1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[NVPTX] Update the usage document

llvm-svn: 194812
This commit is contained in:
Justin Holewinski 2013-11-15 13:02:10 +00:00
parent 0ebbe1d56c
commit e06f1e4ace

View File

@ -66,6 +66,8 @@ function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
When compiled, the PTX kernel functions are callable by host-side code.
.. _address_spaces:
Address Spaces
--------------
@ -103,6 +105,25 @@ space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.
Triples
-------
The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
operating system should be one of ``cuda`` or ``nvcl``, which determines the
interface used by the generated code to communicate with the driver. Most
users will want to use ``cuda`` as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.
Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
.. _nvptx_intrinsics:
NVPTX Intrinsics
================
@ -238,6 +259,116 @@ For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
.. _libdevice:
Linking with Libdevice
======================
The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
there is a separate version for each compute architecture.
For a list of all math functions implemented in libdevice, see
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
To accomodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:
.. code-block:: c++
float my_function(float a) {
if (__nvvm_reflect("FASTMATH"))
return my_function_fast(a);
else
return my_function_precise(a);
}
The default value for all unspecified reflection parameters is zero.
The ``NVVMReflect`` pass should be executed early in the optimization
pipeline, immediately after the link stage. The ``internalize`` pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module ``module.bc``, the following compilation flow is recommended:
1. Save list of external functions in ``module.bc``
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
3. Internalize all functions not in list from (1)
4. Eliminate all unused internal functions
5. Run ``NVVMReflect`` pass
6. Run standard optimization pipeline
.. note::
``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
libdevice functions. It is possible to link two IR modules that have been
linked against libdevice using different reflection variables.
Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
often leave behind dead code of the form:
.. code-block:: llvm
entry:
..
br i1 true, label %foo, label %bar
foo:
..
bar:
; Dead code
..
Therefore, it is recommended that ``NVVMReflect`` is executed early in the
optimization pipeline before dead-code elimination.
Reflection Parameters
---------------------
The libdevice library currently uses the following reflection parameters to
control code generation:
==================== ======================================================
Flag Description
==================== ======================================================
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
==================== ======================================================
Invoking NVVMReflect
--------------------
To ensure that all dead code caused by the reflection pass is eliminated, it
is recommended that the reflection pass is executed early in the LLVM IR
optimization pipeline. The pass takes an optional mapping of reflection
parameter name to an integer value. This mapping can be specified as either a
command-line option to ``opt`` or as an LLVM ``StringMap<int>`` object when
programmatically creating a pass pipeline.
With ``opt``:
.. code-block:: text
# opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o module.reflect.bc
With programmatic pass pipeline:
.. code-block:: c++
extern ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping);
StringMap<int> ReflectParams;
ReflectParams["__CUDA_FTZ"] = 1;
Passes.add(createNVVMReflectPass(ReflectParams));
Executing PTX
=============
@ -274,3 +405,576 @@ JIT compiling a PTX string to a device binary:
For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
Common Issues
=============
ptxas complains of undefined function: __nvvm_reflect
-----------------------------------------------------
When linking with libdevice, the ``NVVMReflect`` pass must be used. See
:ref:`libdevice` for more information.
Tutorial: A Simple Compute Kernel
=================================
To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B. To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.
The Kernel
----------
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
define void @kernel(float addrspace(1)* %A,
float addrspace(1)* %B,
float addrspace(1)* %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float addrspace(1)* %A, i32 %id
%ptrB = getelementptr float addrspace(1)* %B, i32 %id
%ptrC = getelementptr float addrspace(1)* %C, i32 %id
; Read A, B
%valA = load float addrspace(1)* %ptrA, align 4
%valB = load float addrspace(1)* %ptrB, align 4
; Compute C = A + B
%valC = fadd float %valA, %valB
; Store back to C
store float %valC, float addrspace(1)* %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = metadata !{void (float addrspace(1)*,
float addrspace(1)*,
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
.. code-block:: text
# llc -mcpu=sm_20 kernel.ll -o kernel.ptx
.. note::
If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
in the module data layout string and use ``nvptx64-nvidia-cuda`` as the
target triple.
The output we get from ``llc`` (as of LLVM 3.4):
.. code-block:: text
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .f32 %f<4>;
.reg .s32 %r<2>;
.reg .s64 %rl<8>;
// BB#0: // %entry
ld.param.u64 %rl1, [kernel_param_0];
mov.u32 %r1, %tid.x;
mul.wide.s32 %rl2, %r1, 4;
add.s64 %rl3, %rl1, %rl2;
ld.param.u64 %rl4, [kernel_param_1];
add.s64 %rl5, %rl4, %rl2;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl6, %rl2;
ld.global.f32 %f1, [%rl3];
ld.global.f32 %f2, [%rl5];
add.f32 %f3, %f1, %f2;
st.global.f32 [%rl7], %f3;
ret;
}
Dissecting the Kernel
---------------------
Now let us dissect the LLVM IR that makes up this kernel.
Data Layout
^^^^^^^^^^^
The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size. For NVPTX, you should use one of the
following:
32-bit PTX:
.. code-block:: llvm
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
64-bit PTX:
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
Target Intrinsics
^^^^^^^^^^^^^^^^^
In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
read the X component of the current thread's ID, which corresponds to a read
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
intrinsics. A short list is shown below; please see
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
================================================ ====================
Intrinsic CUDA Equivalent
================================================ ====================
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}`` threadIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}`` blockIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}`` blockDim.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}`` gridDim.{x,y,z}
``void @llvm.cuda.syncthreads()`` __syncthreads()
================================================ ====================
Address Spaces
^^^^^^^^^^^^^^
You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:
- Global: Large, off-chip memory
- Shared: Small, on-chip memory shared among all threads in a CTA
- Local: Per-thread, private memory
- Constant: Read-only memory shared across all threads
These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the "generic" address space. This address space can represent
addresses in any other address space (with a few exceptions). This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.
See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
Kernel Metadata
^^^^^^^^^^^^^^^
In PTX, a function can be either a `kernel` function (callable from the host
program), or a `device` function (callable only from GPU code). You can think
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
function as a `kernel` function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
``nvvm.annotations``. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the "kernel" attribute to the LLVM IR function that should be emitted
as a PTX `kernel` function. These metadata nodes take the form:
.. code-block:: text
metadata !{<function ref>, metadata !"kernel", i32 1}
For the previous example, we have:
.. code-block:: llvm
!nvvm.annotations = !{!0}
!0 = metadata !{void (float addrspace(1)*,
float addrspace(1)*,
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
Here, we have a single metadata declaration in ``nvvm.annotations``. This
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
Running the Kernel
------------------
Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL. A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!
.. note::
You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
compile PTX to machine code (SASS) for a specific GPU architecture. Such
binaries can be loaded by the CUDA Driver API in the same way as PTX. This
can be useful for reducing startup time by precompiling the PTX kernels.
.. code-block:: c++
#include <iostream>
#include <fstream>
#include <cassert>
#include "cuda.h"
void checkCudaErrors(CUresult err) {
assert(err == CUDA_SUCCESS);
}
/// main - Program entry point
int main(int argc, char **argv) {
CUdevice device;
CUmodule cudaModule;
CUcontext context;
CUfunction function;
CUlinkState linker;
int devCount;
// CUDA initialization
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
checkCudaErrors(cuDeviceGet(&device, 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
return 1;
}
std::ifstream t("kernel.ptx");
if (!t.is_open()) {
std::cerr << "kernel.ptx not found\n";
return 1;
}
std::string str((std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>());
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
// Create module for object
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
// Get kernel function
checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
// Device data
CUdeviceptr devBufferA;
CUdeviceptr devBufferB;
CUdeviceptr devBufferC;
checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
float* hostA = new float[16];
float* hostB = new float[16];
float* hostC = new float[16];
// Populate input
for (unsigned i = 0; i != 16; ++i) {
hostA[i] = (float)i;
hostB[i] = (float)(2*i);
hostC[i] = 0.0f;
}
checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
unsigned blockSizeX = 16;
unsigned blockSizeY = 1;
unsigned blockSizeZ = 1;
unsigned gridSizeX = 1;
unsigned gridSizeY = 1;
unsigned gridSizeZ = 1;
// Kernel parameters
void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
std::cout << "Launching kernel\n";
// Kernel launch
checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
blockSizeX, blockSizeY, blockSizeZ,
0, NULL, KernelParams, NULL));
// Retrieve device data
checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
std::cout << "Results:\n";
for (unsigned i = 0; i != 16; ++i) {
std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
}
// Clean up after ourselves
delete [] hostA;
delete [] hostB;
delete [] hostC;
// Clean-up
checkCudaErrors(cuMemFree(devBufferA));
checkCudaErrors(cuMemFree(devBufferB));
checkCudaErrors(cuMemFree(devBufferC));
checkCudaErrors(cuModuleUnload(cudaModule));
checkCudaErrors(cuCtxDestroy(context));
return 0;
}
You will need to link with the CUDA driver and specify the path to cuda.h.
.. code-block:: text
# clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
We don't need to specify a path to ``libcuda.so`` since this is installed in a
system location by the driver, not the CUDA toolkit.
If everything goes as planned, you should see the following output when
running the compiled program:
.. code-block:: text
Using CUDA Device [0]: GeForce GTX 680
Device Compute Capability: 3.0
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3
2 + 4 = 6
3 + 6 = 9
4 + 8 = 12
5 + 10 = 15
6 + 12 = 18
7 + 14 = 21
8 + 16 = 24
9 + 18 = 27
10 + 20 = 30
11 + 22 = 33
12 + 24 = 36
13 + 26 = 39
14 + 28 = 42
15 + 30 = 45
.. note::
You will likely see a different device identifier based on your hardware
Tutorial: Linking with Libdevice
================================
In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
Libdevice provides an ``__nv_powf`` function that we will use.
.. code-block:: llvm
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; libdevice function
declare float @__nv_powf(float, float)
define void @kernel(float addrspace(1)* %A,
float addrspace(1)* %B,
float addrspace(1)* %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float addrspace(1)* %A, i32 %id
%ptrB = getelementptr float addrspace(1)* %B, i32 %id
%ptrC = getelementptr float addrspace(1)* %C, i32 %id
; Read A, B
%valA = load float addrspace(1)* %ptrA, align 4
%valB = load float addrspace(1)* %ptrB, align 4
; Compute C = pow(A, B)
%valC = call float @__nv_exp2f(float %valA, float %valB)
; Store back to C
store float %valC, float addrspace(1)* %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = metadata !{void (float addrspace(1)*,
float addrspace(1)*,
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}%
To compile this kernel, we perform the following steps:
1. Link with libdevice
2. Internalize all but the public kernel function
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
4. Optimize the linked module
5. Codegen the module
These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
:ref:`libdevice`).
.. code-block:: text
# llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
# opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
# llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
.. note::
The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
undefined variables will default to zero. It is shown here for evaluation
purposes.
This gives us the following PTX (excerpt):
.. code-block:: text
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .pred %p<30>;
.reg .f32 %f<111>;
.reg .s32 %r<21>;
.reg .s64 %rl<8>;
// BB#0: // %entry
ld.param.u64 %rl2, [kernel_param_0];
mov.u32 %r3, %tid.x;
ld.param.u64 %rl3, [kernel_param_1];
mul.wide.s32 %rl4, %r3, 4;
add.s64 %rl5, %rl2, %rl4;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl3, %rl4;
add.s64 %rl1, %rl6, %rl4;
ld.global.f32 %f1, [%rl5];
ld.global.f32 %f2, [%rl7];
setp.eq.f32 %p1, %f1, 0f3F800000;
setp.eq.f32 %p2, %f2, 0f00000000;
or.pred %p3, %p1, %p2;
@%p3 bra BB0_1;
bra.uni BB0_2;
BB0_1:
mov.f32 %f110, 0f3F800000;
st.global.f32 [%rl1], %f110;
ret;
BB0_2: // %__nv_isnanf.exit.i
abs.f32 %f4, %f1;
setp.gtu.f32 %p4, %f4, 0f7F800000;
@%p4 bra BB0_4;
// BB#3: // %__nv_isnanf.exit5.i
abs.f32 %f5, %f2;
setp.le.f32 %p5, %f5, 0f7F800000;
@%p5 bra BB0_5;
BB0_4: // %.critedge1.i
add.f32 %f110, %f1, %f2;
st.global.f32 [%rl1], %f110;
ret;
BB0_5: // %__nv_isinff.exit.i
...
BB0_26: // %__nv_truncf.exit.i.i.i.i.i
mul.f32 %f90, %f107, 0f3FB8AA3B;
cvt.rzi.f32.f32 %f91, %f90;
mov.f32 %f92, 0fBF317200;
fma.rn.f32 %f93, %f91, %f92, %f107;
mov.f32 %f94, 0fB5BFBE8E;
fma.rn.f32 %f95, %f91, %f94, %f93;
mul.f32 %f89, %f95, 0f3FB8AA3B;
// inline asm
ex2.approx.ftz.f32 %f88,%f89;
// inline asm
add.f32 %f96, %f91, 0f00000000;
ex2.approx.f32 %f97, %f96;
mul.f32 %f98, %f88, %f97;
setp.lt.f32 %p15, %f107, 0fC2D20000;
selp.f32 %f99, 0f00000000, %f98, %p15;
setp.gt.f32 %p16, %f107, 0f42D20000;
selp.f32 %f110, 0f7F800000, %f99, %p16;
setp.eq.f32 %p17, %f110, 0f7F800000;
@%p17 bra BB0_28;
// BB#27:
fma.rn.f32 %f110, %f110, %f108, %f110;
BB0_28: // %__internal_accurate_powf.exit.i
setp.lt.f32 %p18, %f1, 0f00000000;
setp.eq.f32 %p19, %f3, 0f3F800000;
and.pred %p20, %p18, %p19;
@!%p20 bra BB0_30;
bra.uni BB0_29;
BB0_29:
mov.b32 %r9, %f110;
xor.b32 %r10, %r9, -2147483648;
mov.b32 %f110, %r10;
BB0_30: // %__nv_powf.exit
st.global.f32 [%rl1], %f110;
ret;
}