1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00

MEGAPATCH checkin.

For details, See: docs/2002-06-25-MegaPatchInfo.txt

llvm-svn: 2778
This commit is contained in:
Chris Lattner 2002-06-25 16:13:21 +00:00
parent cee706572b
commit d7cbd7d5d2
24 changed files with 619 additions and 674 deletions

View File

@ -18,7 +18,6 @@
#include "llvm/Constants.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Argument.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
@ -312,7 +311,7 @@ bool BytecodeParser::ParseMethod(const uchar *&Buf, const uchar *EndBuf,
delete M; return failure(true); // Parse error... :(
}
M->getBasicBlocks().push_back(BB);
M->getBasicBlockList().push_back(BB);
break;
}
@ -368,7 +367,7 @@ bool BytecodeParser::ParseMethod(const uchar *&Buf, const uchar *EndBuf,
// If the method is empty, we don't need the method argument entries...
if (M->isExternal())
M->getArgumentList().delete_all();
M->getArgumentList().clear();
DeclareNewGlobalValue(M, MethSlot);

View File

@ -169,15 +169,15 @@ static void outputInstructionFormat3(const Instruction *I,
output(Bits, Out);
}
void BytecodeWriter::processInstruction(const Instruction *I) {
assert(I->getOpcode() < 64 && "Opcode too big???");
void BytecodeWriter::processInstruction(const Instruction &I) {
assert(I.getOpcode() < 64 && "Opcode too big???");
unsigned NumOperands = I->getNumOperands();
unsigned NumOperands = I.getNumOperands();
int MaxOpSlot = 0;
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
for (unsigned i = 0; i < NumOperands; ++i) {
const Value *Def = I->getOperand(i);
const Value *Def = I.getOperand(i);
int slot = Table.getValSlot(Def);
assert(slot != -1 && "Broken bytecode!");
if (slot > MaxOpSlot) MaxOpSlot = slot;
@ -191,17 +191,17 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
// we take the type of the instruction itself.
//
const Type *Ty;
switch (I->getOpcode()) {
switch (I.getOpcode()) {
case Instruction::Malloc:
case Instruction::Alloca:
Ty = I->getType(); // Malloc & Alloca ALWAYS want to encode the return type
Ty = I.getType(); // Malloc & Alloca ALWAYS want to encode the return type
break;
case Instruction::Store:
Ty = I->getOperand(1)->getType(); // Encode the pointer type...
Ty = I.getOperand(1)->getType(); // Encode the pointer type...
assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
break;
default: // Otherwise use the default behavior...
Ty = NumOperands ? I->getOperand(0)->getType() : I->getType();
Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
break;
}
@ -219,20 +219,20 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
if (isa<CastInst>(I)) {
// Cast has to encode the destination type as the second argument in the
// packet, or else we won't know what type to cast to!
Slots[1] = Table.getValSlot(I->getType());
Slots[1] = Table.getValSlot(I.getType());
assert(Slots[1] != -1 && "Cast return type unknown?");
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
NumOperands++;
} else if (const CallInst *CI = dyn_cast<CallInst>(I)) {// Handle VarArg calls
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(I, Table, Type, Out);
outputInstrVarArgsCall(CI, Table, Type, Out);
return;
}
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { // ... & Invokes
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
outputInstrVarArgsCall(I, Table, Type, Out);
outputInstrVarArgsCall(II, Table, Type, Out);
return;
}
}
@ -246,21 +246,21 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
case 0:
case 1:
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
outputInstructionFormat1(I, Table, Slots, Type, Out);
outputInstructionFormat1(&I, Table, Slots, Type, Out);
return;
}
break;
case 2:
if (MaxOpSlot < (1 << 8)) {
outputInstructionFormat2(I, Table, Slots, Type, Out);
outputInstructionFormat2(&I, Table, Slots, Type, Out);
return;
}
break;
case 3:
if (MaxOpSlot < (1 << 6)) {
outputInstructionFormat3(I, Table, Slots, Type, Out);
outputInstructionFormat3(&I, Table, Slots, Type, Out);
return;
}
break;
@ -268,5 +268,5 @@ void BytecodeWriter::processInstruction(const Instruction *I) {
// If we weren't handled before here, we either have a large number of
// operands or a large operand index that we are refering to.
outputInstructionFormat0(I, Table, Type, Out);
outputInstructionFormat0(&I, Table, Type, Out);
}

View File

@ -21,9 +21,6 @@
#include "WriterInternals.h"
#include "llvm/Module.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/SymbolTable.h"
#include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h"
@ -49,8 +46,8 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
outputModuleInfoBlock(M);
// Do the whole module now! Process each function at a time...
for_each(M->begin(), M->end(),
bind_obj(this, &BytecodeWriter::processMethod));
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
processMethod(I);
// If needed, output the symbol table for the module...
if (M->hasSymbolTable())
@ -112,19 +109,18 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
// Output the types for the global variables in the module...
for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
const GlobalVariable *GV = *I;
int Slot = Table.getValSlot(GV->getType());
int Slot = Table.getValSlot(I->getType());
assert(Slot != -1 && "Module global vars is broken!");
// Fields: bit0 = isConstant, bit1 = hasInitializer, bit2=InternalLinkage,
// bit3+ = slot#
unsigned oSlot = ((unsigned)Slot << 3) | (GV->hasInternalLinkage() << 2) |
(GV->hasInitializer() << 1) | GV->isConstant();
unsigned oSlot = ((unsigned)Slot << 3) | (I->hasInternalLinkage() << 2) |
(I->hasInitializer() << 1) | I->isConstant();
output_vbr(oSlot, Out);
// If we have an initializer, output it now.
if (GV->hasInitializer()) {
Slot = Table.getValSlot((Value*)GV->getInitializer());
if (I->hasInitializer()) {
Slot = Table.getValSlot((Value*)I->getInitializer());
assert(Slot != -1 && "No slot for global var initializer!");
output_vbr((unsigned)Slot, Out);
}
@ -133,7 +129,7 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
// Output the types of the functions in this module...
for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
int Slot = Table.getValSlot((*I)->getType());
int Slot = Table.getValSlot(I->getType());
assert(Slot != -1 && "Module const pool is broken!");
assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
output_vbr((unsigned)Slot, Out);
@ -144,36 +140,36 @@ void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
align32(Out);
}
void BytecodeWriter::processMethod(const Function *M) {
void BytecodeWriter::processMethod(const Function *F) {
BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out);
output_vbr((unsigned)M->hasInternalLinkage(), Out);
output_vbr((unsigned)F->hasInternalLinkage(), Out);
// Only output the constant pool and other goodies if needed...
if (!M->isExternal()) {
if (!F->isExternal()) {
// Get slot information about the function...
Table.incorporateFunction(M);
Table.incorporateFunction(F);
// Output information about the constants in the function...
outputConstants(true);
// Output basic block nodes...
for_each(M->begin(), M->end(),
bind_obj(this, &BytecodeWriter::processBasicBlock));
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
processBasicBlock(*I);
// If needed, output the symbol table for the function...
if (M->hasSymbolTable())
outputSymbolTable(*M->getSymbolTable());
if (F->hasSymbolTable())
outputSymbolTable(*F->getSymbolTable());
Table.purgeFunction();
}
}
void BytecodeWriter::processBasicBlock(const BasicBlock *BB) {
void BytecodeWriter::processBasicBlock(const BasicBlock &BB) {
BytecodeBlock FunctionBlock(BytecodeFormat::BasicBlock, Out);
// Process all the instructions in the bb...
for_each(BB->begin(), BB->end(),
bind_obj(this, &BytecodeWriter::processInstruction));
for(BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I)
processInstruction(*I);
}
void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {

View File

@ -27,8 +27,8 @@ public:
protected:
void outputConstants(bool isMethod);
void processMethod(const Function *F);
void processBasicBlock(const BasicBlock *BB);
void processInstruction(const Instruction *I);
void processBasicBlock(const BasicBlock &BB);
void processInstruction(const Instruction &I);
private :
inline void outputSignature() {

View File

@ -25,7 +25,6 @@
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Constant.h"
#include "llvm/BasicBlock.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/STLExtras.h"
@ -188,10 +187,9 @@ LabelNode::dumpNode(int indent) const
InstrForest::InstrForest(Function *F)
{
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
BasicBlock *BB = *FI;
for_each(BB->begin(), BB->end(),
bind_obj(this, &InstrForest::buildTreeForInstruction));
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
buildTreeForInstruction(I);
}
}

View File

@ -123,14 +123,10 @@ SelectInstructionsForMethod(Function *F, TargetMachine &target)
// Record instructions in the vector for each basic block
//
for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
{
MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec();
for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II)
{
MachineCodeForInstruction &mvec =MachineCodeForInstruction::get(*II);
for (unsigned i=0; i < mvec.size(); i++)
bbMvec.push_back(mvec[i]);
}
for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
MachineCodeForInstruction &mvec =MachineCodeForInstruction::get(II);
for (unsigned i=0; i < mvec.size(); i++)
BI->getMachineInstrVec().push_back(mvec[i]);
}
// Insert phi elimination code -- added by Ruchira
@ -191,49 +187,38 @@ InsertCode4AllPhisInMeth(Function *F, TargetMachine &target)
{
// for all basic blocks in function
//
for (Function::iterator BI = F->begin(); BI != F->end(); ++BI) {
BasicBlock *BB = *BI;
const BasicBlock::InstListType &InstList = BB->getInstList();
BasicBlock::InstListType::const_iterator IIt = InstList.begin();
// for all instructions in the basic block
//
for( ; IIt != InstList.end(); ++IIt ) {
if (PHINode *PN = dyn_cast<PHINode>(*IIt)) {
// FIXME: This is probably wrong...
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
BasicBlock::InstListType &InstList = BB->getInstList();
for (BasicBlock::iterator IIt = InstList.begin();
PHINode *PN = dyn_cast<PHINode>(&*IIt); ++IIt) {
// FIXME: This is probably wrong...
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
// for each incoming value of the phi, insert phi elimination
//
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
{ // insert the copy instruction to the predecessor BB
vector<MachineInstr*> mvec, CpVec;
target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
mvec);
for (vector<MachineInstr*>::iterator MI=mvec.begin();
MI != mvec.end(); ++MI)
{
vector<MachineInstr*> CpVec2 =
FixConstantOperandsForInstr(PN, *MI, target);
CpVec2.push_back(*MI);
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
}
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
}
// for each incoming value of the phi, insert phi elimination
//
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
// insert the copy instruction to the predecessor BB
vector<MachineInstr*> mvec, CpVec;
target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
mvec);
for (vector<MachineInstr*>::iterator MI=mvec.begin();
MI != mvec.end(); ++MI) {
vector<MachineInstr*> CpVec2 =
FixConstantOperandsForInstr(PN, *MI, target);
CpVec2.push_back(*MI);
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
}
vector<MachineInstr*> mvec;
target.getRegInfo().cpValue2Value(PhiCpRes, PN, mvec);
// get an iterator to machine instructions in the BB
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
bbMvec.insert( bbMvec.begin(), mvec.begin(), mvec.end());
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
}
else break; // since PHI nodes can only be at the top
vector<MachineInstr*> mvec;
target.getRegInfo().cpValue2Value(PhiCpRes, PN, mvec);
// get an iterator to machine instructions in the BB
MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec();
bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end());
} // for each Phi Instr in BB
} // for all BBs in function
}

View File

@ -60,43 +60,40 @@ ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F,
{
const MachineFrameInfo& frameInfo = target.getFrameInfo();
unsigned int maxSize = 0;
unsigned maxSize = 0;
for (Function::const_iterator MI = F->begin(), ME = F->end(); MI != ME; ++MI)
{
const BasicBlock *BB = *MI;
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
if (CallInst *callInst = dyn_cast<CallInst>(*I))
{
unsigned int numOperands = callInst->getNumOperands() - 1;
int numExtra =(int)numOperands-frameInfo.getNumFixedOutgoingArgs();
if (numExtra <= 0)
continue;
unsigned int sizeForThisCall;
if (frameInfo.argsOnStackHaveFixedSize())
{
int argSize = frameInfo.getSizeOfEachArgOnStack();
sizeForThisCall = numExtra * (unsigned) argSize;
}
else
{
assert(0 && "UNTESTED CODE: Size per stack argument is not "
"fixed on this architecture: use actual arg sizes to "
"compute MaxOptionalArgsSize");
sizeForThisCall = 0;
for (unsigned i=0; i < numOperands; ++i)
sizeForThisCall += target.findOptimalStorageSize(callInst->
getOperand(i)->getType());
}
if (maxSize < sizeForThisCall)
maxSize = sizeForThisCall;
if (((int) maxOptionalNumArgs) < numExtra)
maxOptionalNumArgs = (unsigned) numExtra;
}
}
for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (const CallInst *callInst = dyn_cast<CallInst>(&*I))
{
unsigned numOperands = callInst->getNumOperands() - 1;
int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs();
if (numExtra <= 0)
continue;
unsigned int sizeForThisCall;
if (frameInfo.argsOnStackHaveFixedSize())
{
int argSize = frameInfo.getSizeOfEachArgOnStack();
sizeForThisCall = numExtra * (unsigned) argSize;
}
else
{
assert(0 && "UNTESTED CODE: Size per stack argument is not "
"fixed on this architecture: use actual arg sizes to "
"compute MaxOptionalArgsSize");
sizeForThisCall = 0;
for (unsigned i = 0; i < numOperands; ++i)
sizeForThisCall += target.findOptimalStorageSize(callInst->
getOperand(i)->getType());
}
if (maxSize < sizeForThisCall)
maxSize = sizeForThisCall;
if ((int)maxOptionalNumArgs < numExtra)
maxOptionalNumArgs = (unsigned) numExtra;
}
return maxSize;
}
@ -278,12 +275,11 @@ MachineCodeForMethod::dump() const
std::cerr << "\n" << method->getReturnType()
<< " \"" << method->getName() << "\"\n";
for (Function::const_iterator BI = method->begin(); BI != method->end(); ++BI)
for (Function::const_iterator BB = method->begin(); BB != method->end(); ++BB)
{
BasicBlock* bb = *BI;
std::cerr << "\n" << bb->getName() << " (" << bb << ")" << ":\n";
std::cerr << "\n" << BB->getName() << " (" << *BB << ")" << ":\n";
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
MachineCodeForBasicBlock& mvec = BB->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
std::cerr << "\t" << *mvec[i];
}

View File

@ -168,7 +168,7 @@ void Interpreter::initializeExecutionEngine() {
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
static void InitializeMemory(Constant *Init, char *Addr) {
static void InitializeMemory(const Constant *Init, char *Addr) {
#define INITIALIZE_MEMORY(TYID, CLASS, TY) \
case Type::TYID##TyID: { \
TY Tmp = cast<CLASS>(Init)->getValue(); \
@ -190,7 +190,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
#undef INITIALIZE_MEMORY
case Type::ArrayTyID: {
ConstantArray *CPA = cast<ConstantArray>(Init);
const ConstantArray *CPA = cast<ConstantArray>(Init);
const vector<Use> &Val = CPA->getValues();
unsigned ElementSize =
TD.getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
@ -200,7 +200,7 @@ static void InitializeMemory(Constant *Init, char *Addr) {
}
case Type::StructTyID: {
ConstantStruct *CPS = cast<ConstantStruct>(Init);
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
const StructLayout *SL=TD.getStructLayout(cast<StructType>(CPS->getType()));
const vector<Use> &Val = CPS->getValues();
for (unsigned i = 0; i < Val.size(); ++i)
@ -212,7 +212,8 @@ static void InitializeMemory(Constant *Init, char *Addr) {
case Type::PointerTyID:
if (isa<ConstantPointerNull>(Init)) {
*(void**)Addr = 0;
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Init)) {
} else if (const ConstantPointerRef *CPR =
dyn_cast<ConstantPointerRef>(Init)) {
GlobalAddress *Address =
(GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID);
*(void**)Addr = (GenericValue*)Address->Ptr;
@ -266,9 +267,9 @@ Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){
#define IMPLEMENT_UNARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = OP Src.TY##Val; break
static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
static void executeNotInst(UnaryOperator &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_UNARY_OPERATOR(~, UByte);
@ -283,7 +284,7 @@ static void executeNotInst(UnaryOperator *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Not instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
//===----------------------------------------------------------------------===//
@ -592,13 +593,13 @@ static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
switch (I.getOpcode()) {
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break;
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break;
@ -618,7 +619,7 @@ static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
R = Src1;
}
SetValue(I, R, SF);
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
@ -683,14 +684,14 @@ void Interpreter::exitCalled(GenericValue GV) {
PerformExitStuff();
}
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
// Save previously executing meth
@ -737,16 +738,16 @@ void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
Value *Cond = I->getCondition();
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
GenericValue CondVal = getOperandValue(Cond, SF);
if (CondVal.BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
Dest = I.getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
@ -756,11 +757,11 @@ void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType()->getElementType(); // Type to be allocated
void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) {
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements = getOperandValue(I->getOperand(0), SF).UIntVal;
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
// Allocate enough memory to hold the type...
// FIXME: Don't use CALLOC, use a tainted malloc.
@ -769,15 +770,15 @@ void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
GenericValue Result;
Result.PointerVal = (PointerTy)Memory;
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
if (I->getOpcode() == Instruction::Alloca)
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
assert(isa<PointerType>(I->getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I->getOperand(0), SF);
static void executeFreeInst(FreeInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I.getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free((void*)Value.PointerVal); // Free memory
}
@ -787,20 +788,20 @@ static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
// function returns the offset that arguments ArgOff+1 -> NumArgs specify for
// the pointer type specified by argument Arg.
//
static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
assert(isa<PointerType>(I->getPointerOperand()->getType()) &&
static PointerTy getElementOffset(MemAccessInst &I, ExecutionContext &SF) {
assert(isa<PointerType>(I.getPointerOperand()->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
PointerTy Total = 0;
const Type *Ty = I->getPointerOperand()->getType();
const Type *Ty = I.getPointerOperand()->getType();
unsigned ArgOff = I->getFirstIndexOperandNumber();
while (ArgOff < I->getNumOperands()) {
unsigned ArgOff = I.getFirstIndexOperandNumber();
while (ArgOff < I.getNumOperands()) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SLO = TD.getStructLayout(STy);
// Indicies must be ubyte constants...
const ConstantUInt *CPU = cast<ConstantUInt>(I->getOperand(ArgOff++));
const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand(ArgOff++));
assert(CPU->getType() == Type::UByteTy);
unsigned Index = CPU->getValue();
@ -818,13 +819,13 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be uint type...
assert(I->getOperand(ArgOff)->getType() == Type::UIntTy);
unsigned Idx = getOperandValue(I->getOperand(ArgOff++), SF).UIntVal;
assert(I.getOperand(ArgOff)->getType() == Type::UIntTy);
unsigned Idx = getOperandValue(I.getOperand(ArgOff++), SF).UIntVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << (ArgOff-I->getFirstIndexOperandNumber())
<< " Subscript #" << (ArgOff-I.getFirstIndexOperandNumber())
<< "\n";
// Get outta here!!!
siglongjmp(SignalRecoverBuffer, SIGTRAP);
@ -839,17 +840,17 @@ static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) {
return Total;
}
static void executeGEPInst(GetElementPtrInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
GenericValue Result;
Result.PointerVal = SrcPtr + getElementOffset(I, SF);
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
}
static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeLoadInst(LoadInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices
SrcPtr += Offset;
@ -857,7 +858,7 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
GenericValue *Ptr = (GenericValue*)SrcPtr;
GenericValue Result;
switch (I->getType()->getPrimitiveID()) {
switch (I.getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break;
@ -871,21 +872,21 @@ static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break;
case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break;
default:
cout << "Cannot load value of type " << I->getType() << "!\n";
cout << "Cannot load value of type " << I.getType() << "!\n";
}
SetValue(I, Result, SF);
SetValue(&I, Result, SF);
}
static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I->getPointerOperand(), SF);
static void executeStoreInst(StoreInst &I, ExecutionContext &SF) {
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
PointerTy SrcPtr = SRC.PointerVal;
SrcPtr += getElementOffset(I, SF); // Handle any structure indices
GenericValue *Ptr = (GenericValue *)SrcPtr;
GenericValue Val = getOperandValue(I->getOperand(0), SF);
GenericValue Val = getOperandValue(I.getOperand(0), SF);
switch (I->getOperand(0)->getType()->getPrimitiveID()) {
switch (I.getOperand(0)->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break;
@ -899,7 +900,7 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break;
case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break;
default:
cout << "Cannot store value of type " << I->getType() << "!\n";
cout << "Cannot store value of type " << I.getType() << "!\n";
}
}
@ -908,44 +909,44 @@ static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) {
ECStack.back().Caller = &I;
vector<GenericValue> ArgVals;
ArgVals.reserve(I->getNumOperands()-1);
for (unsigned i = 1; i < I->getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I->getOperand(i), SF));
ArgVals.reserve(I.getNumOperands()-1);
for (unsigned i = 1; i < I.getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I->getCalledValue(), SF);
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
callMethod((Function*)SRC.PointerVal, ArgVals);
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
static void executePHINode(PHINode &I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
for (unsigned i = I.getNumIncomingValues(); i > 0;) {
if (I.getIncomingBlock(--i) == PrevBB) {
IncomingValue = I.getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
SetValue(&I, getOperandValue(IncomingValue, SF), SF);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeShlInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -960,13 +961,13 @@ static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Shl instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
static void executeShrInst(ShiftInst &I, ExecutionContext &SF) {
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -981,7 +982,7 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled type for Shr instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
@ -1016,10 +1017,10 @@ static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static void executeCastInst(CastInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType();
const Type *SrcTy = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
static void executeCastInst(CastInst &I, ExecutionContext &SF) {
const Type *Ty = I.getType();
const Type *SrcTy = I.getOperand(0)->getType();
GenericValue Src = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
@ -1037,7 +1038,7 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
default:
cout << "Unhandled dest type for cast instruction: " << Ty << "\n";
}
SetValue(I, Dest, SF);
SetValue(&I, Dest, SF);
}
@ -1047,22 +1048,17 @@ static void executeCastInst(CastInst *I, ExecutionContext &SF) {
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Function *M) : Annotation(MethodInfoAID) {
MethodInfo::MethodInfo(Function *F) : Annotation(MethodInfoAID) {
// Assign slot numbers to the function arguments...
const Function::ArgumentListType &ArgList = M->getArgumentList();
for (Function::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI)
((Value*)(*AI))->addAnnotation(new SlotNumber(getValueSlot((Value*)*AI)));
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
BasicBlock *BB = *MI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II){
Instruction *I = *II; // For each instruction... Add Annote
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I)));
}
}
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
// For each instruction... Add Annote
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}
unsigned MethodInfo::getValueSlot(const Value *V) {
@ -1116,7 +1112,7 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurBB = M->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
@ -1134,13 +1130,11 @@ void Interpreter::callMethod(Function *M, const vector<GenericValue> &ArgVals) {
// Run through the function arguments and initialize their values...
assert(ArgVals.size() == M->getArgumentList().size() &&
assert(ArgVals.size() == M->asize() &&
"Invalid number of values passed to function invocation!");
unsigned i = 0;
for (Function::ArgumentListType::iterator AI = M->getArgumentList().begin(),
AE = M->getArgumentList().end(); AI != AE; ++AI, ++i) {
SetValue((Value*)*AI, ArgVals[i], StackFrame);
}
for (Function::aiterator AI = M->abegin(), E = M->aend(); AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
@ -1150,7 +1144,7 @@ bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
Instruction &I = *SF.CurInst++; // Increment before execute
if (Trace)
CW << "Run:" << I;
@ -1175,17 +1169,17 @@ bool Interpreter::executeInstruction() {
}
InInstruction = true;
if (I->isBinaryOp()) {
if (I.isBinaryOp()) {
executeBinaryInst(cast<BinaryOperator>(I), SF);
} else {
switch (I->getOpcode()) {
switch (I.getOpcode()) {
case Instruction::Not: executeNotInst(cast<UnaryOperator>(I),SF); break;
// Terminators
case Instruction::Ret: executeRetInst (cast<ReturnInst>(I), SF); break;
case Instruction::Br: executeBrInst (cast<BranchInst>(I), SF); break;
// Memory Instructions
case Instruction::Alloca:
case Instruction::Malloc: executeAllocInst((AllocationInst*)I, SF); break;
case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break;
case Instruction::Free: executeFreeInst (cast<FreeInst> (I), SF); break;
case Instruction::Load: executeLoadInst (cast<LoadInst> (I), SF); break;
case Instruction::Store: executeStoreInst(cast<StoreInst>(I), SF); break;
@ -1210,7 +1204,7 @@ bool Interpreter::executeInstruction() {
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
@ -1235,7 +1229,7 @@ void Interpreter::nextInstruction() { // Do the 'next' command
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
unsigned StackSize = ECStack.size();
// Step into the function...
if (executeInstruction()) {
@ -1308,8 +1302,8 @@ void Interpreter::printCurrentInstruction() {
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
WriteAsOperand(cout, ECStack.back().CurBB) << ":\n";
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
Instruction &I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
@ -1373,22 +1367,27 @@ void Interpreter::infoValue(const std::string &Name) {
//
void Interpreter::printStackFrame(int FrameNo = -1) {
if (FrameNo == -1) FrameNo = CurFrame;
Function *Func = ECStack[FrameNo].CurMethod;
const Type *RetTy = Func->getReturnType();
Function *F = ECStack[FrameNo].CurMethod;
const Type *RetTy = F->getReturnType();
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
<< (Value*)RetTy << " \"" << Func->getName() << "\"(";
<< (Value*)RetTy << " \"" << F->getName() << "\"(";
Function::ArgumentListType &Args = Func->getArgumentList();
for (unsigned i = 0; i < Args.size(); ++i) {
unsigned i = 0;
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
if (i != 0) cout << ", ";
CW << (Value*)Args[i] << "=";
CW << *I << "=";
printValue(((Value*)Args[i])->getType(),
getOperandValue((Value*)Args[i], ECStack[FrameNo]));
printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
}
cout << ")\n";
CW << *(ECStack[FrameNo].CurInst-(FrameNo != int(ECStack.size()-1)));
if (FrameNo != int(ECStack.size()-1)) {
BasicBlock::iterator I = ECStack[FrameNo].CurInst;
CW << --I;
} else {
CW << *ECStack[FrameNo].CurInst;
}
}

View File

@ -135,7 +135,8 @@ GenericValue lle_X_printVal(FunctionType *M, const vector<GenericValue> &ArgVal)
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
// Specialize print([ubyte {x N} ] *) and print(sbyte *)
if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get()))
if (const PointerType *PTy =
dyn_cast<PointerType>(M->getParamTypes()[0].get()))
if (PTy->getElementType() == Type::SByteTy ||
isa<ArrayType>(PTy->getElementType())) {
return lle_VP_printstr(M, ArgVal);

View File

@ -144,10 +144,10 @@ public:
void finish(); // Do the 'finish' command
// Opcode Implementations
void executeCallInst(CallInst *I, ExecutionContext &SF);
void executeRetInst(ReturnInst *I, ExecutionContext &SF);
void executeBrInst(BranchInst *I, ExecutionContext &SF);
void executeAllocInst(AllocationInst *I, ExecutionContext &SF);
void executeCallInst(CallInst &I, ExecutionContext &SF);
void executeRetInst(ReturnInst &I, ExecutionContext &SF);
void executeBrInst(BranchInst &I, ExecutionContext &SF);
void executeAllocInst(AllocationInst &I, ExecutionContext &SF);
GenericValue callExternalMethod(Function *F,
const std::vector<GenericValue> &ArgVals);
void exitCalled(GenericValue GV);

View File

@ -68,19 +68,19 @@ public:
: idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
// (start|end)(Module|Function) - Callback methods to be invoked by subclasses
void startModule(Module *M) {
void startModule(Module &M) {
// Create the global id table if it does not already exist
idTable = (GlobalIdTable*) M->getAnnotation(GlobalIdTable::AnnotId);
idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId);
if (idTable == NULL) {
idTable = new GlobalIdTable(M);
M->addAnnotation(idTable);
idTable = new GlobalIdTable(&M);
M.addAnnotation(idTable);
}
}
void startFunction(Function *F) {
void startFunction(Function &F) {
// Make sure the slot table has information about this function...
idTable->Table.incorporateFunction(F);
idTable->Table.incorporateFunction(&F);
}
void endFunction(Function *F) {
void endFunction(Function &) {
idTable->Table.purgeFunction(); // Forget all about F
}
void endModule() {
@ -194,19 +194,19 @@ struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
return "Output Sparc Assembly for Functions";
}
virtual bool doInitialization(Module *M) {
virtual bool doInitialization(Module &M) {
startModule(M);
return false;
}
virtual bool runOnFunction(Function *F) {
virtual bool runOnFunction(Function &F) {
startFunction(F);
emitFunction(F);
endFunction(F);
return false;
}
virtual bool doFinalization(Module *M) {
virtual bool doFinalization(Module &M) {
endModule();
return false;
}
@ -215,7 +215,7 @@ struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
AU.setPreservesAll();
}
void emitFunction(const Function *F);
void emitFunction(const Function &F);
private :
void emitBasicBlock(const BasicBlock *BB);
void emitMachineInst(const MachineInstr *MI);
@ -385,9 +385,9 @@ SparcFunctionAsmPrinter::emitBasicBlock(const BasicBlock *BB)
}
void
SparcFunctionAsmPrinter::emitFunction(const Function *M)
SparcFunctionAsmPrinter::emitFunction(const Function &F)
{
string methName = getID(M);
string methName = getID(&F);
toAsm << "!****** Outputing Function: " << methName << " ******\n";
enterSection(AsmPrinter::Text);
toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
@ -396,8 +396,8 @@ SparcFunctionAsmPrinter::emitFunction(const Function *M)
toAsm << methName << ":\n";
// Output code for all of the basic blocks in the function...
for (Function::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
emitBasicBlock(*I);
for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I)
emitBasicBlock(I);
// Output a .size directive so the debugger knows the extents of the function
toAsm << ".EndOf_" << methName << ":\n\t.size "
@ -431,7 +431,7 @@ public:
const char *getPassName() const { return "Output Sparc Assembly for Module"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
startModule(M);
emitGlobalsAndConstants(M);
endModule();
@ -443,14 +443,14 @@ public:
}
private:
void emitGlobalsAndConstants(const Module *M);
void emitGlobalsAndConstants(const Module &M);
void printGlobalVariable(const GlobalVariable *GV);
void printSingleConstant( const Constant* CV);
void printConstantValueOnly(const Constant* CV);
void printConstant( const Constant* CV, std::string valID = "");
static void FoldConstants(const Module *M,
static void FoldConstants(const Module &M,
std::hash_set<const Constant*> &moduleConstants);
};
@ -716,12 +716,12 @@ SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
}
void SparcModuleAsmPrinter::FoldConstants(const Module *M,
void SparcModuleAsmPrinter::FoldConstants(const Module &M,
std::hash_set<const Constant*> &MC) {
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!(*I)->isExternal()) {
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
const std::hash_set<const Constant*> &pool =
MachineCodeForMethod::get(*I).getConstantPoolValues();
MachineCodeForMethod::get(I).getConstantPoolValues();
MC.insert(pool.begin(), pool.end());
}
}
@ -743,7 +743,7 @@ void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
}
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) {
// First, get the constants there were marked by the code generator for
// inclusion in the assembly code data area and fold them all into a
// single constant pool since there may be lots of duplicates. Also,
@ -758,9 +758,9 @@ void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
// Section 1 : Read-only data section (implies initialized)
enterSection(AsmPrinter::ReadOnlyData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && (*GI)->isConstant())
printGlobalVariable(*GI);
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
if (GI->hasInitializer() && GI->isConstant())
printGlobalVariable(GI);
for (std::hash_set<const Constant*>::const_iterator
I = moduleConstants.begin(),
@ -769,15 +769,15 @@ void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module *M) {
// Section 2 : Initialized read-write data section
enterSection(AsmPrinter::InitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if ((*GI)->hasInitializer() && ! (*GI)->isConstant())
printGlobalVariable(*GI);
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
if (GI->hasInitializer() && !GI->isConstant())
printGlobalVariable(GI);
// Section 3 : Uninitialized read-write data section
enterSection(AsmPrinter::UninitRWData);
for (Module::const_giterator GI=M->gbegin(), GE=M->gend(); GI != GE; ++GI)
if (! (*GI)->hasInitializer())
printGlobalVariable(*GI);
for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
if (!GI->hasInitializer())
printGlobalVariable(GI);
toAsm << "\n";
}

View File

@ -61,13 +61,13 @@ namespace {
const char *getPassName() const { return "Emit Bytecode to Sparc Assembly";}
virtual bool run(Module *M) {
virtual bool run(Module &M) {
// Write bytecode out to the sparc assembly stream
Out << "\n\n!LLVM BYTECODE OUTPUT\n\t.section \".rodata\"\n\t.align 8\n";
Out << "\t.global LLVMBytecode\n\t.type LLVMBytecode,#object\n";
Out << "LLVMBytecode:\n";
osparcasmstream OS(Out);
WriteBytecodeToFile(M, OS);
WriteBytecodeToFile(&M, OS);
Out << ".end_LLVMBytecode:\n";
Out << "\t.size LLVMBytecode, .end_LLVMBytecode-LLVMBytecode\n\n";

View File

@ -20,26 +20,25 @@
#include "llvm/Instruction.h"
namespace {
class InsertPrologEpilogCode : public FunctionPass {
TargetMachine &Target;
public:
InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; }
bool runOnFunction(Function *F) {
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(F);
if (!mcodeInfo.isCompiledAsLeafMethod()) {
InsertPrologCode(F);
InsertEpilogCode(F);
class InsertPrologEpilogCode : public FunctionPass {
TargetMachine &Target;
public:
InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; }
bool runOnFunction(Function &F) {
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(&F);
if (!mcodeInfo.isCompiledAsLeafMethod()) {
InsertPrologCode(F);
InsertEpilogCode(F);
}
return false;
}
return false;
}
void InsertPrologCode(Function *F);
void InsertEpilogCode(Function *F);
};
void InsertPrologCode(Function &F);
void InsertEpilogCode(Function &F);
};
} // End anonymous namespace
@ -51,10 +50,8 @@ public:
// Create prolog and epilog code for procedure entry and exit
//------------------------------------------------------------------------
void InsertPrologEpilogCode::InsertPrologCode(Function *F)
void InsertPrologEpilogCode::InsertPrologCode(Function &F)
{
BasicBlock *entryBB = F->getEntryNode();
vector<MachineInstr*> mvec;
MachineInstr* M;
const MachineFrameInfo& frameInfo = Target.getFrameInfo();
@ -64,7 +61,7 @@ void InsertPrologEpilogCode::InsertPrologCode(Function *F)
// We will assume that local register `l0' is unused since the SAVE
// instruction must be the first instruction in each procedure.
//
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(F);
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(&F);
unsigned int staticStackSize = mcInfo.getStaticStackSize();
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
@ -104,26 +101,23 @@ void InsertPrologEpilogCode::InsertPrologCode(Function *F)
mvec.push_back(M);
}
MachineCodeForBasicBlock& bbMvec = entryBB->getMachineInstrVec();
bbMvec.insert(entryBB->getMachineInstrVec().begin(),
mvec.begin(), mvec.end());
MachineCodeForBasicBlock& bbMvec = F.getEntryNode().getMachineInstrVec();
bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end());
}
void InsertPrologEpilogCode::InsertEpilogCode(Function *F)
void InsertPrologEpilogCode::InsertEpilogCode(Function &F)
{
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
Instruction *TermInst = (Instruction*)(*I)->getTerminator();
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
Instruction *TermInst = (Instruction*)I->getTerminator();
if (TermInst->getOpcode() == Instruction::Ret)
{
BasicBlock* exitBB = *I;
MachineInstr *Restore = new MachineInstr(RESTORE);
Restore->SetMachineOperandReg(0, Target.getRegInfo().getZeroRegNum());
Restore->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,
(int64_t)0);
Restore->SetMachineOperandReg(2, Target.getRegInfo().getZeroRegNum());
MachineCodeForBasicBlock& bbMvec = exitBB->getMachineInstrVec();
MachineCodeForBasicBlock& bbMvec = I->getMachineInstrVec();
MachineCodeForInstruction &termMvec =
MachineCodeForInstruction::get(TermInst);

View File

@ -135,8 +135,8 @@ public:
return "Sparc ConstructMachineCodeForFunction";
}
bool runOnFunction(Function *F) {
MachineCodeForMethod::construct(F, Target);
bool runOnFunction(Function &F) {
MachineCodeForMethod::construct(&F, Target);
return false;
}
};
@ -147,9 +147,9 @@ public:
inline InstructionSelection(TargetMachine &T) : Target(T) {}
const char *getPassName() const { return "Sparc Instruction Selection"; }
bool runOnFunction(Function *F) {
if (SelectInstructionsForMethod(F, Target)) {
cerr << "Instr selection failed for function " << F->getName() << "\n";
bool runOnFunction(Function &F) {
if (SelectInstructionsForMethod(&F, Target)) {
cerr << "Instr selection failed for function " << F.getName() << "\n";
abort();
}
return false;
@ -159,20 +159,17 @@ public:
struct FreeMachineCodeForFunction : public FunctionPass {
const char *getPassName() const { return "Sparc FreeMachineCodeForFunction"; }
static void freeMachineCode(Instruction *I) {
MachineCodeForInstruction::destroy(I);
static void freeMachineCode(Instruction &I) {
MachineCodeForInstruction::destroy(&I);
}
bool runOnFunction(Function *F) {
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
for (BasicBlock::iterator I = (*FI)->begin(), E = (*FI)->end();
I != E; ++I)
MachineCodeForInstruction::get(*I).dropAllReferences();
bool runOnFunction(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I)
MachineCodeForInstruction::get(I).dropAllReferences();
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
for (BasicBlock::iterator I = (*FI)->begin(), E = (*FI)->end();
I != E; ++I)
freeMachineCode(*I);
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for_each(FI->begin(), FI->end(), freeMachineCode);
return false;
}

View File

@ -286,29 +286,26 @@ void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth,
// check if this is a varArgs function. needed for choosing regs.
bool isVarArgs = isVarArgsFunction(Meth->getType());
// get the argument list
const Function::ArgumentListType& ArgList = Meth->getArgumentList();
// for each argument. count INT and FP arguments separately.
for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
argNo != ArgList.size(); ++argNo)
{
// get the LR of arg
LiveRange *LR = LRI.getLiveRangeForValue((const Value *)ArgList[argNo]);
assert( LR && "No live range found for method arg");
unsigned regType = getRegType( LR );
unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
int regNum = (regType == IntRegType)
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
if(regNum != InvalidRegNum)
LR->setSuggestedColor(regNum);
}
unsigned argNo=0, intArgNo=0, fpArgNo=0;
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
I != E; ++I, ++argNo) {
// get the LR of arg
LiveRange *LR = LRI.getLiveRangeForValue(I);
assert(LR && "No live range found for method arg");
unsigned regType = getRegType(LR);
unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
int regNum = (regType == IntRegType)
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
if(regNum != InvalidRegNum)
LR->setSuggestedColor(regNum);
}
}
@ -323,16 +320,15 @@ void UltraSparcRegInfo::colorMethodArgs(const Function *Meth,
// check if this is a varArgs function. needed for choosing regs.
bool isVarArgs = isVarArgsFunction(Meth->getType());
// get the argument list
const Function::ArgumentListType& ArgList = Meth->getArgumentList();
// get an iterator to arg list
MachineInstr *AdMI;
// for each argument
for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
argNo != ArgList.size(); ++argNo) {
// for each argument. count INT and FP arguments separately.
unsigned argNo=0, intArgNo=0, fpArgNo=0;
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
I != E; ++I, ++argNo) {
// get the LR of arg
LiveRange *LR = LRI.getLiveRangeForValue((Value*)ArgList[argNo]);
LiveRange *LR = LRI.getLiveRangeForValue(I);
assert( LR && "No live range found for method arg");
unsigned regType = getRegType( LR );

View File

@ -15,7 +15,7 @@
static Statistic<> NumRemoved("globaldce\t- Number of global values removed");
static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
static bool RemoveUnreachableFunctions(Module &M, CallGraph &CallGraph) {
// Calculate which functions are reachable from the external functions in the
// call graph.
//
@ -27,10 +27,10 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
// The second pass removes the functions that need to be removed.
//
std::vector<CallGraphNode*> FunctionsToDelete; // Track unused functions
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
CallGraphNode *N = CallGraph[*I];
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
CallGraphNode *N = CallGraph[I];
if (!ReachableNodes.count(N)) { // Not reachable??
(*I)->dropAllReferences();
I->dropAllReferences();
N->removeAllCalledMethods();
FunctionsToDelete.push_back(N);
++NumRemoved;
@ -50,17 +50,16 @@ static bool RemoveUnreachableFunctions(Module *M, CallGraph &CallGraph) {
return true;
}
static bool RemoveUnreachableGlobalVariables(Module *M) {
static bool RemoveUnreachableGlobalVariables(Module &M) {
bool Changed = false;
// Eliminate all global variables that are unused, and that are internal, or
// do not have an initializer.
//
for (Module::giterator I = M->gbegin(); I != M->gend(); )
if (!(*I)->use_empty() ||
((*I)->hasExternalLinkage() && (*I)->hasInitializer()))
for (Module::giterator I = M.gbegin(); I != M.gend(); )
if (!I->use_empty() || (I->hasExternalLinkage() && I->hasInitializer()))
++I; // Cannot eliminate global variable
else {
delete M->getGlobalList().remove(I);
I = M.getGlobalList().erase(I);
++NumRemoved;
Changed = true;
}
@ -74,7 +73,7 @@ namespace {
// run - Do the GlobalDCE pass on the specified module, optionally updating
// the specified callgraph to reflect the changes.
//
bool run(Module *M) {
bool run(Module &M) {
return RemoveUnreachableFunctions(M, getAnalysis<CallGraph>()) |
RemoveUnreachableGlobalVariables(M);
}

View File

@ -17,10 +17,10 @@ static Statistic<> NumChanged("internalize\t- Number of functions internal'd");
class InternalizePass : public Pass {
const char *getPassName() const { return "Internalize Functions"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
bool FoundMain = false; // Look for a function named main...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if ((*I)->getName() == "main" && !(*I)->isExternal()) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->getName() == "main" && !I->isExternal()) {
FoundMain = true;
break;
}
@ -30,10 +30,10 @@ class InternalizePass : public Pass {
bool Changed = false;
// Found a main function, mark all functions not named main as internal.
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if ((*I)->getName() != "main" && // Leave the main function external
!(*I)->isExternal()) { // Function must be defined here
(*I)->setInternalLinkage(true);
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->getName() != "main" && // Leave the main function external
!I->isExternal()) { // Function must be defined here
I->setInternalLinkage(true);
Changed = true;
++NumChanged;
}

View File

@ -95,7 +95,7 @@ const Type *MutateStructTypes::ConvertType(const Type *Ty) {
assert(DestTy && "Type didn't get created!?!?");
// Refine our little placeholder value into a real type...
cast<DerivedType>(PlaceHolder.get())->refineAbstractTypeTo(DestTy);
((DerivedType*)PlaceHolder.get())->refineAbstractTypeTo(DestTy);
TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
return PlaceHolder.get();
@ -139,9 +139,9 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
// Ignore null values and simple constants..
if (V == 0) return 0;
if (Constant *CPV = dyn_cast<Constant>(V)) {
if (const Constant *CPV = dyn_cast<Constant>(V)) {
if (V->getType()->isPrimitiveType())
return CPV;
return (Value*)CPV;
if (isa<ConstantPointerNull>(CPV))
return ConstantPointerNull::get(
@ -150,11 +150,11 @@ Value *MutateStructTypes::ConvertValue(const Value *V) {
}
// Check to see if this is an out of function reference first...
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Check to see if the value is in the map...
map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
if (I == GlobalMap.end())
return GV; // Not mapped, just return value itself
return (Value*)GV; // Not mapped, just return value itself
return I->second;
}
@ -221,7 +221,7 @@ void MutateStructTypes::setTransforms(const TransformsType &XForm) {
// types...
//
const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
cast<DerivedType>(OldTypeStub)->refineAbstractTypeTo(NSTy);
((DerivedType*)OldTypeStub)->refineAbstractTypeTo(NSTy);
// Add the transformation to the Transforms map.
Transforms.insert(std::make_pair(OldTy,
@ -239,52 +239,46 @@ void MutateStructTypes::clearTransforms() {
"Local Value Map should always be empty between transformations!");
}
// doInitialization - This loops over global constants defined in the
// processGlobals - This loops over global constants defined in the
// module, converting them to their new type.
//
void MutateStructTypes::processGlobals(Module *M) {
void MutateStructTypes::processGlobals(Module &M) {
// Loop through the functions in the module and create a new version of the
// function to contained the transformed code. Don't use an iterator, because
// we will be adding values to the end of the vector, and it could be
// reallocated. Also, we don't want to process the values that we add.
// function to contained the transformed code. Also, be careful to not
// process the values that we add.
//
unsigned NumFunctions = M->size();
for (unsigned i = 0; i < NumFunctions; ++i) {
Function *Meth = M->begin()[i];
if (!Meth->isExternal()) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
const FunctionType *NewMTy =
cast<FunctionType>(ConvertType(Meth->getFunctionType()));
cast<FunctionType>(ConvertType(I->getFunctionType()));
// Create a new function to put stuff into...
Function *NewMeth = new Function(NewMTy, Meth->hasInternalLinkage(),
Meth->getName());
if (Meth->hasName())
Meth->setName("OLD."+Meth->getName());
Function *NewMeth = new Function(NewMTy, I->hasInternalLinkage(),
I->getName());
if (I->hasName())
I->setName("OLD."+I->getName());
// Insert the new function into the function list... to be filled in later
M->getFunctionList().push_back(NewMeth);
M.getFunctionList().push_back(NewMeth);
// Keep track of the association...
GlobalMap[Meth] = NewMeth;
GlobalMap[I] = NewMeth;
}
}
// TODO: HANDLE GLOBAL VARIABLES
// Remap the symbol table to refer to the types in a nice way
//
if (M->hasSymbolTable()) {
SymbolTable *ST = M->getSymbolTable();
if (SymbolTable *ST = M.getSymbolTable()) {
SymbolTable::iterator I = ST->find(Type::TypeTy);
if (I != ST->end()) { // Get the type plane for Type's
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator TI = Plane.begin(), TE = Plane.end();
TI != TE; ++TI) {
// This is gross, I'm reaching right into a symbol table and mucking
// around with it's internals... but oh well.
// FIXME: This is gross, I'm reaching right into a symbol table and
// mucking around with it's internals... but oh well.
//
TI->second = cast<Type>(ConvertType(cast<Type>(TI->second)));
TI->second = (Value*)cast<Type>(ConvertType(cast<Type>(TI->second)));
}
}
}
@ -293,20 +287,20 @@ void MutateStructTypes::processGlobals(Module *M) {
// removeDeadGlobals - For this pass, all this does is remove the old versions
// of the functions and global variables that we no longer need.
void MutateStructTypes::removeDeadGlobals(Module *M) {
void MutateStructTypes::removeDeadGlobals(Module &M) {
// Prepare for deletion of globals by dropping their interdependencies...
for(Module::iterator I = M->begin(); I != M->end(); ++I) {
if (GlobalMap.find(*I) != GlobalMap.end())
(*I)->Function::dropAllReferences();
for(Module::iterator I = M.begin(); I != M.end(); ++I) {
if (GlobalMap.find(I) != GlobalMap.end())
I->dropAllReferences();
}
// Run through and delete the functions and global variables...
#if 0 // TODO: HANDLE GLOBAL VARIABLES
M->getGlobalList().delete_span(M->gbegin(), M->gbegin()+NumGVars/2);
M->getGlobalList().delete_span(M.gbegin(), M.gbegin()+NumGVars/2);
#endif
for(Module::iterator I = M->begin(); I != M->end();) {
if (GlobalMap.find(*I) != GlobalMap.end())
delete M->getFunctionList().remove(I);
for(Module::iterator I = M.begin(); I != M.end();) {
if (GlobalMap.find(I) != GlobalMap.end())
I = M.getFunctionList().erase(I);
else
++I;
}
@ -326,46 +320,43 @@ void MutateStructTypes::transformFunction(Function *m) {
Function *NewMeth = cast<Function>(GMI->second);
// Okay, first order of business, create the arguments...
for (unsigned i = 0, e = M->getArgumentList().size(); i != e; ++i) {
const Argument *OFA = M->getArgumentList()[i];
Argument *NFA = new Argument(ConvertType(OFA->getType()), OFA->getName());
for (Function::aiterator I = m->abegin(), E = m->aend(); I != E; ++I) {
Argument *NFA = new Argument(ConvertType(I->getType()), I->getName());
NewMeth->getArgumentList().push_back(NFA);
LocalValueMap[OFA] = NFA; // Keep track of value mapping
LocalValueMap[I] = NFA; // Keep track of value mapping
}
// Loop over all of the basic blocks copying instructions over...
for (Function::const_iterator BBI = M->begin(), BBE = M->end(); BBI != BBE;
++BBI) {
for (Function::const_iterator BB = M->begin(), BBE = M->end(); BB != BBE;
++BB) {
// Create a new basic block and establish a mapping between the old and new
const BasicBlock *BB = *BBI;
BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
NewMeth->getBasicBlocks().push_back(NewBB); // Add block to function
NewMeth->getBasicBlockList().push_back(NewBB); // Add block to function
// Copy over all of the instructions in the basic block...
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
const Instruction *I = *II; // Get the current instruction...
const Instruction &I = *II; // Get the current instruction...
Instruction *NewI = 0;
switch (I->getOpcode()) {
switch (I.getOpcode()) {
// Terminator Instructions
case Instruction::Ret:
NewI = new ReturnInst(
ConvertValue(cast<ReturnInst>(I)->getReturnValue()));
ConvertValue(cast<ReturnInst>(I).getReturnValue()));
break;
case Instruction::Br: {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isConditional()) {
const BranchInst &BI = cast<BranchInst>(I);
if (BI.isConditional()) {
NewI =
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))),
cast<BasicBlock>(ConvertValue(BI->getSuccessor(1))),
ConvertValue(BI->getCondition()));
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))),
cast<BasicBlock>(ConvertValue(BI.getSuccessor(1))),
ConvertValue(BI.getCondition()));
} else {
NewI =
new BranchInst(cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))));
new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))));
}
break;
}
@ -375,8 +366,8 @@ void MutateStructTypes::transformFunction(Function *m) {
// Unary Instructions
case Instruction::Not:
NewI = UnaryOperator::create((Instruction::UnaryOps)I->getOpcode(),
ConvertValue(I->getOperand(0)));
NewI = UnaryOperator::create((Instruction::UnaryOps)I.getOpcode(),
ConvertValue(I.getOperand(0)));
break;
// Binary Instructions
@ -397,41 +388,41 @@ void MutateStructTypes::transformFunction(Function *m) {
case Instruction::SetGE:
case Instruction::SetLT:
case Instruction::SetGT:
NewI = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
ConvertValue(I->getOperand(0)),
ConvertValue(I->getOperand(1)));
NewI = BinaryOperator::create((Instruction::BinaryOps)I.getOpcode(),
ConvertValue(I.getOperand(0)),
ConvertValue(I.getOperand(1)));
break;
case Instruction::Shr:
case Instruction::Shl:
NewI = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
ConvertValue(I->getOperand(0)),
ConvertValue(I->getOperand(1)));
NewI = new ShiftInst(cast<ShiftInst>(I).getOpcode(),
ConvertValue(I.getOperand(0)),
ConvertValue(I.getOperand(1)));
break;
// Memory Instructions
case Instruction::Alloca:
NewI =
new AllocaInst(ConvertType(I->getType()),
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
new AllocaInst(ConvertType(I.getType()),
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
break;
case Instruction::Malloc:
NewI =
new MallocInst(ConvertType(I->getType()),
I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
new MallocInst(ConvertType(I.getType()),
I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
break;
case Instruction::Free:
NewI = new FreeInst(ConvertValue(I->getOperand(0)));
NewI = new FreeInst(ConvertValue(I.getOperand(0)));
break;
case Instruction::Load:
case Instruction::Store:
case Instruction::GetElementPtr: {
const MemAccessInst *MAI = cast<MemAccessInst>(I);
vector<Value*> Indices(MAI->idx_begin(), MAI->idx_end());
const Value *Ptr = MAI->getPointerOperand();
const MemAccessInst &MAI = cast<MemAccessInst>(I);
vector<Value*> Indices(MAI.idx_begin(), MAI.idx_end());
const Value *Ptr = MAI.getPointerOperand();
Value *NewPtr = ConvertValue(Ptr);
if (!Indices.empty()) {
const Type *PTy = cast<PointerType>(Ptr->getType())->getElementType();
@ -441,7 +432,7 @@ void MutateStructTypes::transformFunction(Function *m) {
if (isa<LoadInst>(I)) {
NewI = new LoadInst(NewPtr, Indices);
} else if (isa<StoreInst>(I)) {
NewI = new StoreInst(ConvertValue(I->getOperand(0)), NewPtr, Indices);
NewI = new StoreInst(ConvertValue(I.getOperand(0)), NewPtr, Indices);
} else if (isa<GetElementPtrInst>(I)) {
NewI = new GetElementPtrInst(NewPtr, Indices);
} else {
@ -452,23 +443,23 @@ void MutateStructTypes::transformFunction(Function *m) {
// Miscellaneous Instructions
case Instruction::PHINode: {
const PHINode *OldPN = cast<PHINode>(I);
PHINode *PN = new PHINode(ConvertType(I->getType()));
for (unsigned i = 0; i < OldPN->getNumIncomingValues(); ++i)
PN->addIncoming(ConvertValue(OldPN->getIncomingValue(i)),
cast<BasicBlock>(ConvertValue(OldPN->getIncomingBlock(i))));
const PHINode &OldPN = cast<PHINode>(I);
PHINode *PN = new PHINode(ConvertType(OldPN.getType()));
for (unsigned i = 0; i < OldPN.getNumIncomingValues(); ++i)
PN->addIncoming(ConvertValue(OldPN.getIncomingValue(i)),
cast<BasicBlock>(ConvertValue(OldPN.getIncomingBlock(i))));
NewI = PN;
break;
}
case Instruction::Cast:
NewI = new CastInst(ConvertValue(I->getOperand(0)),
ConvertType(I->getType()));
NewI = new CastInst(ConvertValue(I.getOperand(0)),
ConvertType(I.getType()));
break;
case Instruction::Call: {
Value *Meth = ConvertValue(I->getOperand(0));
Value *Meth = ConvertValue(I.getOperand(0));
vector<Value*> Operands;
for (unsigned i = 1; i < I->getNumOperands(); ++i)
Operands.push_back(ConvertValue(I->getOperand(i)));
for (unsigned i = 1; i < I.getNumOperands(); ++i)
Operands.push_back(ConvertValue(I.getOperand(i)));
NewI = new CallInst(Meth, Operands);
break;
}
@ -478,11 +469,11 @@ void MutateStructTypes::transformFunction(Function *m) {
break;
}
NewI->setName(I->getName());
NewI->setName(I.getName());
NewBB->getInstList().push_back(NewI);
// Check to see if we had to make a placeholder for this value...
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(I);
map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(&I);
if (LVMI != LocalValueMap.end()) {
// Yup, make sure it's a placeholder...
Instruction *I = cast<Instruction>(LVMI->second);
@ -495,7 +486,7 @@ void MutateStructTypes::transformFunction(Function *m) {
// Keep track of the fact the the local implementation of this instruction
// is NewI.
LocalValueMap[I] = NewI;
LocalValueMap[&I] = NewI;
}
}
@ -503,11 +494,11 @@ void MutateStructTypes::transformFunction(Function *m) {
}
bool MutateStructTypes::run(Module *M) {
bool MutateStructTypes::run(Module &M) {
processGlobals(M);
for_each(M->begin(), M->end(),
bind_obj(this, &MutateStructTypes::transformFunction));
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
transformFunction(I);
removeDeadGlobals(M);
return true;

View File

@ -13,8 +13,6 @@
#include "llvm/Transforms/Utils/CloneFunction.h"
#include "llvm/Analysis/DataStructureGraph.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
@ -23,7 +21,6 @@
#include "llvm/Constants.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Argument.h"
#include "Support/DepthFirstIterator.h"
#include "Support/STLExtras.h"
#include <algorithm>
@ -62,9 +59,9 @@ const Type *POINTERTYPE;
static TargetData TargetData("test");
static const Type *getPointerTransformedType(const Type *Ty) {
if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
return POINTERTYPE;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
vector<const Type *> NewElTypes;
NewElTypes.reserve(STy->getElementTypes().size());
for (StructType::ElementTypes::const_iterator
@ -72,7 +69,7 @@ static const Type *getPointerTransformedType(const Type *Ty) {
E = STy->getElementTypes().end(); I != E; ++I)
NewElTypes.push_back(getPointerTransformedType(*I));
return StructType::get(NewElTypes);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return ArrayType::get(getPointerTransformedType(ATy->getElementType()),
ATy->getNumElements());
} else {
@ -233,7 +230,7 @@ namespace {
return Result;
}
bool run(Module *M);
bool run(Module &M);
// getAnalysisUsage - This function requires data structure information
// to be able to see what is pool allocatable.
@ -273,7 +270,7 @@ namespace {
// specified module and update the Pool* instance variables to point to
// them.
//
void addPoolPrototypes(Module *M);
void addPoolPrototypes(Module &M);
// CreatePools - Insert instructions into the function we are processing to
@ -410,12 +407,13 @@ class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
return 0;
}
BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
BasicBlock *BB = I->getParent();
BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
BB->getInstList().replaceWith(RI, New);
XFormMap[I] = New;
return RI;
BasicBlock::iterator ReplaceInstWith(Instruction &I, Instruction *New) {
BasicBlock *BB = I.getParent();
BasicBlock::iterator RI = &I;
BB->getInstList().remove(RI);
BB->getInstList().insert(RI, New);
XFormMap[&I] = New;
return New;
}
Instruction *createPoolBaseInstruction(Value *PtrVal) {
@ -471,36 +469,36 @@ public:
// NewInstructionCreator instance...
//===--------------------------------------------------------------------===//
void visitGetElementPtrInst(GetElementPtrInst *I) {
void visitGetElementPtrInst(GetElementPtrInst &I) {
assert(0 && "Cannot transform get element ptr instructions yet!");
}
// Replace the load instruction with a new one.
void visitLoadInst(LoadInst *I) {
void visitLoadInst(LoadInst &I) {
vector<Instruction *> BeforeInsts;
// Cast our index to be a UIntTy so we can use it to index into the pool...
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Type::UIntTy, I->getOperand(0)->getName());
Type::UIntTy, I.getOperand(0)->getName());
BeforeInsts.push_back(Index);
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(0)));
// Include the pool base instruction...
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(0));
BeforeInsts.push_back(PoolBase);
Instruction *IdxInst =
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index,
I->getName()+".idx");
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index,
I.getName()+".idx");
BeforeInsts.push_back(IdxInst);
vector<Value*> Indices(I->idx_begin(), I->idx_end());
vector<Value*> Indices(I.idx_begin(), I.idx_end());
Indices[0] = IdxInst;
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
I->getName()+".addr");
I.getName()+".addr");
BeforeInsts.push_back(Address);
Instruction *NewLoad = new LoadInst(Address, I->getName());
Instruction *NewLoad = new LoadInst(Address, I.getName());
// Replace the load instruction with the new load instruction...
BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
@ -512,57 +510,58 @@ public:
// If not yielding a pool allocated pointer, use the new load value as the
// value in the program instead of the old load value...
//
if (!getScalar(I))
I->replaceAllUsesWith(NewLoad);
if (!getScalar(&I))
I.replaceAllUsesWith(NewLoad);
}
// Replace the store instruction with a new one. In the store instruction,
// the value stored could be a pointer type, meaning that the new store may
// have to change one or both of it's operands.
//
void visitStoreInst(StoreInst *I) {
assert(getScalar(I->getOperand(1)) &&
void visitStoreInst(StoreInst &I) {
assert(getScalar(I.getOperand(1)) &&
"Store inst found only storing pool allocated pointer. "
"Not imp yet!");
Value *Val = I->getOperand(0); // The value to store...
Value *Val = I.getOperand(0); // The value to store...
// Check to see if the value we are storing is a data structure pointer...
//if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
if (isa<PointerType>(I->getOperand(0)->getType()))
//if (const ScalarInfo *ValScalar = getScalar(I.getOperand(0)))
if (isa<PointerType>(I.getOperand(0)->getType()))
Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
Instruction *PoolBase = createPoolBaseInstruction(I.getOperand(1));
// Cast our index to be a UIntTy so we can use it to index into the pool...
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
Type::UIntTy, I->getOperand(1)->getName());
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
Type::UIntTy, I.getOperand(1)->getName());
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I.getOperand(1)));
// Instructions to add after the Index...
vector<Instruction*> AfterInsts;
Instruction *IdxInst =
BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, "idx");
BinaryOperator::create(Instruction::Add, *I.idx_begin(), Index, "idx");
AfterInsts.push_back(IdxInst);
vector<Value*> Indices(I->idx_begin(), I->idx_end());
vector<Value*> Indices(I.idx_begin(), I.idx_end());
Indices[0] = IdxInst;
Instruction *Address = new GetElementPtrInst(PoolBase, Indices,
I->getName()+"storeaddr");
I.getName()+"storeaddr");
AfterInsts.push_back(Address);
Instruction *NewStore = new StoreInst(Val, Address);
AfterInsts.push_back(NewStore);
if (Val != I->getOperand(0)) // Value stored was a pointer?
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
if (Val != I.getOperand(0)) // Value stored was a pointer?
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I.getOperand(0)));
// Replace the store instruction with the cast instruction...
BasicBlock::iterator II = ReplaceInstWith(I, Index);
// Add the pool base calculator instruction before the index...
II = Index->getParent()->getInstList().insert(II, PoolBase)+2;
II = ++Index->getParent()->getInstList().insert(II, PoolBase);
++II;
// Add the instructions that go after the index...
Index->getParent()->getInstList().insert(II, AfterInsts.begin(),
@ -571,42 +570,42 @@ public:
// Create call to poolalloc for every malloc instruction
void visitMallocInst(MallocInst *I) {
const ScalarInfo &SCI = getScalarRef(I);
void visitMallocInst(MallocInst &I) {
const ScalarInfo &SCI = getScalarRef(&I);
vector<Value*> Args;
CallInst *Call;
if (!I->isArrayAllocation()) {
if (!I.isArrayAllocation()) {
Args.push_back(SCI.Pool.Handle);
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I.getName());
} else {
Args.push_back(I->getArraySize());
Args.push_back(I.getArraySize());
Args.push_back(SCI.Pool.Handle);
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName());
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I.getName());
}
ReplaceInstWith(I, Call);
}
// Convert a call to poolfree for every free instruction...
void visitFreeInst(FreeInst *I) {
void visitFreeInst(FreeInst &I) {
// Create a new call to poolfree before the free instruction
vector<Value*> Args;
Args.push_back(Constant::getNullValue(POINTERTYPE));
Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
Args.push_back(getScalarRef(I.getOperand(0)).Pool.Handle);
Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
ReplaceInstWith(I, NewCall);
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I.getOperand(0)));
}
// visitCallInst - Create a new call instruction with the extra arguments for
// all of the memory pools that the call needs.
//
void visitCallInst(CallInst *I) {
TransformFunctionInfo &TI = CallMap[I];
void visitCallInst(CallInst &I) {
TransformFunctionInfo &TI = CallMap[&I];
// Start with all of the old arguments...
vector<Value*> Args(I->op_begin()+1, I->op_end());
vector<Value*> Args(I.op_begin()+1, I.op_end());
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
// Replace all of the pointer arguments with our new pointer typed values.
@ -618,7 +617,7 @@ public:
}
Function *NF = PoolAllocator.getTransformedFunction(TI);
Instruction *NewCall = new CallInst(NF, Args, I->getName());
Instruction *NewCall = new CallInst(NF, Args, I.getName());
ReplaceInstWith(I, NewCall);
// Keep track of the mapping of operands so that we can resolve them to real
@ -627,7 +626,7 @@ public:
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
if (TI.ArgInfo[i].ArgNo != -1)
ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
I->getOperand(TI.ArgInfo[i].ArgNo+1)));
I.getOperand(TI.ArgInfo[i].ArgNo+1)));
else
RetVal = 0; // If returning a pointer, don't change retval...
@ -635,47 +634,47 @@ public:
// instead of the old call...
//
if (RetVal)
I->replaceAllUsesWith(RetVal);
I.replaceAllUsesWith(RetVal);
}
// visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
// nodes...
//
void visitPHINode(PHINode *PN) {
void visitPHINode(PHINode &PN) {
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
PHINode *NewPhi = new PHINode(POINTERTYPE, PN.getName());
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
NewPhi->addIncoming(DummyVal, PN.getIncomingBlock(i));
ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
PN->getIncomingValue(i)));
PN.getIncomingValue(i)));
}
ReplaceInstWith(PN, NewPhi);
}
// visitReturnInst - Replace ret instruction with a new return...
void visitReturnInst(ReturnInst *I) {
void visitReturnInst(ReturnInst &I) {
Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE));
ReplaceInstWith(I, Ret);
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I.getOperand(0)));
}
// visitSetCondInst - Replace a conditional test instruction with a new one
void visitSetCondInst(SetCondInst *SCI) {
BinaryOperator *I = (BinaryOperator*)SCI;
void visitSetCondInst(SetCondInst &SCI) {
BinaryOperator &I = (BinaryOperator&)SCI;
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
DummyVal, I->getName());
BinaryOperator *New = BinaryOperator::create(I.getOpcode(), DummyVal,
DummyVal, I.getName());
ReplaceInstWith(I, New);
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I.getOperand(0)));
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I.getOperand(1)));
// Make sure branches refer to the new condition...
I->replaceAllUsesWith(New);
I.replaceAllUsesWith(New);
}
void visitInstruction(Instruction *I) {
void visitInstruction(Instruction &I) {
cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
}
};
@ -729,8 +728,8 @@ public:
}
#ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR
void visitFunction(Function *F) {
cerr << "Pool Load Elim '" << F->getName() << "'\t";
void visitFunction(Function &F) {
cerr << "Pool Load Elim '" << F.getName() << "'\t";
}
~PoolBaseLoadEliminator() {
unsigned Total = Eliminated+Remaining;
@ -745,7 +744,7 @@ public:
// local transformation, we reset all of our state when we enter a new basic
// block.
//
void visitBasicBlock(BasicBlock *) {
void visitBasicBlock(BasicBlock &) {
PoolDescMap.clear(); // Forget state.
}
@ -754,25 +753,25 @@ public:
// indicating that we have a value available to recycle next time we see the
// poolbase of this instruction being loaded.
//
void visitLoadInst(LoadInst *LI) {
Value *LoadAddr = LI->getPointerOperand();
void visitLoadInst(LoadInst &LI) {
Value *LoadAddr = LI.getPointerOperand();
map<Value*, LoadInst*>::iterator VIt = PoolDescMap.find(LoadAddr);
if (VIt != PoolDescMap.end()) { // We already have a value for this load?
LI->replaceAllUsesWith(VIt->second); // Make the current load dead
LI.replaceAllUsesWith(VIt->second); // Make the current load dead
++Eliminated;
} else {
// This load might not be a load of a pool pointer, check to see if it is
if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
if (LI.getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) !=
PoolDescValues.end()) {
assert("Make sure it's a load of the pool base, not a chaining field" &&
LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
LI->getOperand(3) == Constant::getNullValue(Type::UByteTy));
LI.getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
LI.getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
LI.getOperand(3) == Constant::getNullValue(Type::UByteTy));
// If it is a load of a pool base, keep track of it for future reference
PoolDescMap.insert(make_pair(LoadAddr, LI));
PoolDescMap.insert(make_pair(LoadAddr, &LI));
++Remaining;
}
}
@ -784,7 +783,7 @@ public:
// function might call one of these functions, so be conservative. Through
// more analysis, this could be improved in the future.
//
void visitCallInst(CallInst *) {
void visitCallInst(CallInst &) {
PoolDescMap.clear();
}
};
@ -845,8 +844,9 @@ static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
NodeMapping);
} else {
// Figure out which node argument # ArgNo points to in the called graph.
Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
Function::aiterator AI = F->abegin();
std::advance(AI, TFI.ArgInfo[i].ArgNo);
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[AI],
NodeMapping);
}
LastArgNo = TFI.ArgInfo[i].ArgNo;
@ -923,9 +923,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
Done = false;
}
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
Argument *Arg = Func->getArgumentList()[i];
if (isa<PointerType>(Arg->getType())) {
unsigned i = 0;
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I,++i){
if (isa<PointerType>(I->getType())) {
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
// We DO transform this arg... skip all possible entries for argument
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
@ -989,9 +989,10 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
if (i == 0) // Only process retvals once (performance opt)
markReachableNodes(CalledDS.getRetNodes(), ReachableNodes);
} else { // If it's an argument value...
Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo];
if (isa<PointerType>(Arg->getType()))
markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes);
Function::aiterator AI = Func->abegin();
std::advance(AI, ArgInfo[i].ArgNo);
if (isa<PointerType>(AI->getType()))
markReachableNodes(CalledDS.getValueMap()[AI], ReachableNodes);
}
}
@ -1035,9 +1036,9 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
}
}
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
Argument *Arg = Func->getArgumentList()[i];
if (isa<PointerType>(Arg->getType())) {
i = 0;
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I!=E; ++I, ++i)
if (isa<PointerType>(I->getType())) {
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
// We DO transform this arg... skip all possible entries for argument
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
@ -1045,13 +1046,13 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
} else {
// This should generalize to any number of nodes, just see if any are
// reachable.
assert(CalledDS.getValueMap()[Arg].size() == 1 &&
assert(CalledDS.getValueMap()[I].size() == 1 &&
"Only handle case where pointing to one node so far!");
// If the arg is not marked as being passed in, but it NEEDS to
// be transformed, then make it known now.
//
DSNode *N = CalledDS.getValueMap()[Arg][0].Node;
DSNode *N = CalledDS.getValueMap()[I][0].Node;
if (ReachableNodes.count(N)) {
#ifdef DEBUG_TRANSFORM_PROGRESS
cerr << "ensure dependant arguments adds for arg #" << i << "\n";
@ -1063,7 +1064,6 @@ void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
}
}
}
}
}
@ -1222,7 +1222,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
if (PoolDescs.count(RetNode.Node)) {
// Loop over all of the basic blocks, adding return instructions...
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
InstToFix.push_back(RI);
}
}
@ -1246,7 +1246,7 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
#ifdef DEBUG_TRANSFORM_PROGRESS
for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
cerr << "Fixing: " << InstToFix[i];
NIC.visit(InstToFix[i]);
NIC.visit(*InstToFix[i]);
}
#else
NIC.visit(InstToFix.begin(), InstToFix.end());
@ -1264,16 +1264,15 @@ void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
//
FunctionType::ParamTypes::const_iterator TI =
F->getFunctionType()->getParamTypes().begin();
for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
E = F->getArgumentList().end(); I != E; ++I, ++TI) {
Argument *Arg = *I;
if (Arg->getType() != *TI) {
assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
Argument *NewArg = new Argument(*TI, Arg->getName());
XFormMap[Arg] = NewArg; // Map old arg into new arg...
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++TI) {
if (I->getType() != *TI) {
assert(isa<PointerType>(I->getType()) && *TI == POINTERTYPE);
Argument *NewArg = new Argument(*TI, I->getName());
XFormMap[I] = NewArg; // Map old arg into new arg...
// Replace the old argument and then delete it...
delete F->getArgumentList().replaceWith(I, NewArg);
I = F->getArgumentList().erase(I);
I = F->getArgumentList().insert(I, NewArg);
}
}
@ -1366,9 +1365,9 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
const Argument *OFA = TFI.Func->getArgumentList()[i];
Argument *NFA = new Argument(OFA->getType(), OFA->getName());
for (Function::const_aiterator I = TFI.Func->abegin(), E = TFI.Func->aend();
I != E; ++I) {
Argument *NFA = new Argument(I->getType(), I->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
}
@ -1457,11 +1456,13 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
#ifdef DEBUG_TRANSFORM_PROGRESS
cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
#endif
assert(ArgNo < NewFunc->getArgumentList().size() &&
assert(ArgNo < NewFunc->asize() &&
"Call already has pool arguments added??");
// Map the pool argument into the called function...
CalleeValue = NewFunc->getArgumentList()[ArgNo];
Function::aiterator AI = NewFunc->abegin();
std::advance(AI, ArgNo);
CalleeValue = AI;
break; // Found value, quit loop
}
@ -1501,12 +1502,12 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
static unsigned countPointerTypes(const Type *Ty) {
if (isa<PointerType>(Ty)) {
return 1;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
unsigned Num = 0;
for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i)
Num += countPointerTypes(STy->getElementTypes()[i]);
return Num;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
return countPointerTypes(ATy->getElementType());
} else {
assert(Ty->isPrimitiveType() && "Unknown derived type!");
@ -1524,8 +1525,8 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// Find all of the return nodes in the function...
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (isa<ReturnInst>((*I)->getTerminator()))
ReturnNodes.push_back(*I);
if (isa<ReturnInst>(I->getTerminator()))
ReturnNodes.push_back(I);
#ifdef DEBUG_CREATE_POOLS
cerr << "Allocs that we are pool allocating:\n";
@ -1595,11 +1596,10 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// The actual struct type could change each time through the loop, so it's
// NOT loop invariant.
StructType *PoolTy = cast<StructType>(PoolTyH.get());
const StructType *PoolTy = cast<StructType>(PoolTyH.get());
// Get the opaque type...
DerivedType *ElTy =
cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
DerivedType *ElTy = (DerivedType*)(PoolTy->getElementTypes()[p+1].get());
#ifdef DEBUG_CREATE_POOLS
cerr << "Refining " << ElTy << " of " << PoolTy << " to "
@ -1653,7 +1653,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// Insert it before the return instruction...
BasicBlock *RetNode = ReturnNodes[EN];
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
RetNode->getInstList().insert(RetNode->end()--, Destroy);
}
}
@ -1683,7 +1683,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
}
// Insert the entry node code into the entry block...
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
F->getEntryNode().getInstList().insert(++F->getEntryNode().begin(),
EntryNodeInsts.begin(),
EntryNodeInsts.end());
}
@ -1692,45 +1692,43 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// addPoolPrototypes - Add prototypes for the pool functions to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
void PoolAllocate::addPoolPrototypes(Module &M) {
// Get poolinit function...
vector<const Type*> Args;
Args.push_back(Type::UIntTy); // Num bytes per element
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
PoolInit = M.getOrInsertFunction("poolinit", PoolInitTy);
// Get pooldestroy function...
Args.pop_back(); // Only takes a pool...
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
PoolDestroy = M.getOrInsertFunction("pooldestroy", PoolDestroyTy);
// Get the poolalloc function...
FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
PoolAlloc = M.getOrInsertFunction("poolalloc", PoolAllocTy);
// Get the poolfree function...
Args.push_back(POINTERTYPE); // Pointer to free
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
PoolFree = M.getOrInsertFunction("poolfree", PoolFreeTy);
Args[0] = Type::UIntTy; // Number of slots to allocate
FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true);
PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
PoolAllocArray = M.getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
}
bool PoolAllocate::run(Module *M) {
bool PoolAllocate::run(Module &M) {
addPoolPrototypes(M);
CurModule = M;
CurModule = &M;
DS = &getAnalysis<DataStructure>();
bool Changed = false;
// We cannot use an iterator here because it will get invalidated when we add
// functions to the module later...
for (unsigned i = 0; i != M->size(); ++i)
if (!M->getFunctionList()[i]->isExternal()) {
Changed |= processFunction(M->getFunctionList()[i]);
for (Module::iterator I = M.begin(); I != M.end(); ++I)
if (!I->isExternal()) {
Changed |= processFunction(I);
if (Changed) {
cerr << "Only processing one function\n";
break;

View File

@ -32,7 +32,7 @@ namespace {
const char *getPassName() const { return "Simple Struct Mutation"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
setTransforms(getTransforms(M, CurrentXForm));
bool Changed = MutateStructTypes::run(M);
clearTransforms();
@ -49,7 +49,7 @@ namespace {
}
private:
TransformsType getTransforms(Module *M, enum Transform);
TransformsType getTransforms(Module &M, enum Transform);
};
} // end anonymous namespace
@ -124,7 +124,7 @@ static inline void GetTransformation(const StructType *ST,
SimpleStructMutation::TransformsType
SimpleStructMutation::getTransforms(Module *M, enum Transform XForm) {
SimpleStructMutation::getTransforms(Module &, enum Transform XForm) {
// We need to know which types to modify, and which types we CAN'T modify
// TODO: Do symbol tables as well

View File

@ -34,7 +34,7 @@ void getEdgeCode::getCode(Instruction *rInst,
case 1:{
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,stInst);
break;
}
@ -42,7 +42,7 @@ void getEdgeCode::getCode(Instruction *rInst,
case 2:{
Value *val=ConstantSInt::get(Type::IntTy,0);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,stInst);
break;
}
@ -54,9 +54,9 @@ void getEdgeCode::getCode(Instruction *rInst,
create(Instruction::Add, ldInst, val,"ti2");
Instruction *stInst=new StoreInst(addIn, rInst);
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
break;
}
@ -74,9 +74,9 @@ void getEdgeCode::getCode(Instruction *rInst,
StoreInst(addIn, countInst, vector<Value *>
(1, ConstantUInt::get(Type::UIntTy,inc)));
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
break;
}
@ -102,12 +102,12 @@ void getEdgeCode::getCode(Instruction *rInst,
StoreInst(addIn, countInst,
vector<Value *>(1,castInst));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,addIndex)+1;
here=instList.insert(here,castInst)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,ldIndex);
here=++instList.insert(here,addIndex);
here=++instList.insert(here,castInst);
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
break;
}
@ -129,11 +129,11 @@ void getEdgeCode::getCode(Instruction *rInst,
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,castInst2)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
here=++instList.insert(here,ldIndex);
here=++instList.insert(here,castInst2);
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
break;
}
@ -175,8 +175,8 @@ void insertInTopBB(BasicBlock *front,
//now push all instructions in front of the BB
BasicBlock::InstListType& instList=front->getInstList();
BasicBlock::iterator here=instList.begin();
here=front->getInstList().insert(here, rVar)+1;
here=front->getInstList().insert(here,countVar)+1;
here=++front->getInstList().insert(here, rVar);
here=++front->getInstList().insert(here,countVar);
//Initialize Count[...] with 0
for(int i=0;i<k; i++){
@ -184,10 +184,10 @@ void insertInTopBB(BasicBlock *front,
StoreInst(ConstantInt::get(Type::IntTy, 0),
countVar, std::vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, i)));
here=front->getInstList().insert(here,stInstrC)+1;
here=++front->getInstList().insert(here,stInstrC);
}
here=front->getInstList().insert(here,stInstr)+1;
here=++front->getInstList().insert(here,stInstr);
}
@ -226,27 +226,24 @@ void insertBB(Edge ed,
Value *cond=BI->getCondition();
BasicBlock *fB, *tB;
if(BI->getSuccessor(0)==BB2){
if (BI->getSuccessor(0) == BB2){
tB=newBB;
fB=BI->getSuccessor(1);
}
else{
} else {
fB=newBB;
tB=BI->getSuccessor(0);
}
delete BB1->getInstList().pop_back();
Instruction *newBI=new BranchInst(tB,fB,cond);
Instruction *newBI2=new BranchInst(BB2);
BB1->getInstList().push_back(newBI);
newBB->getInstList().push_back(newBI2);
BB1->getInstList().pop_back();
BB1->getInstList().push_back(new BranchInst(tB,fB,cond));
newBB->getInstList().push_back(new BranchInst(BB2));
}
//now iterate over BB2, and set its Phi nodes right
for(BasicBlock::iterator BB2Inst=BB2->begin(), BBend=BB2->end();
BB2Inst!=BBend; ++BB2Inst){
for(BasicBlock::iterator BB2Inst = BB2->begin(), BBend = BB2->end();
BB2Inst != BBend; ++BB2Inst){
if(PHINode *phiInst=dyn_cast<PHINode>(*BB2Inst)){
if(PHINode *phiInst=dyn_cast<PHINode>(&*BB2Inst)){
DEBUG(cerr<<"YYYYYYYYYYYYYYYYY\n");
int bbIndex=phiInst->getBasicBlockIndex(BB1);

View File

@ -37,7 +37,7 @@ using std::vector;
struct ProfilePaths : public FunctionPass {
const char *getPassName() const { return "ProfilePaths"; }
bool runOnFunction(Function *F);
bool runOnFunction(Function &F);
// Before this pass, make sure that there is only one
// entry and only one exit node for the function in the CFG of the function
@ -64,7 +64,7 @@ static Node *findBB(std::set<Node *> &st, BasicBlock *BB){
}
//Per function pass for inserting counters and trigger code
bool ProfilePaths::runOnFunction(Function *M){
bool ProfilePaths::runOnFunction(Function &F){
// Transform the cfg s.t. we have just one exit node
BasicBlock *ExitNode = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
@ -78,20 +78,20 @@ bool ProfilePaths::runOnFunction(Function *M){
// That is, no two nodes must hav same BB*
// First enter just nodes: later enter edges
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=new Node(*BB);
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
Node *nd=new Node(BB);
nodes.insert(nd);
if(*BB==ExitNode)
if(&*BB == ExitNode)
exitNode=nd;
if(*BB==M->front())
if(&*BB==F.begin())
startNode=nd;
}
// now do it againto insert edges
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=findBB(nodes, *BB);
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
Node *nd=findBB(nodes, BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB);
s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
@ -104,10 +104,10 @@ bool ProfilePaths::runOnFunction(Function *M){
DEBUG(printGraph(g));
BasicBlock *fr=M->front();
BasicBlock *fr=&F.front();
// If only one BB, don't instrument
if (M->getBasicBlocks().size() == 1) {
if (++F.begin() == F.end()) {
// The graph is made acyclic: this is done
// by removing back edges for now, and adding them later on
vector<Edge> be;
@ -148,7 +148,7 @@ bool ProfilePaths::runOnFunction(Function *M){
// insert initialization code in first (entry) BB
// this includes initializing r and count
insertInTopBB(M->getEntryNode(),numPaths, rVar, countVar);
insertInTopBB(&F.getEntryNode(),numPaths, rVar, countVar);
// now process the graph: get path numbers,
// get increments along different paths,

View File

@ -41,12 +41,12 @@ using std::string;
// way of using operator<< works great, so we use it directly...
//
template<class PassType>
static void printPass(PassType &P, ostream &O, Module *M) {
static void printPass(PassType &P, ostream &O, Module &M) {
O << P;
}
template<class PassType>
static void printPass(PassType &P, ostream &O, Function *F) {
static void printPass(PassType &P, ostream &O, Function &F) {
O << P;
}
@ -54,19 +54,18 @@ static void printPass(PassType &P, ostream &O, Function *F) {
// specialize the template here for them...
//
template<>
static void printPass(DataStructure &P, ostream &O, Module *M) {
P.print(O, M);
static void printPass(DataStructure &P, ostream &O, Module &M) {
P.print(O, &M);
}
template<>
static void printPass(FindUsedTypes &FUT, ostream &O, Module *M) {
FUT.printTypes(O, M);
static void printPass(FindUsedTypes &FUT, ostream &O, Module &M) {
FUT.printTypes(O, &M);
}
template<>
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O,
Module *M) {
FUPT.printResults(M, O);
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O, Module &M) {
FUPT.printResults(&M, O);
}
@ -83,7 +82,7 @@ public:
const char *getPassName() const { return "IP Pass Printer"; }
virtual bool run(Module *M) {
virtual bool run(Module &M) {
std::cout << Message << "\n";
printPass(getAnalysis<PassName>(ID), std::cout, M);
return false;
@ -103,8 +102,8 @@ public:
const char *getPassName() const { return "Function Pass Printer"; }
virtual bool runOnFunction(Function *F) {
std::cout << Message << " on function '" << F->getName() << "'\n";
virtual bool runOnFunction(Function &F) {
std::cout << Message << " on function '" << F.getName() << "'\n";
printPass(getAnalysis<PassName>(ID), std::cout, F);
return false;
}
@ -137,8 +136,8 @@ Pass *createPrintModulePass(const string &Message) {
struct InstForestHelper : public FunctionPass {
const char *getPassName() const { return "InstForest Printer"; }
void doit(Function *F) {
std::cout << InstForest<char>(F);
void doit(Function &F) {
std::cout << InstForest<char>(&F);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
@ -149,7 +148,7 @@ struct InstForestHelper : public FunctionPass {
struct IndVars : public FunctionPass {
const char *getPassName() const { return "IndVars Printer"; }
void doit(Function *F) {
void doit(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfo>();
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
@ -168,8 +167,8 @@ struct IndVars : public FunctionPass {
struct Exprs : public FunctionPass {
const char *getPassName() const { return "Expression Printer"; }
static void doit(Function *F) {
std::cout << "Classified expressions for: " << F->getName() << "\n";
static void doit(Function &F) {
std::cout << "Classified expressions for: " << F.getName() << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
std::cout << *I;
@ -207,8 +206,8 @@ class PrinterPass : public TraitClass {
public:
PrinterPass(const string &M) : Message(M) {}
virtual bool runOnFunction(Function *F) {
std::cout << Message << " on function '" << F->getName() << "'\n";
virtual bool runOnFunction(Function &F) {
std::cout << Message << " on function '" << F.getName() << "'\n";
TraitClass::doit(F);
return false;
@ -330,7 +329,7 @@ int main(int argc, char **argv) {
}
}
Analyses.run(CurMod);
Analyses.run(*CurMod);
delete CurMod;
return 0;

View File

@ -165,7 +165,7 @@ int main(int argc, char **argv) {
RemoveFileOnSignal(OutputFilename+".bc");
// Run our queue of passes all at once now, efficiently.
Passes.run(Composite.get());
Passes.run(*Composite.get());
Out.close();
// Output the script to start the program...