mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
[NVPTX] Update the usage document
llvm-svn: 194812
This commit is contained in:
parent
0ebbe1d56c
commit
e06f1e4ace
@ -66,6 +66,8 @@ function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
|
||||
When compiled, the PTX kernel functions are callable by host-side code.
|
||||
|
||||
|
||||
.. _address_spaces:
|
||||
|
||||
Address Spaces
|
||||
--------------
|
||||
|
||||
@ -103,6 +105,25 @@ space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
|
||||
variables.
|
||||
|
||||
|
||||
Triples
|
||||
-------
|
||||
|
||||
The NVPTX target uses the module triple to select between 32/64-bit code
|
||||
generation and the driver-compiler interface to use. The triple architecture
|
||||
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
|
||||
operating system should be one of ``cuda`` or ``nvcl``, which determines the
|
||||
interface used by the generated code to communicate with the driver. Most
|
||||
users will want to use ``cuda`` as the operating system, which makes the
|
||||
generated PTX compatible with the CUDA Driver API.
|
||||
|
||||
Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
|
||||
|
||||
Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
|
||||
|
||||
|
||||
|
||||
.. _nvptx_intrinsics:
|
||||
|
||||
NVPTX Intrinsics
|
||||
================
|
||||
|
||||
@ -238,6 +259,116 @@ For the full set of NVPTX intrinsics, please see the
|
||||
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
|
||||
|
||||
|
||||
.. _libdevice:
|
||||
|
||||
Linking with Libdevice
|
||||
======================
|
||||
|
||||
The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
|
||||
implements many common mathematical functions. This library can be used as a
|
||||
high-performance math library for any compilers using the LLVM NVPTX target.
|
||||
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
|
||||
there is a separate version for each compute architecture.
|
||||
|
||||
For a list of all math functions implemented in libdevice, see
|
||||
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
|
||||
|
||||
To accomodate various math-related compiler flags that can affect code
|
||||
generation of libdevice code, the library code depends on a special LLVM IR
|
||||
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
|
||||
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
|
||||
with constants based on the defined reflection parameters. Such conditional
|
||||
code often follows a pattern:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
float my_function(float a) {
|
||||
if (__nvvm_reflect("FASTMATH"))
|
||||
return my_function_fast(a);
|
||||
else
|
||||
return my_function_precise(a);
|
||||
}
|
||||
|
||||
The default value for all unspecified reflection parameters is zero.
|
||||
|
||||
The ``NVVMReflect`` pass should be executed early in the optimization
|
||||
pipeline, immediately after the link stage. The ``internalize`` pass is also
|
||||
recommended to remove unused math functions from the resulting PTX. For an
|
||||
input IR module ``module.bc``, the following compilation flow is recommended:
|
||||
|
||||
1. Save list of external functions in ``module.bc``
|
||||
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
|
||||
3. Internalize all functions not in list from (1)
|
||||
4. Eliminate all unused internal functions
|
||||
5. Run ``NVVMReflect`` pass
|
||||
6. Run standard optimization pipeline
|
||||
|
||||
.. note::
|
||||
|
||||
``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
|
||||
libdevice functions. It is possible to link two IR modules that have been
|
||||
linked against libdevice using different reflection variables.
|
||||
|
||||
Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
|
||||
often leave behind dead code of the form:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
entry:
|
||||
..
|
||||
br i1 true, label %foo, label %bar
|
||||
foo:
|
||||
..
|
||||
bar:
|
||||
; Dead code
|
||||
..
|
||||
|
||||
Therefore, it is recommended that ``NVVMReflect`` is executed early in the
|
||||
optimization pipeline before dead-code elimination.
|
||||
|
||||
|
||||
Reflection Parameters
|
||||
---------------------
|
||||
|
||||
The libdevice library currently uses the following reflection parameters to
|
||||
control code generation:
|
||||
|
||||
==================== ======================================================
|
||||
Flag Description
|
||||
==================== ======================================================
|
||||
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
|
||||
==================== ======================================================
|
||||
|
||||
|
||||
Invoking NVVMReflect
|
||||
--------------------
|
||||
|
||||
To ensure that all dead code caused by the reflection pass is eliminated, it
|
||||
is recommended that the reflection pass is executed early in the LLVM IR
|
||||
optimization pipeline. The pass takes an optional mapping of reflection
|
||||
parameter name to an integer value. This mapping can be specified as either a
|
||||
command-line option to ``opt`` or as an LLVM ``StringMap<int>`` object when
|
||||
programmatically creating a pass pipeline.
|
||||
|
||||
With ``opt``:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
# opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o module.reflect.bc
|
||||
|
||||
|
||||
With programmatic pass pipeline:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
extern ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping);
|
||||
|
||||
StringMap<int> ReflectParams;
|
||||
ReflectParams["__CUDA_FTZ"] = 1;
|
||||
Passes.add(createNVVMReflectPass(ReflectParams));
|
||||
|
||||
|
||||
|
||||
Executing PTX
|
||||
=============
|
||||
|
||||
@ -274,3 +405,576 @@ JIT compiling a PTX string to a device binary:
|
||||
|
||||
For full examples of executing PTX assembly, please see the `CUDA Samples
|
||||
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
|
||||
|
||||
|
||||
Common Issues
|
||||
=============
|
||||
|
||||
ptxas complains of undefined function: __nvvm_reflect
|
||||
-----------------------------------------------------
|
||||
|
||||
When linking with libdevice, the ``NVVMReflect`` pass must be used. See
|
||||
:ref:`libdevice` for more information.
|
||||
|
||||
|
||||
Tutorial: A Simple Compute Kernel
|
||||
=================================
|
||||
|
||||
To start, let us take a look at a simple compute kernel written directly in
|
||||
LLVM IR. The kernel implements vector addition, where each thread computes one
|
||||
element of the output vector C from the input vectors A and B. To make this
|
||||
easier, we also assume that only a single CTA (thread block) will be launched,
|
||||
and that it will be one dimensional.
|
||||
|
||||
|
||||
The Kernel
|
||||
----------
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
||||
target triple = "nvptx64-nvidia-cuda"
|
||||
|
||||
; Intrinsic to read X component of thread ID
|
||||
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
|
||||
|
||||
define void @kernel(float addrspace(1)* %A,
|
||||
float addrspace(1)* %B,
|
||||
float addrspace(1)* %C) {
|
||||
entry:
|
||||
; What is my ID?
|
||||
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
|
||||
|
||||
; Compute pointers into A, B, and C
|
||||
%ptrA = getelementptr float addrspace(1)* %A, i32 %id
|
||||
%ptrB = getelementptr float addrspace(1)* %B, i32 %id
|
||||
%ptrC = getelementptr float addrspace(1)* %C, i32 %id
|
||||
|
||||
; Read A, B
|
||||
%valA = load float addrspace(1)* %ptrA, align 4
|
||||
%valB = load float addrspace(1)* %ptrB, align 4
|
||||
|
||||
; Compute C = A + B
|
||||
%valC = fadd float %valA, %valB
|
||||
|
||||
; Store back to C
|
||||
store float %valC, float addrspace(1)* %ptrC, align 4
|
||||
|
||||
ret void
|
||||
}
|
||||
|
||||
!nvvm.annotations = !{!0}
|
||||
!0 = metadata !{void (float addrspace(1)*,
|
||||
float addrspace(1)*,
|
||||
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
|
||||
|
||||
|
||||
We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
# llc -mcpu=sm_20 kernel.ll -o kernel.ptx
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
|
||||
in the module data layout string and use ``nvptx64-nvidia-cuda`` as the
|
||||
target triple.
|
||||
|
||||
|
||||
The output we get from ``llc`` (as of LLVM 3.4):
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
//
|
||||
// Generated by LLVM NVPTX Back-End
|
||||
//
|
||||
|
||||
.version 3.1
|
||||
.target sm_20
|
||||
.address_size 64
|
||||
|
||||
// .globl kernel
|
||||
// @kernel
|
||||
.visible .entry kernel(
|
||||
.param .u64 kernel_param_0,
|
||||
.param .u64 kernel_param_1,
|
||||
.param .u64 kernel_param_2
|
||||
)
|
||||
{
|
||||
.reg .f32 %f<4>;
|
||||
.reg .s32 %r<2>;
|
||||
.reg .s64 %rl<8>;
|
||||
|
||||
// BB#0: // %entry
|
||||
ld.param.u64 %rl1, [kernel_param_0];
|
||||
mov.u32 %r1, %tid.x;
|
||||
mul.wide.s32 %rl2, %r1, 4;
|
||||
add.s64 %rl3, %rl1, %rl2;
|
||||
ld.param.u64 %rl4, [kernel_param_1];
|
||||
add.s64 %rl5, %rl4, %rl2;
|
||||
ld.param.u64 %rl6, [kernel_param_2];
|
||||
add.s64 %rl7, %rl6, %rl2;
|
||||
ld.global.f32 %f1, [%rl3];
|
||||
ld.global.f32 %f2, [%rl5];
|
||||
add.f32 %f3, %f1, %f2;
|
||||
st.global.f32 [%rl7], %f3;
|
||||
ret;
|
||||
}
|
||||
|
||||
|
||||
Dissecting the Kernel
|
||||
---------------------
|
||||
|
||||
Now let us dissect the LLVM IR that makes up this kernel.
|
||||
|
||||
Data Layout
|
||||
^^^^^^^^^^^
|
||||
|
||||
The data layout string determines the size in bits of common data types, their
|
||||
ABI alignment, and their storage size. For NVPTX, you should use one of the
|
||||
following:
|
||||
|
||||
32-bit PTX:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
||||
|
||||
64-bit PTX:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
||||
|
||||
|
||||
Target Intrinsics
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
|
||||
read the X component of the current thread's ID, which corresponds to a read
|
||||
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
|
||||
intrinsics. A short list is shown below; please see
|
||||
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
|
||||
|
||||
|
||||
================================================ ====================
|
||||
Intrinsic CUDA Equivalent
|
||||
================================================ ====================
|
||||
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}`` threadIdx.{x,y,z}
|
||||
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}`` blockIdx.{x,y,z}
|
||||
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}`` blockDim.{x,y,z}
|
||||
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}`` gridDim.{x,y,z}
|
||||
``void @llvm.cuda.syncthreads()`` __syncthreads()
|
||||
================================================ ====================
|
||||
|
||||
|
||||
Address Spaces
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
You may have noticed that all of the pointer types in the LLVM IR example had
|
||||
an explicit address space specifier. What is address space 1? NVIDIA GPU
|
||||
devices (generally) have four types of memory:
|
||||
|
||||
- Global: Large, off-chip memory
|
||||
- Shared: Small, on-chip memory shared among all threads in a CTA
|
||||
- Local: Per-thread, private memory
|
||||
- Constant: Read-only memory shared across all threads
|
||||
|
||||
These different types of memory are represented in LLVM IR as address spaces.
|
||||
There is also a fifth address space used by the NVPTX code generator that
|
||||
corresponds to the "generic" address space. This address space can represent
|
||||
addresses in any other address space (with a few exceptions). This allows
|
||||
users to write IR functions that can load/store memory using the same
|
||||
instructions. Intrinsics are provided to convert pointers between the generic
|
||||
and non-generic address spaces.
|
||||
|
||||
See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
|
||||
|
||||
|
||||
Kernel Metadata
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
In PTX, a function can be either a `kernel` function (callable from the host
|
||||
program), or a `device` function (callable only from GPU code). You can think
|
||||
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
|
||||
function as a `kernel` function, we make use of special LLVM metadata. The
|
||||
NVPTX back-end will look for a named metadata node called
|
||||
``nvvm.annotations``. This named metadata must contain a list of metadata that
|
||||
describe the IR. For our purposes, we need to declare a metadata node that
|
||||
assigns the "kernel" attribute to the LLVM IR function that should be emitted
|
||||
as a PTX `kernel` function. These metadata nodes take the form:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
metadata !{<function ref>, metadata !"kernel", i32 1}
|
||||
|
||||
For the previous example, we have:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
!nvvm.annotations = !{!0}
|
||||
!0 = metadata !{void (float addrspace(1)*,
|
||||
float addrspace(1)*,
|
||||
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}
|
||||
|
||||
Here, we have a single metadata declaration in ``nvvm.annotations``. This
|
||||
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
|
||||
|
||||
|
||||
Running the Kernel
|
||||
------------------
|
||||
|
||||
Generating PTX from LLVM IR is all well and good, but how do we execute it on
|
||||
a real GPU device? The CUDA Driver API provides a convenient mechanism for
|
||||
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
|
||||
The API is similar to OpenCL. A simple example showing how to load and
|
||||
execute our vector addition code is shown below. Note that for brevity this
|
||||
code does not perform much error checking!
|
||||
|
||||
.. note::
|
||||
|
||||
You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
|
||||
compile PTX to machine code (SASS) for a specific GPU architecture. Such
|
||||
binaries can be loaded by the CUDA Driver API in the same way as PTX. This
|
||||
can be useful for reducing startup time by precompiling the PTX kernels.
|
||||
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
#include "cuda.h"
|
||||
|
||||
|
||||
void checkCudaErrors(CUresult err) {
|
||||
assert(err == CUDA_SUCCESS);
|
||||
}
|
||||
|
||||
/// main - Program entry point
|
||||
int main(int argc, char **argv) {
|
||||
CUdevice device;
|
||||
CUmodule cudaModule;
|
||||
CUcontext context;
|
||||
CUfunction function;
|
||||
CUlinkState linker;
|
||||
int devCount;
|
||||
|
||||
// CUDA initialization
|
||||
checkCudaErrors(cuInit(0));
|
||||
checkCudaErrors(cuDeviceGetCount(&devCount));
|
||||
checkCudaErrors(cuDeviceGet(&device, 0));
|
||||
|
||||
char name[128];
|
||||
checkCudaErrors(cuDeviceGetName(name, 128, device));
|
||||
std::cout << "Using CUDA Device [0]: " << name << "\n";
|
||||
|
||||
int devMajor, devMinor;
|
||||
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
|
||||
std::cout << "Device Compute Capability: "
|
||||
<< devMajor << "." << devMinor << "\n";
|
||||
if (devMajor < 2) {
|
||||
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::ifstream t("kernel.ptx");
|
||||
if (!t.is_open()) {
|
||||
std::cerr << "kernel.ptx not found\n";
|
||||
return 1;
|
||||
}
|
||||
std::string str((std::istreambuf_iterator<char>(t)),
|
||||
std::istreambuf_iterator<char>());
|
||||
|
||||
// Create driver context
|
||||
checkCudaErrors(cuCtxCreate(&context, 0, device));
|
||||
|
||||
// Create module for object
|
||||
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
|
||||
|
||||
// Get kernel function
|
||||
checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
|
||||
|
||||
// Device data
|
||||
CUdeviceptr devBufferA;
|
||||
CUdeviceptr devBufferB;
|
||||
CUdeviceptr devBufferC;
|
||||
|
||||
checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
|
||||
checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
|
||||
checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
|
||||
|
||||
float* hostA = new float[16];
|
||||
float* hostB = new float[16];
|
||||
float* hostC = new float[16];
|
||||
|
||||
// Populate input
|
||||
for (unsigned i = 0; i != 16; ++i) {
|
||||
hostA[i] = (float)i;
|
||||
hostB[i] = (float)(2*i);
|
||||
hostC[i] = 0.0f;
|
||||
}
|
||||
|
||||
checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
|
||||
checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
|
||||
|
||||
|
||||
unsigned blockSizeX = 16;
|
||||
unsigned blockSizeY = 1;
|
||||
unsigned blockSizeZ = 1;
|
||||
unsigned gridSizeX = 1;
|
||||
unsigned gridSizeY = 1;
|
||||
unsigned gridSizeZ = 1;
|
||||
|
||||
// Kernel parameters
|
||||
void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
|
||||
|
||||
std::cout << "Launching kernel\n";
|
||||
|
||||
// Kernel launch
|
||||
checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
|
||||
blockSizeX, blockSizeY, blockSizeZ,
|
||||
0, NULL, KernelParams, NULL));
|
||||
|
||||
// Retrieve device data
|
||||
checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
|
||||
|
||||
|
||||
std::cout << "Results:\n";
|
||||
for (unsigned i = 0; i != 16; ++i) {
|
||||
std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
|
||||
}
|
||||
|
||||
|
||||
// Clean up after ourselves
|
||||
delete [] hostA;
|
||||
delete [] hostB;
|
||||
delete [] hostC;
|
||||
|
||||
// Clean-up
|
||||
checkCudaErrors(cuMemFree(devBufferA));
|
||||
checkCudaErrors(cuMemFree(devBufferB));
|
||||
checkCudaErrors(cuMemFree(devBufferC));
|
||||
checkCudaErrors(cuModuleUnload(cudaModule));
|
||||
checkCudaErrors(cuCtxDestroy(context));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
You will need to link with the CUDA driver and specify the path to cuda.h.
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
# clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
|
||||
|
||||
We don't need to specify a path to ``libcuda.so`` since this is installed in a
|
||||
system location by the driver, not the CUDA toolkit.
|
||||
|
||||
If everything goes as planned, you should see the following output when
|
||||
running the compiled program:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
Using CUDA Device [0]: GeForce GTX 680
|
||||
Device Compute Capability: 3.0
|
||||
Launching kernel
|
||||
Results:
|
||||
0 + 0 = 0
|
||||
1 + 2 = 3
|
||||
2 + 4 = 6
|
||||
3 + 6 = 9
|
||||
4 + 8 = 12
|
||||
5 + 10 = 15
|
||||
6 + 12 = 18
|
||||
7 + 14 = 21
|
||||
8 + 16 = 24
|
||||
9 + 18 = 27
|
||||
10 + 20 = 30
|
||||
11 + 22 = 33
|
||||
12 + 24 = 36
|
||||
13 + 26 = 39
|
||||
14 + 28 = 42
|
||||
15 + 30 = 45
|
||||
|
||||
.. note::
|
||||
|
||||
You will likely see a different device identifier based on your hardware
|
||||
|
||||
|
||||
Tutorial: Linking with Libdevice
|
||||
================================
|
||||
|
||||
In this tutorial, we show a simple example of linking LLVM IR with the
|
||||
libdevice library. We will use the same kernel as the previous tutorial,
|
||||
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
|
||||
Libdevice provides an ``__nv_powf`` function that we will use.
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
||||
target triple = "nvptx64-nvidia-cuda"
|
||||
|
||||
; Intrinsic to read X component of thread ID
|
||||
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
|
||||
; libdevice function
|
||||
declare float @__nv_powf(float, float)
|
||||
|
||||
define void @kernel(float addrspace(1)* %A,
|
||||
float addrspace(1)* %B,
|
||||
float addrspace(1)* %C) {
|
||||
entry:
|
||||
; What is my ID?
|
||||
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
|
||||
|
||||
; Compute pointers into A, B, and C
|
||||
%ptrA = getelementptr float addrspace(1)* %A, i32 %id
|
||||
%ptrB = getelementptr float addrspace(1)* %B, i32 %id
|
||||
%ptrC = getelementptr float addrspace(1)* %C, i32 %id
|
||||
|
||||
; Read A, B
|
||||
%valA = load float addrspace(1)* %ptrA, align 4
|
||||
%valB = load float addrspace(1)* %ptrB, align 4
|
||||
|
||||
; Compute C = pow(A, B)
|
||||
%valC = call float @__nv_exp2f(float %valA, float %valB)
|
||||
|
||||
; Store back to C
|
||||
store float %valC, float addrspace(1)* %ptrC, align 4
|
||||
|
||||
ret void
|
||||
}
|
||||
|
||||
!nvvm.annotations = !{!0}
|
||||
!0 = metadata !{void (float addrspace(1)*,
|
||||
float addrspace(1)*,
|
||||
float addrspace(1)*)* @kernel, metadata !"kernel", i32 1}%
|
||||
|
||||
|
||||
To compile this kernel, we perform the following steps:
|
||||
|
||||
1. Link with libdevice
|
||||
2. Internalize all but the public kernel function
|
||||
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
|
||||
4. Optimize the linked module
|
||||
5. Codegen the module
|
||||
|
||||
|
||||
These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
|
||||
tools. In a complete compiler, these steps can also be performed entirely
|
||||
programmatically by setting up an appropriate pass configuration (see
|
||||
:ref:`libdevice`).
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
# llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
|
||||
# opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
|
||||
# llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
|
||||
|
||||
.. note::
|
||||
|
||||
The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
|
||||
undefined variables will default to zero. It is shown here for evaluation
|
||||
purposes.
|
||||
|
||||
|
||||
This gives us the following PTX (excerpt):
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
//
|
||||
// Generated by LLVM NVPTX Back-End
|
||||
//
|
||||
|
||||
.version 3.1
|
||||
.target sm_20
|
||||
.address_size 64
|
||||
|
||||
// .globl kernel
|
||||
// @kernel
|
||||
.visible .entry kernel(
|
||||
.param .u64 kernel_param_0,
|
||||
.param .u64 kernel_param_1,
|
||||
.param .u64 kernel_param_2
|
||||
)
|
||||
{
|
||||
.reg .pred %p<30>;
|
||||
.reg .f32 %f<111>;
|
||||
.reg .s32 %r<21>;
|
||||
.reg .s64 %rl<8>;
|
||||
|
||||
// BB#0: // %entry
|
||||
ld.param.u64 %rl2, [kernel_param_0];
|
||||
mov.u32 %r3, %tid.x;
|
||||
ld.param.u64 %rl3, [kernel_param_1];
|
||||
mul.wide.s32 %rl4, %r3, 4;
|
||||
add.s64 %rl5, %rl2, %rl4;
|
||||
ld.param.u64 %rl6, [kernel_param_2];
|
||||
add.s64 %rl7, %rl3, %rl4;
|
||||
add.s64 %rl1, %rl6, %rl4;
|
||||
ld.global.f32 %f1, [%rl5];
|
||||
ld.global.f32 %f2, [%rl7];
|
||||
setp.eq.f32 %p1, %f1, 0f3F800000;
|
||||
setp.eq.f32 %p2, %f2, 0f00000000;
|
||||
or.pred %p3, %p1, %p2;
|
||||
@%p3 bra BB0_1;
|
||||
bra.uni BB0_2;
|
||||
BB0_1:
|
||||
mov.f32 %f110, 0f3F800000;
|
||||
st.global.f32 [%rl1], %f110;
|
||||
ret;
|
||||
BB0_2: // %__nv_isnanf.exit.i
|
||||
abs.f32 %f4, %f1;
|
||||
setp.gtu.f32 %p4, %f4, 0f7F800000;
|
||||
@%p4 bra BB0_4;
|
||||
// BB#3: // %__nv_isnanf.exit5.i
|
||||
abs.f32 %f5, %f2;
|
||||
setp.le.f32 %p5, %f5, 0f7F800000;
|
||||
@%p5 bra BB0_5;
|
||||
BB0_4: // %.critedge1.i
|
||||
add.f32 %f110, %f1, %f2;
|
||||
st.global.f32 [%rl1], %f110;
|
||||
ret;
|
||||
BB0_5: // %__nv_isinff.exit.i
|
||||
|
||||
...
|
||||
|
||||
BB0_26: // %__nv_truncf.exit.i.i.i.i.i
|
||||
mul.f32 %f90, %f107, 0f3FB8AA3B;
|
||||
cvt.rzi.f32.f32 %f91, %f90;
|
||||
mov.f32 %f92, 0fBF317200;
|
||||
fma.rn.f32 %f93, %f91, %f92, %f107;
|
||||
mov.f32 %f94, 0fB5BFBE8E;
|
||||
fma.rn.f32 %f95, %f91, %f94, %f93;
|
||||
mul.f32 %f89, %f95, 0f3FB8AA3B;
|
||||
// inline asm
|
||||
ex2.approx.ftz.f32 %f88,%f89;
|
||||
// inline asm
|
||||
add.f32 %f96, %f91, 0f00000000;
|
||||
ex2.approx.f32 %f97, %f96;
|
||||
mul.f32 %f98, %f88, %f97;
|
||||
setp.lt.f32 %p15, %f107, 0fC2D20000;
|
||||
selp.f32 %f99, 0f00000000, %f98, %p15;
|
||||
setp.gt.f32 %p16, %f107, 0f42D20000;
|
||||
selp.f32 %f110, 0f7F800000, %f99, %p16;
|
||||
setp.eq.f32 %p17, %f110, 0f7F800000;
|
||||
@%p17 bra BB0_28;
|
||||
// BB#27:
|
||||
fma.rn.f32 %f110, %f110, %f108, %f110;
|
||||
BB0_28: // %__internal_accurate_powf.exit.i
|
||||
setp.lt.f32 %p18, %f1, 0f00000000;
|
||||
setp.eq.f32 %p19, %f3, 0f3F800000;
|
||||
and.pred %p20, %p18, %p19;
|
||||
@!%p20 bra BB0_30;
|
||||
bra.uni BB0_29;
|
||||
BB0_29:
|
||||
mov.b32 %r9, %f110;
|
||||
xor.b32 %r10, %r9, -2147483648;
|
||||
mov.b32 %f110, %r10;
|
||||
BB0_30: // %__nv_powf.exit
|
||||
st.global.f32 [%rl1], %f110;
|
||||
ret;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user