1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00

[InstCombine] Make MatchBSwap also match bit reversals

MatchBSwap has most of the functionality to match bit reversals already. If we switch it from looking at bytes to individual bits and remove a few early exits, we can extend the main recursive function to match any sequence of ORs, ANDs and shifts that assemble a value from different parts of another, base value. Once we have this bit->bit mapping, we can very simply detect if it is appropriate for a bswap or bitreverse.

llvm-svn: 255334
This commit is contained in:
James Molloy 2015-12-11 10:04:51 +00:00
parent c10d3f5ee5
commit d8003c7bf6
3 changed files with 250 additions and 103 deletions

View File

@ -1566,157 +1566,190 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return Changed ? &I : nullptr;
}
/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap. The subexpression provides pieces of a bswap if it is
/// proven that each of the non-zero bytes in the output of the expression came
/// from the corresponding "byte swapped" byte in some other value.
/// For example, if the current subexpression is "(shl i32 %X, 24)" then
/// we know that the expression deposits the low byte of %X into the high byte
/// of the bswap result and that all other bytes are zero. This expression is
/// accepted, the high byte of ByteValues is set to X to indicate a correct
/// match.
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// (value, bitnumber) to bitnumber. It is the caller's responsibility to
/// validate that all `value`s are identical and that the bitnumber to bitnumber
/// mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted,
/// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
///
/// This function returns true if the match was unsuccessful and false if so.
/// On entry to the function the "OverallLeftShift" is a signed integer value
/// indicating the number of bytes that the subexpression is later shifted. For
/// indicating the number of bits that the subexpression is later shifted. For
/// example, if the expression is later right shifted by 16 bits, the
/// OverallLeftShift value would be -2 on entry. This is used to specify which
/// byte of ByteValues is actually being set.
/// OverallLeftShift value would be -16 on entry. This is used to specify which
/// bits of BitValues are actually being set.
///
/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
/// byte is masked to zero by a user. For example, in (X & 255), X will be
/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
/// this function to working on up to 32-byte (256 bit) values. ByteMask is
/// always in the local (OverallLeftShift) coordinate space.
/// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
/// bit is masked to zero by a user. For example, in (X & 255), X will be
/// processed with a bytemask of 255. BitMask is always in the local
/// (OverallLeftShift) coordinate space.
///
static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
SmallVectorImpl<Value *> &ByteValues) {
static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
SmallVectorImpl<Value *> &BitValues,
SmallVectorImpl<int> &BitProvenance) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or) {
return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues) ||
CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
ByteValues);
}
if (I->getOpcode() == Instruction::Or)
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance) ||
CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
BitValues, BitProvenance);
// If this is a logical shift by a constant multiple of 8, recurse with
// OverallLeftShift and ByteMask adjusted.
// If this is a logical shift by a constant, recurse with OverallLeftShift
// and BitMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined and of a byte value.
if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined.
if (ShAmt > BitValues.size())
return true;
unsigned ByteShift = ShAmt >> 3;
unsigned BitShift = ShAmt;
if (I->getOpcode() == Instruction::Shl) {
// X << 2 -> collect(X, +2)
OverallLeftShift += ByteShift;
ByteMask >>= ByteShift;
// X << C -> collect(X, +C)
OverallLeftShift += BitShift;
BitMask = BitMask.lshr(BitShift);
} else {
// X >>u 2 -> collect(X, -2)
OverallLeftShift -= ByteShift;
ByteMask <<= ByteShift;
ByteMask &= (~0U >> (32-ByteValues.size()));
// X >>u C -> collect(X, -C)
OverallLeftShift -= BitShift;
BitMask = BitMask.shl(BitShift);
}
if (OverallLeftShift >= (int)ByteValues.size()) return true;
if (OverallLeftShift <= -(int)ByteValues.size()) return true;
if (OverallLeftShift >= (int)BitValues.size())
return true;
if (OverallLeftShift <= -(int)BitValues.size())
return true;
return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
// If this is a logical 'and' with a mask that clears bytes, clear the
// corresponding bytes in ByteMask.
// If this is a logical 'and' with a mask that clears bits, clear the
// corresponding bits in BitMask.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
// Scan every byte of the and mask, seeing if the byte is either 0 or 255.
unsigned NumBytes = ByteValues.size();
APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
unsigned NumBits = BitValues.size();
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
// If this byte is masked out by a later operation, we don't care what
for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
// If this bit is masked out by a later operation, we don't care what
// the and mask is.
if ((ByteMask & (1 << i)) == 0)
if (BitMask[i] == 0)
continue;
// If the AndMask is all zeros for this byte, clear the bit.
APInt MaskB = AndMask & Byte;
// If the AndMask is zero for this bit, clear the bit.
APInt MaskB = AndMask & Bit;
if (MaskB == 0) {
ByteMask &= ~(1U << i);
BitMask.clearBit(i);
continue;
}
// If the AndMask is not all ones for this byte, it's not a bytezap.
if (MaskB != Byte)
return true;
// Otherwise, this byte is kept.
// Otherwise, this bit is kept.
}
return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
ByteValues);
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap. Some observations: 1) if more than one byte
// is demanded from this input, then it could not be successfully assembled
// into a byteswap. At least one of the two bytes would not be aligned with
// their ultimate destination.
if (!isPowerOf2_32(ByteMask)) return true;
unsigned InputByteNo = countTrailingZeros(ByteMask);
// 2) The input and ultimate destinations must line up: if byte 3 of an i32
// is demanded, it needs to go into byte 0 of the result. This means that the
// byte needs to be shifted until it lands in the right byte bucket. The
// shift amount depends on the position: if the byte is coming from the high
// part of the value (e.g. byte 3) then it must be shifted right. If from the
// low part, it must be shifted left.
unsigned DestByteNo = InputByteNo + OverallLeftShift;
if (ByteValues.size()-1-DestByteNo != InputByteNo)
// the input value to the bswap/bitreverse. To be part of a bswap or
// bitreverse we must be demanding a contiguous range of bits from it.
unsigned InputBitLen = BitMask.countPopulation();
unsigned InputBitNo = BitMask.countTrailingZeros();
if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
InputBitLen)
// Not a contiguous set range of bits!
return true;
// If the destination byte value is already defined, the values are or'd
// together, which isn't a bswap (unless it's an or of the same bits).
if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
// We know we're moving a contiguous range of bits from the input to the
// output. Record which bits in the output came from which bits in the input.
unsigned DestBitNo = InputBitNo + OverallLeftShift;
for (unsigned I = 0; I < InputBitLen; ++I)
BitProvenance[DestBitNo + I] = InputBitNo + I;
// If the destination bit value is already defined, the values are or'd
// together, which isn't a bswap/bitreverse (unless it's an or of the same
// bits).
if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
return true;
ByteValues[DestByteNo] = V;
for (unsigned I = 0; I < InputBitLen; ++I)
BitValues[DestBitNo + I] = V;
return false;
}
/// Given an OR instruction, check to see if this is a bswap idiom.
/// If so, insert the new bswap intrinsic and return it.
Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
unsigned BitWidth) {
if (From % 8 != To % 8)
return false;
// Convert from bit indices to byte indices and check for a byte reversal.
From >>= 3;
To >>= 3;
BitWidth >>= 3;
return From == BitWidth - To - 1;
}
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
unsigned BitWidth) {
return From == BitWidth - To - 1;
}
/// Given an OR instruction, check to see if this is a bswap or bitreverse
/// idiom. If so, insert the new intrinsic and return it.
Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
if (!ITy || ITy->getBitWidth() % 16 ||
// ByteMask only allows up to 32-byte values.
ITy->getBitWidth() > 32*8)
return nullptr; // Can only bswap pairs of bytes. Can't do vectors.
/// ByteValues - For each byte of the result, we keep track of which value
/// defines each byte.
SmallVector<Value*, 8> ByteValues;
ByteValues.resize(ITy->getBitWidth()/8);
if (!ITy)
return nullptr; // Can't do vectors.
unsigned BW = ITy->getBitWidth();
/// We keep track of which bit (BitProvenance) inside which value (BitValues)
/// defines each bit in the result.
SmallVector<Value *, 8> BitValues(BW, nullptr);
SmallVector<int, 8> BitProvenance(BW, -1);
// Try to find all the pieces corresponding to the bswap.
uint32_t ByteMask = ~0U >> (32-ByteValues.size());
if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
APInt BitMask = APInt::getAllOnesValue(BitValues.size());
if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
return nullptr;
// Check to see if all of the bytes come from the same value.
Value *V = ByteValues[0];
if (!V) return nullptr; // Didn't find a byte? Must be zero.
// Check to see if all of the bits come from the same value.
Value *V = BitValues[0];
if (!V) return nullptr; // Didn't find a bit? Must be zero.
// Check to make sure that all of the bytes come from the same value.
for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
if (ByteValues[i] != V)
return nullptr;
if (!std::all_of(BitValues.begin(), BitValues.end(),
[&](const Value *X) { return X == V; }))
return nullptr;
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
// only byteswap values with an even number of bytes.
bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
OKForBitReverse &=
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
}
Intrinsic::ID Intrin;
if (OKForBSwap)
Intrin = Intrinsic::bswap;
else if (OKForBitReverse)
Intrin = Intrinsic::bitreverse;
else
return nullptr;
Module *M = I.getParent()->getParent()->getParent();
Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
Function *F = Intrinsic::getDeclaration(M, Intrin, ITy);
return CallInst::Create(F, V);
}
@ -2265,7 +2298,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
match(Op1, m_And(m_Value(), m_Value()));
if (OrOfOrs || OrOfShifts || OrOfAnds)
if (Instruction *BSwap = MatchBSwap(I))
if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
return BSwap;
// (X^C)|Y -> (X|Y)^C iff Y&C == 0

View File

@ -556,7 +556,7 @@ private:
Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
Instruction *MatchBSwap(BinaryOperator &I);
Instruction *MatchBSwapOrBitReverse(BinaryOperator &I);
bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Instruction *SimplifyMemSet(MemSetInst *MI);

View File

@ -0,0 +1,114 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
define zeroext i8 @f_u8(i8 zeroext %a) {
; CHECK-LABEL: @f_u8
; CHECK-NEXT: %[[A:.*]] = call i8 @llvm.bitreverse.i8(i8 %a)
; CHECK-NEXT: ret i8 %[[A]]
%1 = shl i8 %a, 7
%2 = shl i8 %a, 5
%3 = and i8 %2, 64
%4 = shl i8 %a, 3
%5 = and i8 %4, 32
%6 = shl i8 %a, 1
%7 = and i8 %6, 16
%8 = lshr i8 %a, 1
%9 = and i8 %8, 8
%10 = lshr i8 %a, 3
%11 = and i8 %10, 4
%12 = lshr i8 %a, 5
%13 = and i8 %12, 2
%14 = lshr i8 %a, 7
%15 = or i8 %14, %1
%16 = or i8 %15, %3
%17 = or i8 %16, %5
%18 = or i8 %17, %7
%19 = or i8 %18, %9
%20 = or i8 %19, %11
%21 = or i8 %20, %13
ret i8 %21
}
; The ANDs with 32 and 64 have been swapped here, so the sequence does not
; completely match a bitreverse.
define zeroext i8 @f_u8_fail(i8 zeroext %a) {
; CHECK-LABEL: @f_u8_fail
; CHECK-NOT: call
; CHECK: ret i8
%1 = shl i8 %a, 7
%2 = shl i8 %a, 5
%3 = and i8 %2, 32
%4 = shl i8 %a, 3
%5 = and i8 %4, 64
%6 = shl i8 %a, 1
%7 = and i8 %6, 16
%8 = lshr i8 %a, 1
%9 = and i8 %8, 8
%10 = lshr i8 %a, 3
%11 = and i8 %10, 4
%12 = lshr i8 %a, 5
%13 = and i8 %12, 2
%14 = lshr i8 %a, 7
%15 = or i8 %14, %1
%16 = or i8 %15, %3
%17 = or i8 %16, %5
%18 = or i8 %17, %7
%19 = or i8 %18, %9
%20 = or i8 %19, %11
%21 = or i8 %20, %13
ret i8 %21
}
define zeroext i16 @f_u16(i16 zeroext %a) {
; CHECK-LABEL: @f_u16
; CHECK-NEXT: %[[A:.*]] = call i16 @llvm.bitreverse.i16(i16 %a)
; CHECK-NEXT: ret i16 %[[A]]
%1 = shl i16 %a, 15
%2 = shl i16 %a, 13
%3 = and i16 %2, 16384
%4 = shl i16 %a, 11
%5 = and i16 %4, 8192
%6 = shl i16 %a, 9
%7 = and i16 %6, 4096
%8 = shl i16 %a, 7
%9 = and i16 %8, 2048
%10 = shl i16 %a, 5
%11 = and i16 %10, 1024
%12 = shl i16 %a, 3
%13 = and i16 %12, 512
%14 = shl i16 %a, 1
%15 = and i16 %14, 256
%16 = lshr i16 %a, 1
%17 = and i16 %16, 128
%18 = lshr i16 %a, 3
%19 = and i16 %18, 64
%20 = lshr i16 %a, 5
%21 = and i16 %20, 32
%22 = lshr i16 %a, 7
%23 = and i16 %22, 16
%24 = lshr i16 %a, 9
%25 = and i16 %24, 8
%26 = lshr i16 %a, 11
%27 = and i16 %26, 4
%28 = lshr i16 %a, 13
%29 = and i16 %28, 2
%30 = lshr i16 %a, 15
%31 = or i16 %30, %1
%32 = or i16 %31, %3
%33 = or i16 %32, %5
%34 = or i16 %33, %7
%35 = or i16 %34, %9
%36 = or i16 %35, %11
%37 = or i16 %36, %13
%38 = or i16 %37, %15
%39 = or i16 %38, %17
%40 = or i16 %39, %19
%41 = or i16 %40, %21
%42 = or i16 %41, %23
%43 = or i16 %42, %25
%44 = or i16 %43, %27
%45 = or i16 %44, %29
ret i16 %45
}