1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00

Detemplatize NodeRef.

It is now possible to navigate the B+-tree using NodeRef::subtree() and
NodeRef::size() without knowing the key and value template types used in the
tree.

llvm-svn: 119880
This commit is contained in:
Jakob Stoklund Olesen 2010-11-20 00:49:00 +00:00
parent 4a44e92fd1
commit de3ebc098a

View File

@ -378,14 +378,7 @@ struct CacheAlignedPointerTraits {
enum { NumLowBitsAvailable = Log2CacheLine };
};
template <typename KeyT, typename ValT, typename Traits>
class NodeRef {
public:
typedef LeafNode<KeyT, ValT, NodeSizer<KeyT, ValT>::LeafSize, Traits> Leaf;
typedef BranchNode<KeyT, ValT, NodeSizer<KeyT, ValT>::BranchSize,
Traits> Branch;
private:
PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
public:
@ -395,11 +388,11 @@ public:
/// operator bool - Detect a null ref.
operator bool() const { return pip.getOpaqueValue(); }
/// NodeRef - Create a reference to the leaf node p with n elements.
NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
/// NodeRef - Create a reference to the branch node p with n elements.
NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
/// NodeRef - Create a reference to the node p with n elements.
template <typename NodeT>
NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
assert(n <= NodeT::Capacity && "Size too big for node");
}
/// size - Return the number of elements in the referenced node.
unsigned size() const { return pip.getInt() + 1; }
@ -407,16 +400,17 @@ public:
/// setSize - Update the node size.
void setSize(unsigned n) { pip.setInt(n - 1); }
/// leaf - Return the referenced leaf node.
/// Note there are no dynamic type checks.
Leaf &leaf() const {
return *reinterpret_cast<Leaf*>(pip.getPointer());
/// subtree - Access the i'th subtree reference in a branch node.
/// This depends on branch nodes storing the NodeRef array as their first
/// member.
NodeRef &subtree(unsigned i) {
return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
}
/// branch - Return the referenced branch node.
/// Note there are no dynamic type checks.
Branch &branch() const {
return *reinterpret_cast<Branch*>(pip.getPointer());
/// get - Dereference as a NodeT reference.
template <typename NodeT>
NodeT &get() const {
return *reinterpret_cast<NodeT*>(pip.getPointer());
}
bool operator==(const NodeRef &RHS) const {
@ -442,12 +436,12 @@ public:
//
// These constraints are always satisfied:
//
// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
//
// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
//
// - val[i] != val[i + 1] ||
// !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
// - Fully coalesced.
//
//===----------------------------------------------------------------------===//
@ -634,14 +628,13 @@ extendStop(unsigned i, unsigned Size, KeyT b) {
//===----------------------------------------------------------------------===//
template <typename KeyT, typename ValT, unsigned N, typename Traits>
class BranchNode : public NodeBase<NodeRef<KeyT, ValT, Traits>, KeyT, N> {
typedef NodeRef<KeyT, ValT, Traits> NodeRefT;
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
public:
const KeyT &stop(unsigned i) const { return this->second[i]; }
const NodeRefT &subtree(unsigned i) const { return this->first[i]; }
const NodeRef &subtree(unsigned i) const { return this->first[i]; }
KeyT &stop(unsigned i) { return this->second[i]; }
NodeRefT &subtree(unsigned i) { return this->first[i]; }
NodeRef &subtree(unsigned i) { return this->first[i]; }
/// findFrom - Find the first subtree after i that may contain x.
/// @param i Starting index for the search.
@ -675,7 +668,7 @@ public:
/// safeLookup - Get the subtree containing x, Assuming that x is in range.
/// @param x Key to search for.
/// @return Subtree containing x
NodeRefT safeLookup(KeyT x) const {
NodeRef safeLookup(KeyT x) const {
return subtree(safeFind(0, x));
}
@ -684,7 +677,7 @@ public:
/// @param Size Number of elements in node.
/// @param Node Subtree to insert.
/// @param Stop Last key in subtree.
void insert(unsigned i, unsigned Size, NodeRefT Node, KeyT Stop) {
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
assert(Size < N && "branch node overflow");
assert(i <= Size && "Bad insert position");
this->shift(i, Size);
@ -700,7 +693,7 @@ public:
errs() << "\"];\n";
for (unsigned i = 0; i != Size; ++i)
errs() << " N" << this << ":s" << i << " -> N"
<< &subtree(i).branch() << ";\n";
<< &subtree(i).template get<BranchNode>() << ";\n";
}
#endif
@ -717,10 +710,10 @@ template <typename KeyT, typename ValT,
unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
typename Traits = IntervalMapInfo<KeyT> >
class IntervalMap {
typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> NodeSizer;
typedef typename NodeRef::Leaf Leaf;
typedef typename NodeRef::Branch Branch;
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
Branch;
typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
typedef IntervalMapImpl::IdxPair IdxPair;
@ -728,11 +721,12 @@ class IntervalMap {
// corresponding RootBranch capacity.
enum {
DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
(sizeof(KeyT) + sizeof(NodeRef)),
(sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
};
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> RootBranch;
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
RootBranch;
// When branched, we store a global start key as well as the branch node.
struct RootBranchData {
@ -746,7 +740,7 @@ class IntervalMap {
};
public:
typedef typename NodeSizer::Allocator Allocator;
typedef typename Sizer::Allocator Allocator;
private:
// The root data is either a RootLeaf or a RootBranchData instance.
@ -837,8 +831,9 @@ private:
bool branched() const { return height > 0; }
ValT treeSafeLookup(KeyT x, ValT NotFound) const;
void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
void deleteNode(NodeRef Node, unsigned Level);
void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
unsigned Level));
void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
public:
explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
@ -933,7 +928,7 @@ public:
#ifndef NDEBUG
void dump();
void dumpNode(NodeRef Node, unsigned Height);
void dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height);
#endif
};
@ -944,10 +939,10 @@ ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x, ValT NotFound) const {
assert(branched() && "treeLookup assumes a branched root");
NodeRef NR = rootBranch().safeLookup(x);
IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
for (unsigned h = height-1; h; --h)
NR = NR.branch().safeLookup(x);
return NR.leaf().safeLookup(x, NotFound);
NR = NR.get<Branch>().safeLookup(x);
return NR.get<Leaf>().safeLookup(x, NotFound);
}
@ -956,6 +951,7 @@ treeSafeLookup(KeyT x, ValT NotFound) const {
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootLeaf+1?
const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
@ -975,17 +971,17 @@ branchRoot(unsigned Position) {
NodeRef node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
node[n] = NodeRef(allocLeaf(), size[n]);
node[n].leaf().copy(rootLeaf(), pos, 0, size[n]);
node[n].template get<Leaf>().copy(rootLeaf(), pos, 0, size[n]);
pos += size[n];
}
// Destroy the old leaf node, construct branch node instead.
switchRootToBranch();
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = node[n].leaf().stop(size[n]-1);
rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
rootBranch().subtree(n) = node[n];
}
rootBranchStart() = node[0].leaf().start(0);
rootBranchStart() = node[0].template get<Leaf>().start(0);
rootSize = Nodes;
return NewOffset;
}
@ -995,6 +991,7 @@ branchRoot(unsigned Position) {
template <typename KeyT, typename ValT, unsigned N, typename Traits>
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position) {
using namespace IntervalMapImpl;
// How many external leaf nodes to hold RootBranch+1?
const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
@ -1014,12 +1011,12 @@ splitRoot(unsigned Position) {
NodeRef Node[Nodes];
for (unsigned n = 0; n != Nodes; ++n) {
Node[n] = NodeRef(allocBranch(), Size[n]);
Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]);
Node[n].template get<Branch>().copy(rootBranch(), Pos, 0, Size[n]);
Pos += Size[n];
}
for (unsigned n = 0; n != Nodes; ++n) {
rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1);
rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
rootBranch().subtree(n) = Node[n];
}
rootSize = Nodes;
@ -1029,10 +1026,10 @@ splitRoot(unsigned Position) {
/// visitNodes - Visit each external node.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
if (!branched())
return;
SmallVector<NodeRef, 4> Refs, NextRefs;
SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
// Collect level 0 nodes from the root.
for (unsigned i = 0; i != rootSize; ++i)
@ -1041,9 +1038,8 @@ visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
// Visit all branch nodes.
for (unsigned h = height - 1; h; --h) {
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
Branch &B = Refs[i].branch();
for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
NextRefs.push_back(B.subtree(j));
NextRefs.push_back(Refs[i].subtree(j));
(this->*f)(Refs[i], h);
}
Refs.clear();
@ -1057,11 +1053,11 @@ visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(NodeRef Node, unsigned Level) {
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
if (Level)
deleteBranch(&Node.branch());
deleteBranch(&Node.get<Branch>());
else
deleteLeaf(&Node.leaf());
deleteLeaf(&Node.get<Leaf>());
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
@ -1077,11 +1073,11 @@ clear() {
#ifndef NDEBUG
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
dumpNode(NodeRef Node, unsigned Height) {
dumpNode(IntervalMapImpl::NodeRef Node, unsigned Height) {
if (Height)
Node.branch().dump(Node.size());
Node.get<Branch>().dump(Node.size());
else
Node.leaf().dump(Node.size());
Node.get<Leaf>().dump(Node.size());
}
template <typename KeyT, typename ValT, unsigned N, typename Traits>
@ -1106,7 +1102,7 @@ class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
public std::iterator<std::bidirectional_iterator_tag, ValT> {
protected:
friend class IntervalMap;
typedef std::pair<NodeRef, unsigned> PathEntry;
typedef std::pair<IntervalMapImpl::NodeRef, unsigned> PathEntry;
typedef SmallVector<PathEntry, 4> Path;
// The map referred to.
@ -1121,7 +1117,7 @@ protected:
// Otherwise, when branched these conditions hold:
//
// 1. path.front().first == rootBranch().subtree(rootOffset)
// 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second)
// 2. path[i].first == path[i-1].first.subtree(path[i-1].second)
// 3. path.size() == map->height.
//
// Thus, path.back() always refers to the current leaf node unless the root is
@ -1138,14 +1134,14 @@ protected:
return map->branched();
}
NodeRef pathNode(unsigned h) const { return path[h].first; }
NodeRef &pathNode(unsigned h) { return path[h].first; }
IntervalMapImpl::NodeRef pathNode(unsigned h) const { return path[h].first; }
IntervalMapImpl::NodeRef &pathNode(unsigned h) { return path[h].first; }
unsigned pathOffset(unsigned h) const { return path[h].second; }
unsigned &pathOffset(unsigned h) { return path[h].second; }
Leaf &treeLeaf() const {
assert(branched() && path.size() == map->height);
return path.back().first.leaf();
return path.back().first.get<Leaf>();
}
unsigned treeLeafSize() const {
assert(branched() && path.size() == map->height);
@ -1161,21 +1157,21 @@ protected:
}
// Get the next node ptr for an incomplete path.
NodeRef pathNextDown() {
IntervalMapImpl::NodeRef pathNextDown() {
assert(path.size() < map->height && "Path is already complete");
if (path.empty())
return map->rootBranch().subtree(rootOffset);
else
return path.back().first.branch().subtree(path.back().second);
return path.back().first.subtree(path.back().second);
}
void pathFillLeft();
void pathFillFind(KeyT x);
void pathFillRight();
NodeRef leftSibling(unsigned level) const;
NodeRef rightSibling(unsigned level) const;
IntervalMapImpl::NodeRef leftSibling(unsigned level) const;
IntervalMapImpl::NodeRef rightSibling(unsigned level) const;
void treeIncrement();
void treeDecrement();
@ -1300,10 +1296,10 @@ public:
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::pathFillLeft() {
NodeRef NR = pathNextDown();
IntervalMapImpl::NodeRef NR = pathNextDown();
for (unsigned i = map->height - path.size() - 1; i; --i) {
path.push_back(PathEntry(NR, 0));
NR = NR.branch().subtree(0);
NR = NR.subtree(0);
}
path.push_back(PathEntry(NR, 0));
}
@ -1312,24 +1308,24 @@ const_iterator::pathFillLeft() {
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::pathFillFind(KeyT x) {
NodeRef NR = pathNextDown();
IntervalMapImpl::NodeRef NR = pathNextDown();
for (unsigned i = map->height - path.size() - 1; i; --i) {
unsigned p = NR.branch().safeFind(0, x);
unsigned p = NR.get<Branch>().safeFind(0, x);
path.push_back(PathEntry(NR, p));
NR = NR.branch().subtree(p);
NR = NR.subtree(p);
}
path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x)));
path.push_back(PathEntry(NR, NR.get<Leaf>().safeFind(0, x)));
}
// pathFillRight - Complete path by adding rightmost entries.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::pathFillRight() {
NodeRef NR = pathNextDown();
IntervalMapImpl::NodeRef NR = pathNextDown();
for (unsigned i = map->height - path.size() - 1; i; --i) {
unsigned p = NR.size() - 1;
path.push_back(PathEntry(NR, p));
NR = NR.branch().subtree(p);
NR = NR.subtree(p);
}
path.push_back(PathEntry(NR, NR.size() - 1));
}
@ -1338,9 +1334,9 @@ const_iterator::pathFillRight() {
/// @param level 0 is just below the root, map->height - 1 for the leaves.
/// @return The left sibling NodeRef, or NULL.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
IntervalMap<KeyT, ValT, N, Traits>::
IntervalMapImpl::NodeRef IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::leftSibling(unsigned level) const {
using namespace IntervalMapImpl;
assert(branched() && "Not at a branched node");
assert(level <= path.size() && "Bad level");
@ -1355,12 +1351,12 @@ const_iterator::leftSibling(unsigned level) const {
// NR is the subtree containing our left sibling.
NodeRef NR = h ?
pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) :
pathNode(h - 1).subtree(pathOffset(h - 1) - 1) :
map->rootBranch().subtree(rootOffset - 1);
// Keep right all the way down.
for (; h != level; ++h)
NR = NR.branch().subtree(NR.size() - 1);
NR = NR.subtree(NR.size() - 1);
return NR;
}
@ -1368,9 +1364,9 @@ const_iterator::leftSibling(unsigned level) const {
/// @param level 0 is just below the root, map->height - 1 for the leaves.
/// @return The right sibling NodeRef, or NULL.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
IntervalMap<KeyT, ValT, N, Traits>::
IntervalMapImpl::NodeRef IntervalMap<KeyT, ValT, N, Traits>::
const_iterator::rightSibling(unsigned level) const {
using namespace IntervalMapImpl;
assert(branched() && "Not at a branched node");
assert(level <= this->path.size() && "Bad level");
@ -1385,12 +1381,12 @@ const_iterator::rightSibling(unsigned level) const {
// NR is the subtree containing our right sibling.
NodeRef NR = h ?
pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) :
pathNode(h - 1).subtree(pathOffset(h - 1) + 1) :
map->rootBranch().subtree(rootOffset + 1);
// Keep left all the way down.
for (; h != level; ++h)
NR = NR.branch().subtree(0);
NR = NR.subtree(0);
return NR;
}
@ -1493,7 +1489,7 @@ class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
void setNodeSize(unsigned Level, unsigned Size);
void setNodeStop(unsigned Level, KeyT Stop);
void insertNode(unsigned Level, NodeRef Node, KeyT Stop);
void insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
void overflowLeaf();
void treeInsert(KeyT a, KeyT b, ValT y);
@ -1512,8 +1508,7 @@ void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setNodeSize(unsigned Level, unsigned Size) {
this->pathNode(Level).setSize(Size);
if (Level)
this->pathNode(Level-1).branch()
.subtree(this->pathOffset(Level-1)).setSize(Size);
this->pathNode(Level-1).subtree(this->pathOffset(Level-1)).setSize(Size);
else
this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
}
@ -1523,7 +1518,8 @@ template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::setNodeStop(unsigned Level, KeyT Stop) {
while (Level--) {
this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop;
this->pathNode(Level).template get<Branch>()
.stop(this->pathOffset(Level)) = Stop;
if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
return;
}
@ -1534,7 +1530,7 @@ iterator::setNodeStop(unsigned Level, KeyT Stop) {
/// Leave the current path pointing at the new node.
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
if (!Level) {
// Insert into the root branch node.
IntervalMap &IM = *this->map;
@ -1559,10 +1555,10 @@ iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
}
// Insert into the branch node at level-1.
NodeRef NR = this->pathNode(Level-1);
IntervalMapImpl::NodeRef NR = this->pathNode(Level-1);
unsigned Offset = this->pathOffset(Level-1);
assert(NR.size() < Branch::Capacity && "Branch overflow");
NR.branch().insert(Offset, NR.size(), Node, Stop);
NR.get<Branch>().insert(Offset, NR.size(), Node, Stop);
setNodeSize(Level - 1, NR.size() + 1);
}
@ -1624,6 +1620,7 @@ iterator::treeInsert(KeyT a, KeyT b, ValT y) {
template <typename KeyT, typename ValT, unsigned N, typename Traits>
void IntervalMap<KeyT, ValT, N, Traits>::
iterator::overflowLeaf() {
using namespace IntervalMapImpl;
unsigned CurSize[4];
Leaf *Node[4];
unsigned Nodes = 0;
@ -1634,7 +1631,7 @@ iterator::overflowLeaf() {
NodeRef LeftSib = this->leftSibling(this->map->height-1);
if (LeftSib) {
Offset += Elements = CurSize[Nodes] = LeftSib.size();
Node[Nodes++] = &LeftSib.leaf();
Node[Nodes++] = &LeftSib.get<Leaf>();
}
// Current leaf node.
@ -1645,7 +1642,7 @@ iterator::overflowLeaf() {
NodeRef RightSib = this->rightSibling(this->map->height-1);
if (RightSib) {
Offset += Elements = CurSize[Nodes] = RightSib.size();
Node[Nodes++] = &RightSib.leaf();
Node[Nodes++] = &RightSib.get<Leaf>();
}
// Do we need to allocate a new node?
@ -1662,9 +1659,8 @@ iterator::overflowLeaf() {
// Compute the new element distribution.
unsigned NewSize[4];
IdxPair NewOffset =
IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity,
CurSize, NewSize, Offset, true);
IdxPair NewOffset = distribute(Nodes, Elements, Leaf::Capacity,
CurSize, NewSize, Offset, true);
// Move current location to the leftmost node.
if (LeftSib)