutionContext &SF) {
|
||||
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
|
||||
GenericValue Value = getOperandValue(I.getOperand(0), SF);
|
||||
// TODO: Check to make sure memory is allocated
|
||||
free((void*)Value.PointerVal); // Free memory
|
||||
}
|
||||
@ -787,20 +788,20 @@ static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
|
||||
// function returns the offset that arguments ArgOff+1 -> NumArgs specify for
|
||||
// the pointer type specified by argument Arg.
|
||||
//
|
||||
static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
|
||||
assert(isa<PointerType>(I->getPointerOperand()->getType()) &&
|
||||
static PointerTy getElementOffset(MemAccessInst &I, ExecutionContext &SF) {
|
||||
assert(isa<PointerType>(I.getPointerOperand()->getType()) &&
|
||||
"Cannot getElementOffset of a nonpointer type!");
|
||||
|
||||
PointerTy Total = 0;
|
||||
const Type *Ty = I->getPointerOperand()->getType();
|
||||
const Type *Ty = I.getPointerOperand()->getType();
|
||||
|
||||
unsigned ArgOff = I->getFirstIndexOperandNumber();
|
||||
while (ArgOff < I->getNumOperands()) {
|
||||
unsigned ArgOff = I.getFirstIndexOperandNumber();
|
||||
while (ArgOff < I.getNumOperands()) {
|
||||
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
||||
const StructLayout *SLO = TD.getStructLayout(STy);
|
||||
|
||||
// Indicies must be ubyte constants...
|
||||
const ConstantUInt *CPU = cast<ConstantUInt>(I->getOperand(ArgOff++));
|
||||
const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand(ArgOff++));
|
||||
assert(CPU->getType() == Type::UByteTy);
|
||||
unsigned Index = CPU->getValue();
|
||||
|
||||
@ -818,13 +819,13 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
|
||||
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
|
||||
|
||||
// Get the index number for the array... which must be uint type...
|
||||
assert(I->getOperand(ArgOff)->getType() == Type::UIntTy);
|
||||
unsigned Idx = getOperandValue(I->getOperand(ArgOff++), SF).UIntVal;
|
||||
assert(I.getOperand(ArgOff)->getType() == Type::UIntTy);
|
||||
unsigned Idx = getOperandValue(I.getOperand(ArgOff++), SF).UIntVal;
|
||||
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
|
||||
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
|
||||
cerr << "Out of range memory access to element #" << Idx
|
||||
<< " of a " << AT->getNumElements() << " element array."
|
||||
<< " Subscript #" << (ArgOff-I->getFirstIndexOperandNumber())
|
||||
<< " Subscript #" << (ArgOff-I.getFirstIndexOperandNumber())
|
||||
<< "\n";
|
||||
// Get outta here!!!
|
||||
siglongjmp(SignalRecoverBuffer, SIGTRAP);
|
||||
@ -839,17 +840,17 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
|
||||
return Total;
|
||||
}
|
||||
|
||||
static void executeGEPInst(GetElementPtrInst *I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
|
||||
static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
|
||||
PointerTy SrcPtr = SRC.PointerVal;
|
||||
|
||||
GenericValue Result;
|
||||
Result.PointerVal = SrcPtr + getElementOffset(I, SF);
|
||||
SetValue(I, Result, SF);
|
||||
SetValue(&I, Result, SF);
|
||||
}
|
||||
|
||||
static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
|
||||
static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
|
||||
PointerTy SrcPtr = SRC.PointerVal;
|
||||
PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices
|
||||
SrcPtr += Offset;
|
||||
@ -857,7 +858,7 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
|
||||
GenericValue *Ptr = (GenericValue*)SrcPtr;
|
||||
GenericValue Result;
|
||||
|
||||
switch (I->getType()->getPrimitiveID()) {
|
||||
switch (I.getType()->getPrimitiveID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID:
|
||||
case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break;
|
||||
@ -871,21 +872,21 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
|
||||
case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break;
|
||||
case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break;
|
||||
default:
|
||||
cout << "Cannot load value of type " << I->getType() << "!\n";
|
||||
cout << "Cannot load value of type " << I.getType() << "!\n";
|
||||
}
|
||||
|
||||
SetValue(I, Result, SF);
|
||||
SetValue(&I, Result, SF);
|
||||
}
|
||||
|
||||
static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
|
||||
static void executeStoreInst(StoreInst &I, ExecutionContext &SF) {
|
||||
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
|
||||
PointerTy SrcPtr = SRC.PointerVal;
|
||||
SrcPtr += getElementOffset(I, SF); // Handle any structure indices
|
||||
|
||||
GenericValue *Ptr = (GenericValue *)SrcPtr;
|
||||
GenericValue Val = getOperandValue(I->getOperand(0), SF);
|
||||
GenericValue Val = getOperandValue(I.getOperand(0), SF);
|
||||
|
||||
switch (I->getOperand(0)->getType()->getPrimitiveID()) {
|
||||
switch (I.getOperand(0)->getType()->getPrimitiveID()) {
|
||||
case Type::BoolTyID:
|
||||
case Type::UByteTyID:
|
||||
case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break;
|
||||
@ -899,7 +900,7 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
|
||||
case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break;
|
||||
case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break;
|
||||
default:
|
||||
cout << "Cannot store value of type " << I->getType() << "!\n";
|
||||
cout << "Cannot store value of type " << I.getType() << "!\n";
|
||||
}
|
||||
}
|
||||
|
||||
@ -908,44 +909,44 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
|
||||
// Miscellaneous Instruction Implementations
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
|
||||
ECStack.back().Caller = I;
|
||||
void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) {
|
||||
ECStack.back().Caller = &I;
|
||||
vector<GenericValue> ArgVals;
|
||||
ArgVals.reserve(I->getNumOperands()-1);
|
||||
for (unsigned i = 1; i < I->getNumOperands(); ++i)
|
||||
ArgVals.push_back(getOperandValue(I->getOperand(i), SF));
|
||||
ArgVals.reserve(I.getNumOperands()-1);
|
||||
for (unsigned i = 1; i < I.getNumOperands(); ++i)
|
||||
ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
|
||||
|
||||
// To handle indirect calls, we must get the pointer value from the argument
|
||||
// and treat it as a function pointer.
|
||||
GenericValue SRC = getOperandValue(I->getCalledValue(), SF);
|
||||
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
|
||||
|
||||
callMethod((Function*)SRC.PointerVal, ArgVals);
|
||||
}
|
||||
|
||||
static void executePHINode(PHINode *I, ExecutionContext &SF) {
|
||||
static void executePHINode(PHINode &I, ExecutionContext &SF) {
|
||||
BasicBlock *PrevBB = SF.PrevBB;
|
||||
Value *IncomingValue = 0;
|
||||
|
||||
// Search for the value corresponding to this previous bb...
|
||||
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
|
||||
if (I->getIncomingBlock(--i) == PrevBB) {
|
||||
IncomingValue = I->getIncomingValue(i);
|
||||
for (unsigned i = I.getNumIncomingValues(); i > 0;) {
|
||||
if (I.getIncomingBlock(--i) == PrevBB) {
|
||||
IncomingValue = I.getIncomingValue(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
|
||||
|
||||
// Found the value, set as the result...
|
||||
SetValue(I, getOperandValue(IncomingValue, SF), SF);
|
||||
SetValue(&I, getOperandValue(IncomingValue, SF), SF);
|
||||
}
|
||||
|
||||
#define IMPLEMENT_SHIFT(OP, TY) \
|
||||
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
|
||||
|
||||
static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
|
||||
static void executeShlInst(ShiftInst &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
||||
GenericValue Dest;
|
||||
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
@ -960,13 +961,13 @@ static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
|
||||
default:
|
||||
cout << "Unhandled type for Shl instruction: " << Ty << "\n";
|
||||
}
|
||||
SetValue(I, Dest, SF);
|
||||
SetValue(&I, Dest, SF);
|
||||
}
|
||||
|
||||
static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
|
||||
static void executeShrInst(ShiftInst &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getOperand(0)->getType();
|
||||
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
||||
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
||||
GenericValue Dest;
|
||||
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
@ -981,7 +982,7 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
|
||||
default:
|
||||
cout << "Unhandled type for Shr instruction: " << Ty << "\n";
|
||||
}
|
||||
SetValue(I, Dest, SF);
|
||||
SetValue(&I, Dest, SF);
|
||||
}
|
||||
|
||||
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
|
||||
@ -1016,10 +1017,10 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
|
||||
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
|
||||
IMPLEMENT_CAST_CASE_END()
|
||||
|
||||
static void executeCastInst(CastInst *I, ExecutionContext &SF) {
|
||||
const Type *Ty = I->getType();
|
||||
const Type *SrcTy = I->getOperand(0)->getType();
|
||||
GenericValue Src = getOperandValue(I->getOperand(0), SF);
|
||||
static void executeCastInst(CastInst &I, ExecutionContext &SF) {
|
||||
const Type *Ty = I.getType();
|
||||
const Type *SrcTy = I.getOperand(0)->getType();
|
||||
GenericValue Src = getOperandValue(I.getOperand(0), SF);
|
||||
GenericValue Dest;
|
||||
|
||||
switch (Ty->getPrimitiveID()) {
|
||||
@ -1037,7 +1038,7 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
|
||||
default:
|
||||
cout << "Unhandled dest type for cast instruction: " << Ty << "\n";
|
||||
}
|
||||
SetValue(I, Dest, SF);
|
||||
SetValue(&I, Dest, SF);
|
||||
}
|
||||
|
||||
|
||||
@ -1047,22 +1048,17 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
|
||||
// Dispatch and Execution Code
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
MethodInfo::MethodInfo(Function *M) : Annotation(MethodInfoAID) {
|
||||
MethodInfo::MethodInfo(Function *F) : Annotation(MethodInfoAID) {
|
||||
// Assign slot numbers to the function arguments...
|
||||
const Function::ArgumentListType &ArgList = M->getArgumentList();
|
||||
for (Function::ArgumentListType::const_iterator AI = ArgList.begin(),
|
||||
AE = ArgList.end(); AI != AE; ++AI)
|
||||
((Value*)(*AI))->addAnnotation(new SlotNumber(getValueSlot((Value*)*AI)));
|
||||
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
|
||||
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
|
||||
|
||||
// Iterate over all of the instructions...
|
||||
unsigned InstNum = 0;
|
||||
for (Function::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
|
||||
BasicBlock *BB = *MI;
|
||||
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II){
|
||||
Instruction *I = *II; // For each instruction... Add Annote
|
||||
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I)));
|
||||
}
|
||||
}
|
||||
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
|
||||
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
|
||||
// For each instruction... Add Annote
|
||||
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
|
||||
}
|
||||
|
||||
unsigned MethodInfo::getValueSlot(const Value *V) {
|
||||
@ -1116,7 +1112,7 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
|
||||
|
||||
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
|
||||
StackFrame.CurMethod = M;
|
||||
StackFrame.CurBB = M->front();
|
||||
StackFrame.CurBB = M->begin();
|
||||
StackFrame.CurInst = StackFrame.CurBB->begin();
|
||||
StackFrame.MethInfo = MethInfo;
|
||||
|
||||
@ -1134,13 +1130,11 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
|
||||
|
||||
|
||||
// Run through the function arguments and initialize their values...
|
||||
assert(ArgVals.size() == M->getArgumentList().size() &&
|
||||
assert(ArgVals.size() == M->asize() &&
|
||||
"Invalid number of values passed to function invocation!");
|
||||
unsigned i = 0;
|
||||
for (Function::ArgumentListType::iterator AI = M->getArgumentList().begin(),
|
||||
AE = M->getArgumentList().end(); AI != AE; ++AI, ++i) {
|
||||
SetValue((Value*)*AI, ArgVals[i], StackFrame);
|
||||
}
|
||||
for (Function::aiterator AI = M->abegin(), E = M->aend(); AI != E; ++AI, ++i)
|
||||
SetValue(AI, ArgVals[i], StackFrame);
|
||||
}
|
||||
|
||||
// executeInstruction - Interpret a single instruction, increment the "PC", and
|
||||
@ -1150,7 +1144,7 @@ bool Interpreter::executeInstruction() {
|
||||
assert(!ECStack.empty() && "No program running, cannot execute inst!");
|
||||
|
||||
ExecutionContext &SF = ECStack.back(); // Current stack frame
|
||||
Instruction *I = *SF.CurInst++; // Increment before execute
|
||||
Instruction &I = *SF.CurInst++; // Increment before execute
|
||||
|
||||
if (Trace)
|
||||
CW << "Run:" << I;
|
||||
@ -1175,17 +1169,17 @@ bool Interpreter::executeInstruction() {
|
||||
}
|
||||
|
||||
InInstruction = true;
|
||||
if (I->isBinaryOp()) {
|
||||
if (I.isBinaryOp()) {
|
||||
executeBinaryInst(cast<BinaryOperator>(I), SF);
|
||||
} else {
|
||||
switch (I->getOpcode()) {
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Not: executeNotInst(cast<UnaryOperator>(I),SF); break;
|
||||
// Terminators
|
||||
case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break;
|
||||
case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break;
|
||||
// Memory Instructions
|
||||
case Instruction::Alloca:
|
||||
case Instruction::Malloc: executeAllocInst((AllocationInst*)I, SF); break;
|
||||
case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break;
|
||||
case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break;
|
||||
case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break;
|
||||
case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break;
|
||||
@ -1210,7 +1204,7 @@ bool Interpreter::executeInstruction() {
|
||||
if (CurFrame == -1) return false; // No breakpoint if no code
|
||||
|
||||
// Return true if there is a breakpoint annotation on the instruction...
|
||||
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
|
||||
return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
|
||||
}
|
||||
|
||||
void Interpreter::stepInstruction() { // Do the 'step' command
|
||||
@ -1235,7 +1229,7 @@ void Interpreter::nextInstruction() { // Do the 'next' command
|
||||
|
||||
// If this is a call instruction, step over the call instruction...
|
||||
// TODO: ICALL, CALL WITH, ...
|
||||
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
|
||||
if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
|
||||
unsigned StackSize = ECStack.size();
|
||||
// Step into the function...
|
||||
if (executeInstruction()) {
|
||||
@ -1308,8 +1302,8 @@ void Interpreter::printCurrentInstruction() {
|
||||
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
|
||||
WriteAsOperand(cout, ECStack.back().CurBB) << ":\n";
|
||||
|
||||
Instruction *I = *ECStack.back().CurInst;
|
||||
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
|
||||
Instruction &I = *ECStack.back().CurInst;
|
||||
InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
|
||||
assert(IN && "Instruction has no numbering annotation!");
|
||||
cout << "#" << IN->InstNum << I;
|
||||
}
|
||||
@ -1373,22 +1367,27 @@ void Interpreter::infoValue(const std::string &Name) {
|
||||
//
|
||||
void Interpreter::printStackFrame(int FrameNo = -1) {
|
||||
if (FrameNo == -1) FrameNo = CurFrame;
|
||||
Function *Func = ECStack[FrameNo].CurMethod;
|
||||
const Type *RetTy = Func->getReturnType();
|
||||
Function *F = ECStack[FrameNo].CurMethod;
|
||||
const Type *RetTy = F->getReturnType();
|
||||
|
||||
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
|
||||
<< (Value*)RetTy << " \"" << Func->getName() << "\"(";
|
||||
<< (Value*)RetTy << " \"" << F->getName() << "\"(";
|
||||
|
||||
Function::ArgumentListType &Args = Func->getArgumentList();
|
||||
for (unsigned i = 0; i < Args.size(); ++i) {
|
||||
unsigned i = 0;
|
||||
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
|
||||
if (i != 0) cout << ", ";
|
||||
CW << (Value*)Args[i] << "=";
|
||||
CW << *I << "=";
|
||||
|
||||
printValue(((Value*)Args[i])->getType(),
|
||||
getOperandValue((Value*)Args[i], ECStack[FrameNo]));
|
||||
printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
|
||||
}
|
||||
|
||||
cout << ")\n";
|
||||
CW << *(ECStack[FrameNo].CurInst-(FrameNo != int(ECStack.size()-1)));
|
||||
|
||||
if (FrameNo != int(ECStack.size()-1)) {
|
||||
BasicBlock::iterator I = ECStack[FrameNo].CurInst;
|
||||
CW << --I;
|
||||
} else {
|
||||
CW << *ECStack[FrameNo].CurInst;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -135,7 +135,8 @@ GenericValue lle_X_printVal(FunctionType *M, const vector<GenericValue> &ArgVal)
|
||||
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
|
||||
|
||||
// Specialize print([ubyte {x N} ] *) and print(sbyte *)
|
||||
if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get()))
|
||||
if (const PointerType *PTy =
|
||||
dyn_cast<PointerType>(M->getParamTypes()[0].get()))
|
||||
if (PTy->getElementType() == Type::SByteTy ||
|
||||
isa<ArrayType>(PTy->getElementType())) {
|
||||
return lle_VP_printstr(M, ArgVal);
|
||||
|
@ -144,10 +144,10 @@ public:
|
||||
void finish(); // Do the 'finish' command
|
||||
|
||||
// Opcode Implementations
|
||||
void executeCallInst(CallInst *I, ExecutionContext &SF);
|
||||
void executeRetInst(ReturnInst *I, ExecutionContext &SF);
|
||||
void executeBrInst(BranchInst *I, ExecutionContext &SF);
|
||||
void executeAllocInst(AllocationInst *I, ExecutionContext &SF);
|
||||
void executeCallInst(CallInst &I, ExecutionContext &SF);
|
||||
void executeRetInst(ReturnInst &I, ExecutionContext &SF);
|
||||
void executeBrInst(BranchInst &I, ExecutionContext &SF);
|
||||
void executeAllocInst(AllocationInst &I, ExecutionContext &SF);
|
||||
GenericValue callExternalMethod(Function *F,
|
||||
const std::vector<GenericValue> &ArgVals);
|
||||
void exitCalled(GenericValue GV);
|
||||
|
@ -68,19 +68,19 @@ public:
|
||||
: idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
|
||||
|
||||
// (start|end)(Module|Function) - Callback methods to be invoked by subclasses
|
||||
void startModule(Module *M) {
|
||||
void startModule(Module &M) {
|
||||
// Create the global id table if it does not already exist
|
||||
idTable = (GlobalIdTable*) M->getAnnotation(GlobalIdTable::AnnotId);
|
||||
idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId);
|
||||
if (idTable == NULL) {
|
||||
idTable = new GlobalIdTable(M);
|
||||
M->addAnnotation(idTable);
|
||||
idTable = new GlobalIdTable(&M);
|
||||
M.addAnnotation(idTable);
|
||||
}
|
||||
}
|
||||
void startFunction(Function *F) {
|
||||
void startFunction(Function &F) {
|
||||
// Make sure the slot table has information about this function...
|
||||
idTable->Table.incorporateFunction(F);
|
||||
idTable->Table.incorporateFunction(&F);
|
||||
}
|
||||
void endFunction(Function *F) {
|
||||
void endFunction(Function &) {
|
||||
idTable->Table.purgeFunction(); // Forget all about F
|
||||
}
|
||||
void endModule() {
|
||||
@ -194,19 +194,19 @@ struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
|
||||
return "Output Sparc Assembly for Functions";
|
||||
}
|
||||
|
||||
virtual bool doInitialization(Module *M) {
|
||||
virtual bool doInitialization(Module &M) {
|
||||
startModule(M);
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual bool runOnFunction(Function *F) {
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
startFunction(F);
|
||||
emitFunction(F);
|
||||
endFunction(F);
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual bool doFinalization(Module *M) {
|
||||
virtual bool doFinalization(Module &M) {
|
||||
endModule();
|
||||
return false;
|
||||
}
|
||||
@ -215,7 +215,7 @@ struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
|
||||
void emitFunction(const Function *F);
|
||||
void emitFunction(const Function &F);
|
||||
private :
|
||||
void emitBasicBlock(const BasicBlock *BB);
|
||||
void emitMachineInst(const MachineInstr *MI);
|
||||
@ -385,9 +385,9 @@ SparcFunctionAsmPrinter::emitBasicBlock(const BasicBlock *BB)
|
||||
}
|
||||
|
||||
void
|
||||
SparcFunctionAsmPrinter::emitFunction(const Function *M)
|
||||
SparcFunctionAsmPrinter::emitFunction(const Function &F)
|
||||
{
|
||||
string methName = getID(M);
|
||||
string methName = getID(&F);
|
||||
toAsm << "!****** Outputing Function: " << methName << " ******\n";
|
||||
enterSection(AsmPrinter::Text);
|
||||
toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
|
||||
@ -396,8 +396,8 @@ SparcFunctionAsmPrinter::emitFunction(const Function *M)
|
||||
toAsm << methName << ":\n";
|
||||
|
||||
// Output code for all of the basic blocks in the function...
|
||||
for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
emitBasicBlock(*I);
|
||||
for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I)
|
||||
emitBasicBlock(I);
|
||||
|
||||
// Output a .size directive so the debugger knows the extents of the function
|
||||
toAsm << ".EndOf_" << methName << ":\n\t.size "
|
||||
@ -431,7 +431,7 @@ public:
|
||||
|
||||
const char *getPassName() const { return "Output Sparc Assembly for Module"; }
|
||||
|
||||
virtual bool run(Module *M) {
|
||||
virtual bool run(Module &M) {
|
||||
startModule(M);
|
||||
emitGlobalsAndConstants(M);
|
||||
endModule();
|
||||
@ -443,14 +443,14 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void emitGlobalsAndConstants(const Module *M);
|
||||
void emitGlobalsAndConstants(const Module &M);
|
||||
|
||||
void printGlobalVariable(const GlobalVariable *GV);
|
||||
void printSingleConstant( const Constant* CV);
|
||||
void printConstantValueOnly(const Constant* CV);
|
||||
void printConstant( const Constant* CV, std::string valID = "");
|
||||
|
||||
static void FoldConstants(const Module *M,
|
||||
static void FoldConstants(const Module &M,
|
||||
std::hash_set<const Constant*> &moduleConstants);
|
||||
};
|
||||
|
||||
@ -716,12 +716,12 @@ SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
|
||||
}
|
||||
|
||||
|
||||
void SparcModuleAsmPrinter::FoldConstants(const Module *M,
|
||||
void SparcModuleAsmPrinter::FoldConstants(const Module &M,
|
||||
std::hash_set<const Constant*> &MC) {
|
||||
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (!(*I)->isExternal()) {
|
||||
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (!I->isExternal()) {
|
||||
const std::hash_set<const Constant*> &pool =
|
||||
MachineCodeForMethod::get(*I).getConstantPoolValues();
|
||||
MachineCodeForMethod::get(I).getConstantPoolValues();
|
||||
MC.insert(pool.begin(), pool.end());
|
||||
}
|
||||
}
|
||||
@ -743,7 +743,7 @@ void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
|
||||
}
|
||||
|
||||
|
||||
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
|
||||
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) {
|
||||
// First, get the constants there were marked by the code generator for
|
||||
// inclusion in the assembly code data area and fold them all into a
|
||||
// single constant pool since there may be lots of duplicates. Also,
|
||||
@ -758,9 +758,9 @@ void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
|
||||
|
||||
// Section 1 : Read-only data section (implies initialized)
|
||||
enterSection(AsmPrinter::ReadOnlyData);
|
||||
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
|
||||
if ((*GI)->hasInitializer() && (*GI)->isConstant())
|
||||
printGlobalVariable(*GI);
|
||||
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
|
||||
if (GI->hasInitializer() && GI->isConstant())
|
||||
printGlobalVariable(GI);
|
||||
|
||||
for (std::hash_set<const Constant*>::const_iterator
|
||||
I = moduleConstants.begin(),
|
||||
@ -769,15 +769,15 @@ void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
|
||||
|
||||
// Section 2 : Initialized read-write data section
|
||||
enterSection(AsmPrinter::InitRWData);
|
||||
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
|
||||
if ((*GI)->hasInitializer() && ! (*GI)->isConstant())
|
||||
printGlobalVariable(*GI);
|
||||
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
|
||||
if (GI->hasInitializer() && !GI->isConstant())
|
||||
printGlobalVariable(GI);
|
||||
|
||||
// Section 3 : Uninitialized read-write data section
|
||||
enterSection(AsmPrinter::UninitRWData);
|
||||
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
|
||||
if (! (*GI)->hasInitializer())
|
||||
printGlobalVariable(*GI);
|
||||
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
|
||||
if (!GI->hasInitializer())
|
||||
printGlobalVariable(GI);
|
||||
|
||||
toAsm << "\n";
|
||||
}
|
||||
|
@ -61,13 +61,13 @@ namespace {
|
||||
|
||||
const char *getPassName() const { return "Emit Bytecode to Sparc Assembly";}
|
||||
|
||||
virtual bool run(Module *M) {
|
||||
virtual bool run(Module &M) {
|
||||
// Write bytecode out to the sparc assembly stream
|
||||
Out << "\n\n!LLVM BYTECODE OUTPUT\n\t.section \".rodata\"\n\t.align 8\n";
|
||||
Out << "\t.global LLVMBytecode\n\t.type LLVMBytecode,#object\n";
|
||||
Out << "LLVMBytecode:\n";
|
||||
osparcasmstream OS(Out);
|
||||
WriteBytecodeToFile(M, OS);
|
||||
WriteBytecodeToFile(&M, OS);
|
||||
|
||||
Out << ".end_LLVMBytecode:\n";
|
||||
Out << "\t.size LLVMBytecode, .end_LLVMBytecode-LLVMBytecode\n\n";
|
||||
|
@ -20,26 +20,25 @@
|
||||
#include "llvm/Instruction.h"
|
||||
|
||||
namespace {
|
||||
|
||||
class InsertPrologEpilogCode : public FunctionPass {
|
||||
TargetMachine &Target;
|
||||
public:
|
||||
InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
|
||||
|
||||
const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; }
|
||||
|
||||
bool runOnFunction(Function *F) {
|
||||
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(F);
|
||||
if (!mcodeInfo.isCompiledAsLeafMethod()) {
|
||||
InsertPrologCode(F);
|
||||
InsertEpilogCode(F);
|
||||
class InsertPrologEpilogCode : public FunctionPass {
|
||||
TargetMachine &Target;
|
||||
public:
|
||||
InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
|
||||
|
||||
const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; }
|
||||
|
||||
bool runOnFunction(Function &F) {
|
||||
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(&F);
|
||||
if (!mcodeInfo.isCompiledAsLeafMethod()) {
|
||||
InsertPrologCode(F);
|
||||
InsertEpilogCode(F);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void InsertPrologCode(Function *F);
|
||||
void InsertEpilogCode(Function *F);
|
||||
};
|
||||
|
||||
void InsertPrologCode(Function &F);
|
||||
void InsertEpilogCode(Function &F);
|
||||
};
|
||||
|
||||
} // End anonymous namespace
|
||||
|
||||
@ -51,10 +50,8 @@ public:
|
||||
// Create prolog and epilog code for procedure entry and exit
|
||||
//------------------------------------------------------------------------
|
||||
|
||||
void InsertPrologEpilogCode::InsertPrologCode(Function *F)
|
||||
void InsertPrologEpilogCode::InsertPrologCode(Function &F)
|
||||
{
|
||||
BasicBlock *entryBB = F->getEntryNode();
|
||||
|
||||
vector<MachineInstr*> mvec;
|
||||
MachineInstr* M;
|
||||
const MachineFrameInfo& frameInfo = Target.getFrameInfo();
|
||||
@ -64,7 +61,7 @@ void InsertPrologEpilogCode::InsertPrologCode(Function *F)
|
||||
// We will assume that local register `l0' is unused since the SAVE
|
||||
// instruction must be the first instruction in each procedure.
|
||||
//
|
||||
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(F);
|
||||
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(&F);
|
||||
unsigned int staticStackSize = mcInfo.getStaticStackSize();
|
||||
|
||||
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
|
||||
@ -104,26 +101,23 @@ void InsertPrologEpilogCode::InsertPrologCode(Function *F)
|
||||
mvec.push_back(M);
|
||||
}
|
||||
|
||||
MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec();
|
||||
bbMvec.insert(entryBB->getMachineInstrVec().begin(),
|
||||
mvec.begin(), mvec.end());
|
||||
MachineCodeForBasicBlock& bbMvec = F.getEntryNode().getMachineInstrVec();
|
||||
bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end());
|
||||
}
|
||||
|
||||
void InsertPrologEpilogCode::InsertEpilogCode(Function *F)
|
||||
void InsertPrologEpilogCode::InsertEpilogCode(Function &F)
|
||||
{
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
||||
Instruction *TermInst = (Instruction*)(*I)->getTerminator();
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
||||
Instruction *TermInst = (Instruction*)I->getTerminator();
|
||||
if (TermInst->getOpcode() == Instruction::Ret)
|
||||
{
|
||||
BasicBlock* exitBB = *I;
|
||||
|
||||
MachineInstr *Restore = new MachineInstr(RESTORE);
|
||||
Restore->SetMachineOperandReg(0, Target.getRegInfo().getZeroRegNum());
|
||||
Restore->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,
|
||||
(int64_t)0);
|
||||
Restore->SetMachineOperandReg(2, Target.getRegInfo().getZeroRegNum());
|
||||
|
||||
MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec();
|
||||
MachineCodeForBasicBlock& bbMvec = I->getMachineInstrVec();
|
||||
MachineCodeForInstruction &termMvec =
|
||||
MachineCodeForInstruction::get(TermInst);
|
||||
|
||||
|
@ -135,8 +135,8 @@ public:
|
||||
return "Sparc ConstructMachineCodeForFunction";
|
||||
}
|
||||
|
||||
bool runOnFunction(Function *F) {
|
||||
MachineCodeForMethod::construct(F, Target);
|
||||
bool runOnFunction(Function &F) {
|
||||
MachineCodeForMethod::construct(&F, Target);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
@ -147,9 +147,9 @@ public:
|
||||
inline InstructionSelection(TargetMachine &T) : Target(T) {}
|
||||
const char *getPassName() const { return "Sparc Instruction Selection"; }
|
||||
|
||||
bool runOnFunction(Function *F) {
|
||||
if (SelectInstructionsForMethod(F, Target)) {
|
||||
cerr << "Instr selection failed for function " << F->getName() << "\n";
|
||||
bool runOnFunction(Function &F) {
|
||||
if (SelectInstructionsForMethod(&F, Target)) {
|
||||
cerr << "Instr selection failed for function " << F.getName() << "\n";
|
||||
abort();
|
||||
}
|
||||
return false;
|
||||
@ -159,20 +159,17 @@ public:
|
||||
struct FreeMachineCodeForFunction : public FunctionPass {
|
||||
const char *getPassName() const { return "Sparc FreeMachineCodeForFunction"; }
|
||||
|
||||
static void freeMachineCode(Instruction *I) {
|
||||
MachineCodeForInstruction::destroy(I);
|
||||
static void freeMachineCode(Instruction &I) {
|
||||
MachineCodeForInstruction::destroy(&I);
|
||||
}
|
||||
|
||||
bool runOnFunction(Function *F) {
|
||||
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
|
||||
for (BasicBlock::iterator I = (*FI)->begin(), E = (*FI)->end();
|
||||
I != E; ++I)
|
||||
MachineCodeForInstruction::get(*I).dropAllReferences();
|
||||
bool runOnFunction(Function &F) {
|
||||
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
||||
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I)
|
||||
MachineCodeForInstruction::get(I).dropAllReferences();
|
||||
|
||||
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
|
||||
for (BasicBlock::iterator I = (*FI)->begin(), E = (*FI)->end();
|
||||
I != E; ++I)
|
||||
freeMachineCode(*I);
|
||||
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
||||
for_each(FI->begin(), FI->end(), freeMachineCode);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -286,29 +286,26 @@ void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth,
|
||||
// check if this is a varArgs function. needed for choosing regs.
|
||||
bool isVarArgs = isVarArgsFunction(Meth->getType());
|
||||
|
||||
// get the argument list
|
||||
const Function::ArgumentListType& ArgList = Meth->getArgumentList();
|
||||
|
||||
// for each argument. count INT and FP arguments separately.
|
||||
for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
||||
argNo != ArgList.size(); ++argNo)
|
||||
{
|
||||
// get the LR of arg
|
||||
LiveRange *LR = LRI.getLiveRangeForValue((const Value *)ArgList[argNo]);
|
||||
assert( LR && "No live range found for method arg");
|
||||
|
||||
unsigned regType = getRegType( LR );
|
||||
unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
|
||||
|
||||
int regNum = (regType == IntRegType)
|
||||
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
|
||||
argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
|
||||
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
|
||||
argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
|
||||
|
||||
if(regNum != InvalidRegNum)
|
||||
LR->setSuggestedColor(regNum);
|
||||
}
|
||||
unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
||||
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
|
||||
I != E; ++I, ++argNo) {
|
||||
// get the LR of arg
|
||||
LiveRange *LR = LRI.getLiveRangeForValue(I);
|
||||
assert(LR && "No live range found for method arg");
|
||||
|
||||
unsigned regType = getRegType(LR);
|
||||
unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
|
||||
|
||||
int regNum = (regType == IntRegType)
|
||||
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
|
||||
argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
|
||||
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
|
||||
argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
|
||||
|
||||
if(regNum != InvalidRegNum)
|
||||
LR->setSuggestedColor(regNum);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -323,16 +320,15 @@ void UltraSparcRegInfo::colorMethodArgs(const Function *Meth,
|
||||
|
||||
// check if this is a varArgs function. needed for choosing regs.
|
||||
bool isVarArgs = isVarArgsFunction(Meth->getType());
|
||||
// get the argument list
|
||||
const Function::ArgumentListType& ArgList = Meth->getArgumentList();
|
||||
// get an iterator to arg list
|
||||
MachineInstr *AdMI;
|
||||
|
||||
// for each argument
|
||||
for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
||||
argNo != ArgList.size(); ++argNo) {
|
||||
// for each argument. count INT and FP arguments separately.
|
||||
unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
||||
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
|
||||
I != E; ++I, ++argNo) {
|
||||
// get the LR of arg
|
||||
LiveRange *LR = LRI.getLiveRangeForValue((Value*)ArgList[argNo]);
|
||||
LiveRange *LR = LRI.getLiveRangeForValue(I);
|
||||
assert( LR && "No live range found for method arg");
|
||||
|
||||
unsigned regType = getRegType( LR );
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
static Statistic<> NumRemoved("globaldce\t- Number of global values removed");
|
||||
|
||||
static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
|
||||
static bool RemoveUnreachableFunctions(Module &M, CallGraph &CallGraph) {
|
||||
// Calculate which functions are reachable from the external functions in the
|
||||
// call graph.
|
||||
//
|
||||
@ -27,10 +27,10 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
|
||||
// The second pass removes the functions that need to be removed.
|
||||
//
|
||||
std::vector<CallGraphNode*> FunctionsToDelete; // Track unused functions
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
||||
CallGraphNode *N = CallGraph[*I];
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
||||
CallGraphNode *N = CallGraph[I];
|
||||
if (!ReachableNodes.count(N)) { // Not reachable??
|
||||
(*I)->dropAllReferences();
|
||||
I->dropAllReferences();
|
||||
N->removeAllCalledMethods();
|
||||
FunctionsToDelete.push_back(N);
|
||||
++NumRemoved;
|
||||
@ -50,17 +50,16 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool RemoveUnreachableGlobalVariables(Module *M) {
|
||||
static bool RemoveUnreachableGlobalVariables(Module &M) {
|
||||
bool Changed = false;
|
||||
// Eliminate all global variables that are unused, and that are internal, or
|
||||
// do not have an initializer.
|
||||
//
|
||||
for (Module::giterator I = M->gbegin(); I != M->gend(); )
|
||||
if (!(*I)->use_empty() ||
|
||||
((*I)->hasExternalLinkage() && (*I)->hasInitializer()))
|
||||
for (Module::giterator I = M.gbegin(); I != M.gend(); )
|
||||
if (!I->use_empty() || (I->hasExternalLinkage() && I->hasInitializer()))
|
||||
++I; // Cannot eliminate global variable
|
||||
else {
|
||||
delete M->getGlobalList().remove(I);
|
||||
I = M.getGlobalList().erase(I);
|
||||
++NumRemoved;
|
||||
Changed = true;
|
||||
}
|
||||
@ -74,7 +73,7 @@ namespace {
|
||||
// run - Do the GlobalDCE pass on the specified module, optionally updating
|
||||
// the specified callgraph to reflect the changes.
|
||||
//
|
||||
bool run(Module *M) {
|
||||
bool run(Module &M) {
|
||||
return RemoveUnreachableFunctions(M, getAnalysis<CallGraph>()) |
|
||||
RemoveUnreachableGlobalVariables(M);
|
||||
}
|
||||
|
@ -17,10 +17,10 @@ static Statistic<> NumChanged("internalize\t- Number of functions internal'd");
|
||||
class InternalizePass : public Pass {
|
||||
const char *getPassName() const { return "Internalize Functions"; }
|
||||
|
||||
virtual bool run(Module *M) {
|
||||
virtual bool run(Module &M) {
|
||||
bool FoundMain = false; // Look for a function named main...
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if ((*I)->getName() == "main" && !(*I)->isExternal()) {
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (I->getName() == "main" && !I->isExternal()) {
|
||||
FoundMain = true;
|
||||
break;
|
||||
}
|
||||
@ -30,10 +30,10 @@ class InternalizePass : public Pass {
|
||||
bool Changed = false;
|
||||
|
||||
// Found a main function, mark all functions not named main as internal.
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if ((*I)->getName() != "main" && // Leave the main function external
|
||||
!(*I)->isExternal()) { // Function must be defined here
|
||||
(*I)->setInternalLinkage(true);
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (I->getName() != "main" && // Leave the main function external
|
||||
!I->isExternal()) { // Function must be defined here
|
||||
I->setInternalLinkage(true);
|
||||
Changed = true;
|
||||
++NumChanged;
|
||||
}
|
||||
|
@ -95,7 +95,7 @@ const Type *MutateStructTypes::ConvertType(const Type *Ty) {
|
||||
assert(DestTy && "Type didn't get created!?!?");
|
||||
|
||||
// Refine our little placeholder value into a real type...
|
||||
cast<DerivedType>(PlaceHolder.get())->refineAbstractTypeTo(DestTy);
|
||||
((DerivedType*)PlaceHolder.get())->refineAbstractTypeTo(DestTy);
|
||||
TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
|
||||
|
||||
return PlaceHolder.get();
|
||||
@ -139,9 +139,9 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
|
||||
// Ignore null values and simple constants..
|
||||
if (V == 0) return 0;
|
||||
|
||||
if (Constant *CPV = dyn_cast<Constant>(V)) {
|
||||
if (const Constant *CPV = dyn_cast<Constant>(V)) {
|
||||
if (V->getType()->isPrimitiveType())
|
||||
return CPV;
|
||||
return (Value*)CPV;
|
||||
|
||||
if (isa<ConstantPointerNull>(CPV))
|
||||
return ConstantPointerNull::get(
|
||||
@ -150,11 +150,11 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
|
||||
}
|
||||
|
||||
// Check to see if this is an out of function reference first...
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
// Check to see if the value is in the map...
|
||||
map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
|
||||
if (I == GlobalMap.end())
|
||||
return GV; // Not mapped, just return value itself
|
||||
return (Value*)GV; // Not mapped, just return value itself
|
||||
return I->second;
|
||||
}
|
||||
|
||||
@ -221,7 +221,7 @@ void MutateStructTypes::setTransforms(const TransformsType &XForm) {
|
||||
// types...
|
||||
//
|
||||
const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
|
||||
cast<DerivedType>(OldTypeStub)->refineAbstractTypeTo(NSTy);
|
||||
((DerivedType*)OldTypeStub)->refineAbstractTypeTo(NSTy);
|
||||
|
||||
// Add the transformation to the Transforms map.
|
||||
Transforms.insert(std::make_pair(OldTy,
|
||||
@ -239,52 +239,46 @@ void MutateStructTypes::clearTransforms() {
|
||||
"Local Value Map should always be empty between transformations!");
|
||||
}
|
||||
|
||||
// doInitialization - This loops over global constants defined in the
|
||||
// processGlobals - This loops over global constants defined in the
|
||||
// module, converting them to their new type.
|
||||
//
|
||||
void MutateStructTypes::processGlobals(Module *M) {
|
||||
void MutateStructTypes::processGlobals(Module &M) {
|
||||
// Loop through the functions in the module and create a new version of the
|
||||
// function to contained the transformed code. Don't use an iterator, because
|
||||
// we will be adding values to the end of the vector, and it could be
|
||||
// reallocated. Also, we don't want to process the values that we add.
|
||||
// function to contained the transformed code. Also, be careful to not
|
||||
// process the values that we add.
|
||||
//
|
||||
unsigned NumFunctions = M->size();
|
||||
for (unsigned i = 0; i < NumFunctions; ++i) {
|
||||
Function *Meth = M->begin()[i];
|
||||
|
||||
if (!Meth->isExternal()) {
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (!I->isExternal()) {
|
||||
const FunctionType *NewMTy =
|
||||
cast<FunctionType>(ConvertType(Meth->getFunctionType()));
|
||||
cast<FunctionType>(ConvertType(I->getFunctionType()));
|
||||
|
||||
// Create a new function to put stuff into...
|
||||
Function *NewMeth = new Function(NewMTy, Meth->hasInternalLinkage(),
|
||||
Meth->getName());
|
||||
if (Meth->hasName())
|
||||
Meth->setName("OLD."+Meth->getName());
|
||||
Function *NewMeth = new Function(NewMTy, I->hasInternalLinkage(),
|
||||
I->getName());
|
||||
if (I->hasName())
|
||||
I->setName("OLD."+I->getName());
|
||||
|
||||
// Insert the new function into the function list... to be filled in later
|
||||
M->getFunctionList().push_back(NewMeth);
|
||||
M.getFunctionList().push_back(NewMeth);
|
||||
|
||||
// Keep track of the association...
|
||||
GlobalMap[Meth] = NewMeth;
|
||||
GlobalMap[I] = NewMeth;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: HANDLE GLOBAL VARIABLES
|
||||
|
||||
// Remap the symbol table to refer to the types in a nice way
|
||||
//
|
||||
if (M->hasSymbolTable()) {
|
||||
SymbolTable *ST = M->getSymbolTable();
|
||||
if (SymbolTable *ST = M.getSymbolTable()) {
|
||||
SymbolTable::iterator I = ST->find(Type::TypeTy);
|
||||
if (I != ST->end()) { // Get the type plane for Type's
|
||||
SymbolTable::VarMap &Plane = I->second;
|
||||
for (SymbolTable::type_iterator TI = Plane.begin(), TE = Plane.end();
|
||||
TI != TE; ++TI) {
|
||||
// This is gross, I'm reaching right into a symbol table and mucking
|
||||
// around with it's internals... but oh well.
|
||||
// FIXME: This is gross, I'm reaching right into a symbol table and
|
||||
// mucking around with it's internals... but oh well.
|
||||
//
|
||||
TI->second = cast<Type>(ConvertType(cast<Type>(TI->second)));
|
||||
TI->second = (Value*)cast<Type>(ConvertType(cast<Type>(TI->second)));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -293,20 +287,20 @@ void MutateStructTypes::processGlobals(Module *M) {
|
||||
|
||||
// removeDeadGlobals - For this pass, all this does is remove the old versions
|
||||
// of the functions and global variables that we no longer need.
|
||||
void MutateStructTypes::removeDeadGlobals(Module *M) {
|
||||
void MutateStructTypes::removeDeadGlobals(Module &M) {
|
||||
// Prepare for deletion of globals by dropping their interdependencies...
|
||||
for(Module::iterator I = M->begin(); I != M->end(); ++I) {
|
||||
if (GlobalMap.find(*I) != GlobalMap.end())
|
||||
(*I)->Function::dropAllReferences();
|
||||
for(Module::iterator I = M.begin(); I != M.end(); ++I) {
|
||||
if (GlobalMap.find(I) != GlobalMap.end())
|
||||
I->dropAllReferences();
|
||||
}
|
||||
|
||||
// Run through and delete the functions and global variables...
|
||||
#if 0 // TODO: HANDLE GLOBAL VARIABLES
|
||||
M->getGlobalList().delete_span(M->gbegin(), M->gbegin()+NumGVars/2);
|
||||
M->getGlobalList().delete_span(M.gbegin(), M.gbegin()+NumGVars/2);
|
||||
#endif
|
||||
for(Module::iterator I = M->begin(); I != M->end();) {
|
||||
if (GlobalMap.find(*I) != GlobalMap.end())
|
||||
delete M->getFunctionList().remove(I);
|
||||
for(Module::iterator I = M.begin(); I != M.end();) {
|
||||
if (GlobalMap.find(I) != GlobalMap.end())
|
||||
I = M.getFunctionList().erase(I);
|
||||
else
|
||||
++I;
|
||||
}
|
||||
@ -326,46 +320,43 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
Function *NewMeth = cast<Function>(GMI->second);
|
||||
|
||||
// Okay, first order of business, create the arguments...
|
||||
for (unsigned i = 0, e = M->getArgumentList().size(); i != e; ++i) {
|
||||
const Argument *OFA = M->getArgumentList()[i];
|
||||
Argument *NFA = new Argument(ConvertType(OFA->getType()), OFA->getName());
|
||||
for (Function::aiterator I = m->abegin(), E = m->aend(); I != E; ++I) {
|
||||
Argument *NFA = new Argument(ConvertType(I->getType()), I->getName());
|
||||
NewMeth->getArgumentList().push_back(NFA);
|
||||
LocalValueMap[OFA] = NFA; // Keep track of value mapping
|
||||
LocalValueMap[I] = NFA; // Keep track of value mapping
|
||||
}
|
||||
|
||||
|
||||
// Loop over all of the basic blocks copying instructions over...
|
||||
for (Function::const_iterator BBI = M->begin(), BBE = M->end(); BBI != BBE;
|
||||
++BBI) {
|
||||
|
||||
for (Function::const_iterator BB = M->begin(), BBE = M->end(); BB != BBE;
|
||||
++BB) {
|
||||
// Create a new basic block and establish a mapping between the old and new
|
||||
const BasicBlock *BB = *BBI;
|
||||
BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
|
||||
NewMeth->getBasicBlocks().push_back(NewBB); // Add block to function
|
||||
NewMeth->getBasicBlockList().push_back(NewBB); // Add block to function
|
||||
|
||||
// Copy over all of the instructions in the basic block...
|
||||
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
||||
II != IE; ++II) {
|
||||
|
||||
const Instruction *I = *II; // Get the current instruction...
|
||||
const Instruction &I = *II; // Get the current instruction...
|
||||
Instruction *NewI = 0;
|
||||
|
||||
switch (I->getOpcode()) {
|
||||
switch (I.getOpcode()) {
|
||||
// Terminator Instructions
|
||||
case Instruction::Ret:
|
||||
NewI = new ReturnInst(
|
||||
ConvertValue(cast<ReturnInst>(I)->getReturnValue()));
|
||||
ConvertValue(cast<ReturnInst>(I).getReturnValue()));
|
||||
break;
|
||||
case Instruction::Br: {
|
||||
const BranchInst *BI = cast<BranchInst>(I);
|
||||
if (BI->isConditional()) {
|
||||
const BranchInst &BI = cast<BranchInst>(I);
|
||||
if (BI.isConditional()) {
|
||||
NewI =
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))),
|
||||
cast<BasicBlock>(ConvertValue(BI->getSuccessor(1))),
|
||||
ConvertValue(BI->getCondition()));
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))),
|
||||
cast<BasicBlock>(ConvertValue(BI.getSuccessor(1))),
|
||||
ConvertValue(BI.getCondition()));
|
||||
} else {
|
||||
NewI =
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))));
|
||||
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))));
|
||||
}
|
||||
break;
|
||||
}
|
||||
@ -375,8 +366,8 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
|
||||
// Unary Instructions
|
||||
case Instruction::Not:
|
||||
NewI = UnaryOperator::create((Instruction::UnaryOps)I->getOpcode(),
|
||||
ConvertValue(I->getOperand(0)));
|
||||
NewI = UnaryOperator::create((Instruction::UnaryOps)I.getOpcode(),
|
||||
ConvertValue(I.getOperand(0)));
|
||||
break;
|
||||
|
||||
// Binary Instructions
|
||||
@ -397,41 +388,41 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
case Instruction::SetGE:
|
||||
case Instruction::SetLT:
|
||||
case Instruction::SetGT:
|
||||
NewI = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
|
||||
ConvertValue(I->getOperand(0)),
|
||||
ConvertValue(I->getOperand(1)));
|
||||
NewI = BinaryOperator::create((Instruction::BinaryOps)I.getOpcode(),
|
||||
ConvertValue(I.getOperand(0)),
|
||||
ConvertValue(I.getOperand(1)));
|
||||
break;
|
||||
|
||||
case Instruction::Shr:
|
||||
case Instruction::Shl:
|
||||
NewI = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
|
||||
ConvertValue(I->getOperand(0)),
|
||||
ConvertValue(I->getOperand(1)));
|
||||
NewI = new ShiftInst(cast<ShiftInst>(I).getOpcode(),
|
||||
ConvertValue(I.getOperand(0)),
|
||||
ConvertValue(I.getOperand(1)));
|
||||
break;
|
||||
|
||||
|
||||
// Memory Instructions
|
||||
case Instruction::Alloca:
|
||||
NewI =
|
||||
new AllocaInst(ConvertType(I->getType()),
|
||||
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
|
||||
new AllocaInst(ConvertType(I.getType()),
|
||||
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
|
||||
break;
|
||||
case Instruction::Malloc:
|
||||
NewI =
|
||||
new MallocInst(ConvertType(I->getType()),
|
||||
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
|
||||
new MallocInst(ConvertType(I.getType()),
|
||||
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
|
||||
break;
|
||||
|
||||
case Instruction::Free:
|
||||
NewI = new FreeInst(ConvertValue(I->getOperand(0)));
|
||||
NewI = new FreeInst(ConvertValue(I.getOperand(0)));
|
||||
break;
|
||||
|
||||
case Instruction::Load:
|
||||
case Instruction::Store:
|
||||
case Instruction::GetElementPtr: {
|
||||
const MemAccessInst *MAI = cast<MemAccessInst>(I);
|
||||
vector<Value*> Indices(MAI->idx_begin(), MAI->idx_end());
|
||||
const Value *Ptr = MAI->getPointerOperand();
|
||||
const MemAccessInst &MAI = cast<MemAccessInst>(I);
|
||||
vector<Value*> Indices(MAI.idx_begin(), MAI.idx_end());
|
||||
const Value *Ptr = MAI.getPointerOperand();
|
||||
Value *NewPtr = ConvertValue(Ptr);
|
||||
if (!Indices.empty()) {
|
||||
const Type *PTy = cast<PointerType>(Ptr->getType())->getElementType();
|
||||
@ -441,7 +432,7 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
if (isa<LoadInst>(I)) {
|
||||
NewI = new LoadInst(NewPtr, Indices);
|
||||
} else if (isa<StoreInst>(I)) {
|
||||
NewI = new StoreInst(ConvertValue(I->getOperand(0)), NewPtr, Indices);
|
||||
NewI = new StoreInst(ConvertValue(I.getOperand(0)), NewPtr, Indices);
|
||||
} else if (isa<GetElementPtrInst>(I)) {
|
||||
NewI = new GetElementPtrInst(NewPtr, Indices);
|
||||
} else {
|
||||
@ -452,23 +443,23 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
|
||||
// Miscellaneous Instructions
|
||||
case Instruction::PHINode: {
|
||||
const PHINode *OldPN = cast<PHINode>(I);
|
||||
PHINode *PN = new PHINode(ConvertType(I->getType()));
|
||||
for (unsigned i = 0; i < OldPN->getNumIncomingValues(); ++i)
|
||||
PN->addIncoming(ConvertValue(OldPN->getIncomingValue(i)),
|
||||
cast<BasicBlock>(ConvertValue(OldPN->getIncomingBlock(i))));
|
||||
const PHINode &OldPN = cast<PHINode>(I);
|
||||
PHINode *PN = new PHINode(ConvertType(OldPN.getType()));
|
||||
for (unsigned i = 0; i < OldPN.getNumIncomingValues(); ++i)
|
||||
PN->addIncoming(ConvertValue(OldPN.getIncomingValue(i)),
|
||||
cast<BasicBlock>(ConvertValue(OldPN.getIncomingBlock(i))));
|
||||
NewI = PN;
|
||||
break;
|
||||
}
|
||||
case Instruction::Cast:
|
||||
NewI = new CastInst(ConvertValue(I->getOperand(0)),
|
||||
ConvertType(I->getType()));
|
||||
NewI = new CastInst(ConvertValue(I.getOperand(0)),
|
||||
ConvertType(I.getType()));
|
||||
break;
|
||||
case Instruction::Call: {
|
||||
Value *Meth = ConvertValue(I->getOperand(0));
|
||||
Value *Meth = ConvertValue(I.getOperand(0));
|
||||
vector<Value*> Operands;
|
||||
for (unsigned i = 1; i < I->getNumOperands(); ++i)
|
||||
Operands.push_back(ConvertValue(I->getOperand(i)));
|
||||
for (unsigned i = 1; i < I.getNumOperands(); ++i)
|
||||
Operands.push_back(ConvertValue(I.getOperand(i)));
|
||||
NewI = new CallInst(Meth, Operands);
|
||||
break;
|
||||
}
|
||||
@ -478,11 +469,11 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
break;
|
||||
}
|
||||
|
||||
NewI->setName(I->getName());
|
||||
NewI->setName(I.getName());
|
||||
NewBB->getInstList().push_back(NewI);
|
||||
|
||||
// Check to see if we had to make a placeholder for this value...
|
||||
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(I);
|
||||
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(&I);
|
||||
if (LVMI != LocalValueMap.end()) {
|
||||
// Yup, make sure it's a placeholder...
|
||||
Instruction *I = cast<Instruction>(LVMI->second);
|
||||
@ -495,7 +486,7 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
|
||||
// Keep track of the fact the the local implementation of this instruction
|
||||
// is NewI.
|
||||
LocalValueMap[I] = NewI;
|
||||
LocalValueMap[&I] = NewI;
|
||||
}
|
||||
}
|
||||
|
||||
@ -503,11 +494,11 @@ void MutateStructTypes::transformFunction(Function *m) {
|
||||
}
|
||||
|
||||
|
||||
bool MutateStructTypes::run(Module *M) {
|
||||
bool MutateStructTypes::run(Module &M) {
|
||||
processGlobals(M);
|
||||
|
||||
for_each(M->begin(), M->end(),
|
||||
bind_obj(this, &MutateStructTypes::transformFunction));
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
transformFunction(I);
|
||||
|
||||
removeDeadGlobals(M);
|
||||
return true;
|
||||
|
@ -13,8 +13,6 @@
|
||||
#include "llvm/Transforms/Utils/CloneFunction.h"
|
||||
#include "llvm/Analysis/DataStructureGraph.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iTerminators.h"
|
||||
#include "llvm/iPHINode.h"
|
||||
@ -23,7 +21,6 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
#include "llvm/Argument.h"
|
||||
#include "Support/DepthFirstIterator.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
@ -62,9 +59,9 @@ const Type *POINTERTYPE;
|
||||
static TargetData TargetData("test");
|
||||
|
||||
static const Type *getPointerTransformedType(const Type *Ty) {
|
||||
if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
|
||||
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
|
||||
return POINTERTYPE;
|
||||
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
||||
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
||||
vector<const Type *> NewElTypes;
|
||||
NewElTypes.reserve(STy->getElementTypes().size());
|
||||
for (StructType::ElementTypes::const_iterator
|
||||
@ -72,7 +69,7 @@ static const Type *getPointerTransformedType(const Type *Ty) {
|
||||
E = STy->getElementTypes().end(); I != E; ++I)
|
||||
NewElTypes.push_back(getPointerTransformedType(*I));
|
||||
return StructType::get(NewElTypes);
|
||||
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
||||
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
||||
return ArrayType::get(getPointerTransformedType(ATy->getElementType()),
|
||||
ATy->getNumElements());
|
||||
} else {
|
||||
@ -233,7 +230,7 @@ namespace {
|
||||
return Result;
|
||||
}
|
||||
|
||||
bool run(Module *M);
|
||||
bool run(Module &M);
|
||||
|
||||
// getAnalysisUsage - This function requires data structure information
|
||||
// to be able to see what is pool allocatable.
|
||||
@ -273,7 +270,7 @@ namespace {
|
||||
// specified module and update the Pool* instance variables to point to
|
||||
// them.
|
||||
//
|
||||
void addPoolPrototypes(Module *M);
|
||||
void addPoolPrototypes(Module &M);
|
||||
|
||||
|
||||
// CreatePools - Insert instructions into the function we are processing to
|
||||
@ -410,12 +407,13 @@ class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
|
||||
return 0;
|
||||
}
|
||||
|
||||
BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
|
||||
BasicBlock *BB = I->getParent();
|
||||
BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
|
||||
BB->getInstList().replaceWith(RI, New);
|
||||
XFormMap[I] = New;
|
||||
return RI;
|
||||
BasicBlock::iterator ReplaceInstWith(Instruction &I, Instruction *New) {
|
||||
BasicBlock *BB = I.getParent();
|
||||
BasicBlock::iterator RI = &I;
|
||||
BB->getInstList().remove(RI);
|
||||
BB->getInstList().insert(RI, New);
|
||||
XFormMap[&I] = New;
|
||||
return New;
|
||||
}
|
||||
|
||||
Instruction *createPoolBaseInstruction(Value *PtrVal) {
|
||||
@ -471,36 +469,36 @@ public:
|
||||
// NewInstructionCreator instance...
|
||||
//===--------------------------------------------------------------------===//
|
||||
|
||||
void visitGetElementPtrInst(GetElementPtrInst *I) {
|
||||
void visitGetElementPtrInst(GetElementPtrInst &I) {
|
||||
assert(0 && "Cannot transform get element ptr instructions yet!");
|
||||
}
|
||||
|
||||
// Replace the load instruction with a new one.
|
||||
void visitLoadInst(LoadInst *I) {
|
||||
void visitLoadInst(LoadInst &I) {
|
||||
vector<Instruction *> BeforeInsts;
|
||||
|
||||
// Cast our index to be a UIntTy so we can use it to index into the pool...
|
||||
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
|
||||
Type::UIntTy, I->getOperand(0)->getName());
|
||||
Type::UIntTy, I.getOperand(0)->getName());
|
||||
BeforeInsts.push_back(Index);
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(0)));
|
||||
|
||||
// Include the pool base instruction...
|
||||
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
|
||||
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(0));
|
||||
BeforeInsts.push_back(PoolBase);
|
||||
|
||||
Instruction *IdxInst =
|
||||
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index,
|
||||
I->getName()+".idx");
|
||||
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index,
|
||||
I.getName()+".idx");
|
||||
BeforeInsts.push_back(IdxInst);
|
||||
|
||||
vector<Value*> Indices(I->idx_begin(), I->idx_end());
|
||||
vector<Value*> Indices(I.idx_begin(), I.idx_end());
|
||||
Indices[0] = IdxInst;
|
||||
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
|
||||
I->getName()+".addr");
|
||||
I.getName()+".addr");
|
||||
BeforeInsts.push_back(Address);
|
||||
|
||||
Instruction *NewLoad = new LoadInst(Address, I->getName());
|
||||
Instruction *NewLoad = new LoadInst(Address, I.getName());
|
||||
|
||||
// Replace the load instruction with the new load instruction...
|
||||
BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
|
||||
@ -512,57 +510,58 @@ public:
|
||||
// If not yielding a pool allocated pointer, use the new load value as the
|
||||
// value in the program instead of the old load value...
|
||||
//
|
||||
if (!getScalar(I))
|
||||
I->replaceAllUsesWith(NewLoad);
|
||||
if (!getScalar(&I))
|
||||
I.replaceAllUsesWith(NewLoad);
|
||||
}
|
||||
|
||||
// Replace the store instruction with a new one. In the store instruction,
|
||||
// the value stored could be a pointer type, meaning that the new store may
|
||||
// have to change one or both of it's operands.
|
||||
//
|
||||
void visitStoreInst(StoreInst *I) {
|
||||
assert(getScalar(I->getOperand(1)) &&
|
||||
void visitStoreInst(StoreInst &I) {
|
||||
assert(getScalar(I.getOperand(1)) &&
|
||||
"Store inst found only storing pool allocated pointer. "
|
||||
"Not imp yet!");
|
||||
|
||||
Value *Val = I->getOperand(0); // The value to store...
|
||||
Value *Val = I.getOperand(0); // The value to store...
|
||||
|
||||
// Check to see if the value we are storing is a data structure pointer...
|
||||
//if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
|
||||
if (isa<PointerType>(I->getOperand(0)->getType()))
|
||||
//if (const ScalarInfo *ValScalar = getScalar(I.getOperand(0)))
|
||||
if (isa<PointerType>(I.getOperand(0)->getType()))
|
||||
Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy
|
||||
|
||||
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
|
||||
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(1));
|
||||
|
||||
// Cast our index to be a UIntTy so we can use it to index into the pool...
|
||||
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
|
||||
Type::UIntTy, I->getOperand(1)->getName());
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
|
||||
Type::UIntTy, I.getOperand(1)->getName());
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(1)));
|
||||
|
||||
// Instructions to add after the Index...
|
||||
vector<Instruction*> AfterInsts;
|
||||
|
||||
Instruction *IdxInst =
|
||||
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, "idx");
|
||||
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index, "idx");
|
||||
AfterInsts.push_back(IdxInst);
|
||||
|
||||
vector<Value*> Indices(I->idx_begin(), I->idx_end());
|
||||
vector<Value*> Indices(I.idx_begin(), I.idx_end());
|
||||
Indices[0] = IdxInst;
|
||||
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
|
||||
I->getName()+"storeaddr");
|
||||
I.getName()+"storeaddr");
|
||||
AfterInsts.push_back(Address);
|
||||
|
||||
Instruction *NewStore = new StoreInst(Val, Address);
|
||||
AfterInsts.push_back(NewStore);
|
||||
if (Val != I->getOperand(0)) // Value stored was a pointer?
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
|
||||
if (Val != I.getOperand(0)) // Value stored was a pointer?
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I.getOperand(0)));
|
||||
|
||||
|
||||
// Replace the store instruction with the cast instruction...
|
||||
BasicBlock::iterator II = ReplaceInstWith(I, Index);
|
||||
|
||||
// Add the pool base calculator instruction before the index...
|
||||
II = Index->getParent()->getInstList().insert(II, PoolBase)+2;
|
||||
II = ++Index->getParent()->getInstList().insert(II, PoolBase);
|
||||
++II;
|
||||
|
||||
// Add the instructions that go after the index...
|
||||
Index->getParent()->getInstList().insert(II, AfterInsts.begin(),
|
||||
@ -571,42 +570,42 @@ public:
|
||||
|
||||
|
||||
// Create call to poolalloc for every malloc instruction
|
||||
void visitMallocInst(MallocInst *I) {
|
||||
const ScalarInfo &SCI = getScalarRef(I);
|
||||
void visitMallocInst(MallocInst &I) {
|
||||
const ScalarInfo &SCI = getScalarRef(&I);
|
||||
vector<Value*> Args;
|
||||
|
||||
CallInst *Call;
|
||||
if (!I->isArrayAllocation()) {
|
||||
if (!I.isArrayAllocation()) {
|
||||
Args.push_back(SCI.Pool.Handle);
|
||||
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
|
||||
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I.getName());
|
||||
} else {
|
||||
Args.push_back(I->getArraySize());
|
||||
Args.push_back(I.getArraySize());
|
||||
Args.push_back(SCI.Pool.Handle);
|
||||
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName());
|
||||
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I.getName());
|
||||
}
|
||||
|
||||
ReplaceInstWith(I, Call);
|
||||
}
|
||||
|
||||
// Convert a call to poolfree for every free instruction...
|
||||
void visitFreeInst(FreeInst *I) {
|
||||
void visitFreeInst(FreeInst &I) {
|
||||
// Create a new call to poolfree before the free instruction
|
||||
vector<Value*> Args;
|
||||
Args.push_back(Constant::getNullValue(POINTERTYPE));
|
||||
Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
|
||||
Args.push_back(getScalarRef(I.getOperand(0)).Pool.Handle);
|
||||
Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
|
||||
ReplaceInstWith(I, NewCall);
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I.getOperand(0)));
|
||||
}
|
||||
|
||||
// visitCallInst - Create a new call instruction with the extra arguments for
|
||||
// all of the memory pools that the call needs.
|
||||
//
|
||||
void visitCallInst(CallInst *I) {
|
||||
TransformFunctionInfo &TI = CallMap[I];
|
||||
void visitCallInst(CallInst &I) {
|
||||
TransformFunctionInfo &TI = CallMap[&I];
|
||||
|
||||
// Start with all of the old arguments...
|
||||
vector<Value*> Args(I->op_begin()+1, I->op_end());
|
||||
vector<Value*> Args(I.op_begin()+1, I.op_end());
|
||||
|
||||
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
|
||||
// Replace all of the pointer arguments with our new pointer typed values.
|
||||
@ -618,7 +617,7 @@ public:
|
||||
}
|
||||
|
||||
Function *NF = PoolAllocator.getTransformedFunction(TI);
|
||||
Instruction *NewCall = new CallInst(NF, Args, I->getName());
|
||||
Instruction *NewCall = new CallInst(NF, Args, I.getName());
|
||||
ReplaceInstWith(I, NewCall);
|
||||
|
||||
// Keep track of the mapping of operands so that we can resolve them to real
|
||||
@ -627,7 +626,7 @@ public:
|
||||
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
|
||||
if (TI.ArgInfo[i].ArgNo != -1)
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
|
||||
I->getOperand(TI.ArgInfo[i].ArgNo+1)));
|
||||
I.getOperand(TI.ArgInfo[i].ArgNo+1)));
|
||||
else
|
||||
RetVal = 0; // If returning a pointer, don't change retval...
|
||||
|
||||
@ -635,47 +634,47 @@ public:
|
||||
// instead of the old call...
|
||||
//
|
||||
if (RetVal)
|
||||
I->replaceAllUsesWith(RetVal);
|
||||
I.replaceAllUsesWith(RetVal);
|
||||
}
|
||||
|
||||
// visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
|
||||
// nodes...
|
||||
//
|
||||
void visitPHINode(PHINode *PN) {
|
||||
void visitPHINode(PHINode &PN) {
|
||||
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
|
||||
PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
|
||||
PHINode *NewPhi = new PHINode(POINTERTYPE, PN.getName());
|
||||
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
||||
NewPhi->addIncoming(DummyVal, PN.getIncomingBlock(i));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
|
||||
PN->getIncomingValue(i)));
|
||||
PN.getIncomingValue(i)));
|
||||
}
|
||||
|
||||
ReplaceInstWith(PN, NewPhi);
|
||||
}
|
||||
|
||||
// visitReturnInst - Replace ret instruction with a new return...
|
||||
void visitReturnInst(ReturnInst *I) {
|
||||
void visitReturnInst(ReturnInst &I) {
|
||||
Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE));
|
||||
ReplaceInstWith(I, Ret);
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I.getOperand(0)));
|
||||
}
|
||||
|
||||
// visitSetCondInst - Replace a conditional test instruction with a new one
|
||||
void visitSetCondInst(SetCondInst *SCI) {
|
||||
BinaryOperator *I = (BinaryOperator*)SCI;
|
||||
void visitSetCondInst(SetCondInst &SCI) {
|
||||
BinaryOperator &I = (BinaryOperator&)SCI;
|
||||
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
|
||||
BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
|
||||
DummyVal, I->getName());
|
||||
BinaryOperator *New = BinaryOperator::create(I.getOpcode(), DummyVal,
|
||||
DummyVal, I.getName());
|
||||
ReplaceInstWith(I, New);
|
||||
|
||||
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I.getOperand(0)));
|
||||
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I.getOperand(1)));
|
||||
|
||||
// Make sure branches refer to the new condition...
|
||||
I->replaceAllUsesWith(New);
|
||||
I.replaceAllUsesWith(New);
|
||||
}
|
||||
|
||||
void visitInstruction(Instruction *I) {
|
||||
void visitInstruction(Instruction &I) {
|
||||
cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
|
||||
}
|
||||
};
|
||||
@ -729,8 +728,8 @@ public:
|
||||
}
|
||||
|
||||
#ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR
|
||||
void visitFunction(Function *F) {
|
||||
cerr << "Pool Load Elim '" << F->getName() << "'\t";
|
||||
void visitFunction(Function &F) {
|
||||
cerr << "Pool Load Elim '" << F.getName() << "'\t";
|
||||
}
|
||||
~PoolBaseLoadEliminator() {
|
||||
unsigned Total = Eliminated+Remaining;
|
||||
@ -745,7 +744,7 @@ public:
|
||||
// local transformation, we reset all of our state when we enter a new basic
|
||||
// block.
|
||||
//
|
||||
void visitBasicBlock(BasicBlock *) {
|
||||
void visitBasicBlock(BasicBlock &) {
|
||||
PoolDescMap.clear(); // Forget state.
|
||||
}
|
||||
|
||||
@ -754,25 +753,25 @@ public:
|
||||
// indicating that we have a value available to recycle next time we see the
|
||||
// poolbase of this instruction being loaded.
|
||||
//
|
||||
void visitLoadInst(LoadInst *LI) {
|
||||
Value *LoadAddr = LI->getPointerOperand();
|
||||
void visitLoadInst(LoadInst &LI) {
|
||||
Value *LoadAddr = LI.getPointerOperand();
|
||||
map<Value*, LoadInst*>::iterator VIt = PoolDescMap.find(LoadAddr);
|
||||
if (VIt != PoolDescMap.end()) { // We already have a value for this load?
|
||||
LI->replaceAllUsesWith(VIt->second); // Make the current load dead
|
||||
LI.replaceAllUsesWith(VIt->second); // Make the current load dead
|
||||
++Eliminated;
|
||||
} else {
|
||||
// This load might not be a load of a pool pointer, check to see if it is
|
||||
if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
|
||||
if (LI.getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
|
||||
find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) !=
|
||||
PoolDescValues.end()) {
|
||||
|
||||
assert("Make sure it's a load of the pool base, not a chaining field" &&
|
||||
LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
|
||||
LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
|
||||
LI->getOperand(3) == Constant::getNullValue(Type::UByteTy));
|
||||
LI.getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
|
||||
LI.getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
|
||||
LI.getOperand(3) == Constant::getNullValue(Type::UByteTy));
|
||||
|
||||
// If it is a load of a pool base, keep track of it for future reference
|
||||
PoolDescMap.insert(make_pair(LoadAddr, LI));
|
||||
PoolDescMap.insert(make_pair(LoadAddr, &LI));
|
||||
++Remaining;
|
||||
}
|
||||
}
|
||||
@ -784,7 +783,7 @@ public:
|
||||
// function might call one of these functions, so be conservative. Through
|
||||
// more analysis, this could be improved in the future.
|
||||
//
|
||||
void visitCallInst(CallInst *) {
|
||||
void visitCallInst(CallInst &) {
|
||||
PoolDescMap.clear();
|
||||
}
|
||||
};
|
||||
@ -845,8 +844,9 @@ static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
|
||||
NodeMapping);
|
||||
} else {
|
||||
// Figure out which node argument # ArgNo points to in the called graph.
|
||||
Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
|
||||
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
|
||||
Function::aiterator AI = F->abegin();
|
||||
std::advance(AI, TFI.ArgInfo[i].ArgNo);
|
||||
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[AI],
|
||||
NodeMapping);
|
||||
}
|
||||
LastArgNo = TFI.ArgInfo[i].ArgNo;
|
||||
@ -923,9 +923,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
||||
Done = false;
|
||||
}
|
||||
|
||||
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
|
||||
Argument *Arg = Func->getArgumentList()[i];
|
||||
if (isa<PointerType>(Arg->getType())) {
|
||||
unsigned i = 0;
|
||||
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I,++i){
|
||||
if (isa<PointerType>(I->getType())) {
|
||||
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
|
||||
// We DO transform this arg... skip all possible entries for argument
|
||||
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
|
||||
@ -989,9 +989,10 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
||||
if (i == 0) // Only process retvals once (performance opt)
|
||||
markReachableNodes(CalledDS.getRetNodes(), ReachableNodes);
|
||||
} else { // If it's an argument value...
|
||||
Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo];
|
||||
if (isa<PointerType>(Arg->getType()))
|
||||
markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes);
|
||||
Function::aiterator AI = Func->abegin();
|
||||
std::advance(AI, ArgInfo[i].ArgNo);
|
||||
if (isa<PointerType>(AI->getType()))
|
||||
markReachableNodes(CalledDS.getValueMap()[AI], ReachableNodes);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1035,9 +1036,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
|
||||
Argument *Arg = Func->getArgumentList()[i];
|
||||
if (isa<PointerType>(Arg->getType())) {
|
||||
i = 0;
|
||||
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I, ++i)
|
||||
if (isa<PointerType>(I->getType())) {
|
||||
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
|
||||
// We DO transform this arg... skip all possible entries for argument
|
||||
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
|
||||
@ -1045,13 +1046,13 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
||||
} else {
|
||||
// This should generalize to any number of nodes, just see if any are
|
||||
// reachable.
|
||||
assert(CalledDS.getValueMap()[Arg].size() == 1 &&
|
||||
assert(CalledDS.getValueMap()[I].size() == 1 &&
|
||||
"Only handle case where pointing to one node so far!");
|
||||
|
||||
// If the arg is not marked as being passed in, but it NEEDS to
|
||||
// be transformed, then make it known now.
|
||||
//
|
||||
DSNode *N = CalledDS.getValueMap()[Arg][0].Node;
|
||||
DSNode *N = CalledDS.getValueMap()[I][0].Node;
|
||||
if (ReachableNodes.count(N)) {
|
||||
#ifdef DEBUG_TRANSFORM_PROGRESS
|
||||
cerr << "ensure dependant arguments adds for arg #" << i << "\n";
|
||||
@ -1063,7 +1064,6 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1222,7 +1222,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
||||
if (PoolDescs.count(RetNode.Node)) {
|
||||
// Loop over all of the basic blocks, adding return instructions...
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
|
||||
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
|
||||
InstToFix.push_back(RI);
|
||||
}
|
||||
}
|
||||
@ -1246,7 +1246,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
||||
#ifdef DEBUG_TRANSFORM_PROGRESS
|
||||
for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
|
||||
cerr << "Fixing: " << InstToFix[i];
|
||||
NIC.visit(InstToFix[i]);
|
||||
NIC.visit(*InstToFix[i]);
|
||||
}
|
||||
#else
|
||||
NIC.visit(InstToFix.begin(), InstToFix.end());
|
||||
@ -1264,16 +1264,15 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
||||
//
|
||||
FunctionType::ParamTypes::const_iterator TI =
|
||||
F->getFunctionType()->getParamTypes().begin();
|
||||
for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
|
||||
E = F->getArgumentList().end(); I != E; ++I, ++TI) {
|
||||
Argument *Arg = *I;
|
||||
if (Arg->getType() != *TI) {
|
||||
assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
|
||||
Argument *NewArg = new Argument(*TI, Arg->getName());
|
||||
XFormMap[Arg] = NewArg; // Map old arg into new arg...
|
||||
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++TI) {
|
||||
if (I->getType() != *TI) {
|
||||
assert(isa<PointerType>(I->getType()) && *TI == POINTERTYPE);
|
||||
Argument *NewArg = new Argument(*TI, I->getName());
|
||||
XFormMap[I] = NewArg; // Map old arg into new arg...
|
||||
|
||||
// Replace the old argument and then delete it...
|
||||
delete F->getArgumentList().replaceWith(I, NewArg);
|
||||
I = F->getArgumentList().erase(I);
|
||||
I = F->getArgumentList().insert(I, NewArg);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1366,9 +1365,9 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
|
||||
|
||||
// Add arguments to the function... starting with all of the old arguments
|
||||
vector<Value*> ArgMap;
|
||||
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
|
||||
const Argument *OFA = TFI.Func->getArgumentList()[i];
|
||||
Argument *NFA = new Argument(OFA->getType(), OFA->getName());
|
||||
for (Function::const_aiterator I = TFI.Func->abegin(), E = TFI.Func->aend();
|
||||
I != E; ++I) {
|
||||
Argument *NFA = new Argument(I->getType(), I->getName());
|
||||
NewFunc->getArgumentList().push_back(NFA);
|
||||
ArgMap.push_back(NFA); // Keep track of the arguments
|
||||
}
|
||||
@ -1457,11 +1456,13 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
|
||||
#ifdef DEBUG_TRANSFORM_PROGRESS
|
||||
cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
|
||||
#endif
|
||||
assert(ArgNo < NewFunc->getArgumentList().size() &&
|
||||
assert(ArgNo < NewFunc->asize() &&
|
||||
"Call already has pool arguments added??");
|
||||
|
||||
// Map the pool argument into the called function...
|
||||
CalleeValue = NewFunc->getArgumentList()[ArgNo];
|
||||
Function::aiterator AI = NewFunc->abegin();
|
||||
std::advance(AI, ArgNo);
|
||||
CalleeValue = AI;
|
||||
break; // Found value, quit loop
|
||||
}
|
||||
|
||||
@ -1501,12 +1502,12 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
|
||||
static unsigned countPointerTypes(const Type *Ty) {
|
||||
if (isa<PointerType>(Ty)) {
|
||||
return 1;
|
||||
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
||||
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
||||
unsigned Num = 0;
|
||||
for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i)
|
||||
Num += countPointerTypes(STy->getElementTypes()[i]);
|
||||
return Num;
|
||||
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
||||
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
||||
return countPointerTypes(ATy->getElementType());
|
||||
} else {
|
||||
assert(Ty->isPrimitiveType() && "Unknown derived type!");
|
||||
@ -1524,8 +1525,8 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
// Find all of the return nodes in the function...
|
||||
vector<BasicBlock*> ReturnNodes;
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
if (isa<ReturnInst>((*I)->getTerminator()))
|
||||
ReturnNodes.push_back(*I);
|
||||
if (isa<ReturnInst>(I->getTerminator()))
|
||||
ReturnNodes.push_back(I);
|
||||
|
||||
#ifdef DEBUG_CREATE_POOLS
|
||||
cerr << "Allocs that we are pool allocating:\n";
|
||||
@ -1595,11 +1596,10 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
|
||||
// The actual struct type could change each time through the loop, so it's
|
||||
// NOT loop invariant.
|
||||
StructType *PoolTy = cast<StructType>(PoolTyH.get());
|
||||
const StructType *PoolTy = cast<StructType>(PoolTyH.get());
|
||||
|
||||
// Get the opaque type...
|
||||
DerivedType *ElTy =
|
||||
cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
|
||||
DerivedType *ElTy = (DerivedType*)(PoolTy->getElementTypes()[p+1].get());
|
||||
|
||||
#ifdef DEBUG_CREATE_POOLS
|
||||
cerr << "Refining " << ElTy << " of " << PoolTy << " to "
|
||||
@ -1653,7 +1653,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
|
||||
// Insert it before the return instruction...
|
||||
BasicBlock *RetNode = ReturnNodes[EN];
|
||||
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
|
||||
RetNode->getInstList().insert(RetNode->end()--, Destroy);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1683,7 +1683,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
}
|
||||
|
||||
// Insert the entry node code into the entry block...
|
||||
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
|
||||
F->getEntryNode().getInstList().insert(++F->getEntryNode().begin(),
|
||||
EntryNodeInsts.begin(),
|
||||
EntryNodeInsts.end());
|
||||
}
|
||||
@ -1692,45 +1692,43 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
// addPoolPrototypes - Add prototypes for the pool functions to the specified
|
||||
// module and update the Pool* instance variables to point to them.
|
||||
//
|
||||
void PoolAllocate::addPoolPrototypes(Module *M) {
|
||||
void PoolAllocate::addPoolPrototypes(Module &M) {
|
||||
// Get poolinit function...
|
||||
vector<const Type*> Args;
|
||||
Args.push_back(Type::UIntTy); // Num bytes per element
|
||||
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
|
||||
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
|
||||
PoolInit = M.getOrInsertFunction("poolinit", PoolInitTy);
|
||||
|
||||
// Get pooldestroy function...
|
||||
Args.pop_back(); // Only takes a pool...
|
||||
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
|
||||
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
|
||||
PoolDestroy = M.getOrInsertFunction("pooldestroy", PoolDestroyTy);
|
||||
|
||||
// Get the poolalloc function...
|
||||
FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
|
||||
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
|
||||
PoolAlloc = M.getOrInsertFunction("poolalloc", PoolAllocTy);
|
||||
|
||||
// Get the poolfree function...
|
||||
Args.push_back(POINTERTYPE); // Pointer to free
|
||||
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
|
||||
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
|
||||
PoolFree = M.getOrInsertFunction("poolfree", PoolFreeTy);
|
||||
|
||||
Args[0] = Type::UIntTy; // Number of slots to allocate
|
||||
FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true);
|
||||
PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
|
||||
PoolAllocArray = M.getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
|
||||
}
|
||||
|
||||
|
||||
bool PoolAllocate::run(Module *M) {
|
||||
bool PoolAllocate::run(Module &M) {
|
||||
addPoolPrototypes(M);
|
||||
CurModule = M;
|
||||
CurModule = &M;
|
||||
|
||||
DS = &getAnalysis<DataStructure>();
|
||||
bool Changed = false;
|
||||
|
||||
// We cannot use an iterator here because it will get invalidated when we add
|
||||
// functions to the module later...
|
||||
for (unsigned i = 0; i != M->size(); ++i)
|
||||
if (!M->getFunctionList()[i]->isExternal()) {
|
||||
Changed |= processFunction(M->getFunctionList()[i]);
|
||||
for (Module::iterator I = M.begin(); I != M.end(); ++I)
|
||||
if (!I->isExternal()) {
|
||||
Changed |= processFunction(I);
|
||||
if (Changed) {
|
||||
cerr << "Only processing one function\n";
|
||||
break;
|
||||
|
@ -32,7 +32,7 @@ namespace {
|
||||
|
||||
const char *getPassName() const { return "Simple Struct Mutation"; }
|
||||
|
||||
virtual bool run(Module *M) {
|
||||
virtual bool run(Module &M) {
|
||||
setTransforms(getTransforms(M, CurrentXForm));
|
||||
bool Changed = MutateStructTypes::run(M);
|
||||
clearTransforms();
|
||||
@ -49,7 +49,7 @@ namespace {
|
||||
}
|
||||
|
||||
private:
|
||||
TransformsType getTransforms(Module *M, enum Transform);
|
||||
TransformsType getTransforms(Module &M, enum Transform);
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
@ -124,7 +124,7 @@ static inline void GetTransformation(const StructType *ST,
|
||||
|
||||
|
||||
SimpleStructMutation::TransformsType
|
||||
SimpleStructMutation::getTransforms(Module *M, enum Transform XForm) {
|
||||
SimpleStructMutation::getTransforms(Module &, enum Transform XForm) {
|
||||
// We need to know which types to modify, and which types we CAN'T modify
|
||||
// TODO: Do symbol tables as well
|
||||
|
||||
|
@ -34,7 +34,7 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
case 1:{
|
||||
Value *val=ConstantSInt::get(Type::IntTy,inc);
|
||||
Instruction *stInst=new StoreInst(val, rInst);
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -42,7 +42,7 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
case 2:{
|
||||
Value *val=ConstantSInt::get(Type::IntTy,0);
|
||||
Instruction *stInst=new StoreInst(val, rInst);
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -54,9 +54,9 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
create(Instruction::Add, ldInst, val,"ti2");
|
||||
|
||||
Instruction *stInst=new StoreInst(addIn, rInst);
|
||||
here=instList.insert(here,ldInst)+1;
|
||||
here=instList.insert(here,addIn)+1;
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,ldInst);
|
||||
here=++instList.insert(here,addIn);
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -74,9 +74,9 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
StoreInst(addIn, countInst, vector<Value *>
|
||||
(1, ConstantUInt::get(Type::UIntTy,inc)));
|
||||
|
||||
here=instList.insert(here,ldInst)+1;
|
||||
here=instList.insert(here,addIn)+1;
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,ldInst);
|
||||
here=++instList.insert(here,addIn);
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -102,12 +102,12 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
StoreInst(addIn, countInst,
|
||||
vector<Value *>(1,castInst));
|
||||
|
||||
here=instList.insert(here,ldIndex)+1;
|
||||
here=instList.insert(here,addIndex)+1;
|
||||
here=instList.insert(here,castInst)+1;
|
||||
here=instList.insert(here,ldInst)+1;
|
||||
here=instList.insert(here,addIn)+1;
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,ldIndex);
|
||||
here=++instList.insert(here,addIndex);
|
||||
here=++instList.insert(here,castInst);
|
||||
here=++instList.insert(here,ldInst);
|
||||
here=++instList.insert(here,addIn);
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -129,11 +129,11 @@ void getEdgeCode::getCode(Instruction *rInst,
|
||||
Instruction *stInst=new
|
||||
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
|
||||
|
||||
here=instList.insert(here,ldIndex)+1;
|
||||
here=instList.insert(here,castInst2)+1;
|
||||
here=instList.insert(here,ldInst)+1;
|
||||
here=instList.insert(here,addIn)+1;
|
||||
here=instList.insert(here,stInst)+1;
|
||||
here=++instList.insert(here,ldIndex);
|
||||
here=++instList.insert(here,castInst2);
|
||||
here=++instList.insert(here,ldInst);
|
||||
here=++instList.insert(here,addIn);
|
||||
here=++instList.insert(here,stInst);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -175,8 +175,8 @@ void insertInTopBB(BasicBlock *front,
|
||||
//now push all instructions in front of the BB
|
||||
BasicBlock::InstListType& instList=front->getInstList();
|
||||
BasicBlock::iterator here=instList.begin();
|
||||
here=front->getInstList().insert(here, rVar)+1;
|
||||
here=front->getInstList().insert(here,countVar)+1;
|
||||
here=++front->getInstList().insert(here, rVar);
|
||||
here=++front->getInstList().insert(here,countVar);
|
||||
|
||||
//Initialize Count[...] with 0
|
||||
for(int i=0;i<k; i++){
|
||||
@ -184,10 +184,10 @@ void insertInTopBB(BasicBlock *front,
|
||||
StoreInst(ConstantInt::get(Type::IntTy, 0),
|
||||
countVar, std::vector<Value *>
|
||||
(1,ConstantUInt::get(Type::UIntTy, i)));
|
||||
here=front->getInstList().insert(here,stInstrC)+1;
|
||||
here=++front->getInstList().insert(here,stInstrC);
|
||||
}
|
||||
|
||||
here=front->getInstList().insert(here,stInstr)+1;
|
||||
here=++front->getInstList().insert(here,stInstr);
|
||||
}
|
||||
|
||||
|
||||
@ -226,27 +226,24 @@ void insertBB(Edge ed,
|
||||
Value *cond=BI->getCondition();
|
||||
BasicBlock *fB, *tB;
|
||||
|
||||
if(BI->getSuccessor(0)==BB2){
|
||||
if (BI->getSuccessor(0) == BB2){
|
||||
tB=newBB;
|
||||
fB=BI->getSuccessor(1);
|
||||
}
|
||||
else{
|
||||
} else {
|
||||
fB=newBB;
|
||||
tB=BI->getSuccessor(0);
|
||||
}
|
||||
|
||||
delete BB1->getInstList().pop_back();
|
||||
Instruction *newBI=new BranchInst(tB,fB,cond);
|
||||
Instruction *newBI2=new BranchInst(BB2);
|
||||
BB1->getInstList().push_back(newBI);
|
||||
newBB->getInstList().push_back(newBI2);
|
||||
BB1->getInstList().pop_back();
|
||||
BB1->getInstList().push_back(new BranchInst(tB,fB,cond));
|
||||
newBB->getInstList().push_back(new BranchInst(BB2));
|
||||
}
|
||||
|
||||
//now iterate over BB2, and set its Phi nodes right
|
||||
for(BasicBlock::iterator BB2Inst=BB2->begin(), BBend=BB2->end();
|
||||
BB2Inst!=BBend; ++BB2Inst){
|
||||
for(BasicBlock::iterator BB2Inst = BB2->begin(), BBend = BB2->end();
|
||||
BB2Inst != BBend; ++BB2Inst){
|
||||
|
||||
if(PHINode *phiInst=dyn_cast<PHINode>(*BB2Inst)){
|
||||
if(PHINode *phiInst=dyn_cast<PHINode>(&*BB2Inst)){
|
||||
DEBUG(cerr<<"YYYYYYYYYYYYYYYYY\n");
|
||||
|
||||
int bbIndex=phiInst->getBasicBlockIndex(BB1);
|
||||
|
@ -37,7 +37,7 @@ using std::vector;
|
||||
struct ProfilePaths : public FunctionPass {
|
||||
const char *getPassName() const { return "ProfilePaths"; }
|
||||
|
||||
bool runOnFunction(Function *F);
|
||||
bool runOnFunction(Function &F);
|
||||
|
||||
// Before this pass, make sure that there is only one
|
||||
// entry and only one exit node for the function in the CFG of the function
|
||||
@ -64,7 +64,7 @@ static Node *findBB(std::set<Node *> &st, BasicBlock *BB){
|
||||
}
|
||||
|
||||
//Per function pass for inserting counters and trigger code
|
||||
bool ProfilePaths::runOnFunction(Function *M){
|
||||
bool ProfilePaths::runOnFunction(Function &F){
|
||||
// Transform the cfg s.t. we have just one exit node
|
||||
BasicBlock *ExitNode = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
|
||||
|
||||
@ -78,20 +78,20 @@ bool ProfilePaths::runOnFunction(Function *M){
|
||||
// That is, no two nodes must hav same BB*
|
||||
|
||||
// First enter just nodes: later enter edges
|
||||
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
|
||||
Node *nd=new Node(*BB);
|
||||
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
|
||||
Node *nd=new Node(BB);
|
||||
nodes.insert(nd);
|
||||
if(*BB==ExitNode)
|
||||
if(&*BB == ExitNode)
|
||||
exitNode=nd;
|
||||
if(*BB==M->front())
|
||||
if(&*BB==F.begin())
|
||||
startNode=nd;
|
||||
}
|
||||
|
||||
// now do it againto insert edges
|
||||
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
|
||||
Node *nd=findBB(nodes, *BB);
|
||||
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
|
||||
Node *nd=findBB(nodes, BB);
|
||||
assert(nd && "No node for this edge!");
|
||||
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
|
||||
for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB);
|
||||
s!=se; ++s){
|
||||
Node *nd2=findBB(nodes,*s);
|
||||
assert(nd2 && "No node for this edge!");
|
||||
@ -104,10 +104,10 @@ bool ProfilePaths::runOnFunction(Function *M){
|
||||
|
||||
DEBUG(printGraph(g));
|
||||
|
||||
BasicBlock *fr=M->front();
|
||||
BasicBlock *fr=&F.front();
|
||||
|
||||
// If only one BB, don't instrument
|
||||
if (M->getBasicBlocks().size() == 1) {
|
||||
if (++F.begin() == F.end()) {
|
||||
// The graph is made acyclic: this is done
|
||||
// by removing back edges for now, and adding them later on
|
||||
vector<Edge> be;
|
||||
@ -148,7 +148,7 @@ bool ProfilePaths::runOnFunction(Function *M){
|
||||
|
||||
// insert initialization code in first (entry) BB
|
||||
// this includes initializing r and count
|
||||
insertInTopBB(M->getEntryNode(),numPaths, rVar, countVar);
|
||||
insertInTopBB(&F.getEntryNode(),numPaths, rVar, countVar);
|
||||
|
||||
// now process the graph: get path numbers,
|
||||
// get increments along different paths,
|
||||
|
@ -41,12 +41,12 @@ using std::string;
|
||||
// way of using operator<< works great, so we use it directly...
|
||||
//
|
||||
template<class PassType>
|
||||
static void printPass(PassType &P, ostream &O, Module *M) {
|
||||
static void printPass(PassType &P, ostream &O, Module &M) {
|
||||
O << P;
|
||||
}
|
||||
|
||||
template<class PassType>
|
||||
static void printPass(PassType &P, ostream &O, Function *F) {
|
||||
static void printPass(PassType &P, ostream &O, Function &F) {
|
||||
O << P;
|
||||
}
|
||||
|
||||
@ -54,19 +54,18 @@ static void printPass(PassType &P, ostream &O, Function *F) {
|
||||
// specialize the template here for them...
|
||||
//
|
||||
template<>
|
||||
static void printPass(DataStructure &P, ostream &O, Module *M) {
|
||||
P.print(O, M);
|
||||
static void printPass(DataStructure &P, ostream &O, Module &M) {
|
||||
P.print(O, &M);
|
||||
}
|
||||
|
||||
template<>
|
||||
static void printPass(FindUsedTypes &FUT, ostream &O, Module *M) {
|
||||
FUT.printTypes(O, M);
|
||||
static void printPass(FindUsedTypes &FUT, ostream &O, Module &M) {
|
||||
FUT.printTypes(O, &M);
|
||||
}
|
||||
|
||||
template<>
|
||||
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O,
|
||||
Module *M) {
|
||||
FUPT.printResults(M, O);
|
||||
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O, Module &M) {
|
||||
FUPT.printResults(&M, O);
|
||||
}
|
||||
|
||||
|
||||
@ -83,7 +82,7 @@ public:
|
||||
|
||||
const char *getPassName() const { return "IP Pass Printer"; }
|
||||
|
||||
virtual bool run(Module *M) {
|
||||
virtual bool run(Module &M) {
|
||||
std::cout << Message << "\n";
|
||||
printPass(getAnalysis<PassName>(ID), std::cout, M);
|
||||
return false;
|
||||
@ -103,8 +102,8 @@ public:
|
||||
|
||||
const char *getPassName() const { return "Function Pass Printer"; }
|
||||
|
||||
virtual bool runOnFunction(Function *F) {
|
||||
std::cout << Message << " on function '" << F->getName() << "'\n";
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
std::cout << Message << " on function '" << F.getName() << "'\n";
|
||||
printPass(getAnalysis<PassName>(ID), std::cout, F);
|
||||
return false;
|
||||
}
|
||||
@ -137,8 +136,8 @@ Pass *createPrintModulePass(const string &Message) {
|
||||
struct InstForestHelper : public FunctionPass {
|
||||
const char *getPassName() const { return "InstForest Printer"; }
|
||||
|
||||
void doit(Function *F) {
|
||||
std::cout << InstForest<char>(F);
|
||||
void doit(Function &F) {
|
||||
std::cout << InstForest<char>(&F);
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
@ -149,7 +148,7 @@ struct InstForestHelper : public FunctionPass {
|
||||
struct IndVars : public FunctionPass {
|
||||
const char *getPassName() const { return "IndVars Printer"; }
|
||||
|
||||
void doit(Function *F) {
|
||||
void doit(Function &F) {
|
||||
LoopInfo &LI = getAnalysis<LoopInfo>();
|
||||
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
|
||||
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
|
||||
@ -168,8 +167,8 @@ struct IndVars : public FunctionPass {
|
||||
struct Exprs : public FunctionPass {
|
||||
const char *getPassName() const { return "Expression Printer"; }
|
||||
|
||||
static void doit(Function *F) {
|
||||
std::cout << "Classified expressions for: " << F->getName() << "\n";
|
||||
static void doit(Function &F) {
|
||||
std::cout << "Classified expressions for: " << F.getName() << "\n";
|
||||
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
|
||||
std::cout << *I;
|
||||
|
||||
@ -207,8 +206,8 @@ class PrinterPass : public TraitClass {
|
||||
public:
|
||||
PrinterPass(const string &M) : Message(M) {}
|
||||
|
||||
virtual bool runOnFunction(Function *F) {
|
||||
std::cout << Message << " on function '" << F->getName() << "'\n";
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
std::cout << Message << " on function '" << F.getName() << "'\n";
|
||||
|
||||
TraitClass::doit(F);
|
||||
return false;
|
||||
@ -330,7 +329,7 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
}
|
||||
|
||||
Analyses.run(CurMod);
|
||||
Analyses.run(*CurMod);
|
||||
|
||||
delete CurMod;
|
||||
return 0;
|
||||
|
@ -165,7 +165,7 @@ int main(int argc, char **argv) {
|
||||
RemoveFileOnSignal(OutputFilename+".bc");
|
||||
|
||||
// Run our queue of passes all at once now, efficiently.
|
||||
Passes.run(Composite.get());
|
||||
Passes.run(*Composite.get());
|
||||
Out.close();
|
||||
|
||||
// Output the script to start the program...
|
||||
|
Loading…
x
Reference in New Issue
Block a user