1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00

[Alignment][NFC] Instructions::getLoadStoreAlignment

Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69256

llvm-svn: 375416
This commit is contained in:
Guillaume Chatelet 2019-10-21 14:49:28 +00:00
parent 51a49e0b2b
commit e1380964d3
3 changed files with 50 additions and 44 deletions

View File

@ -5283,12 +5283,12 @@ inline Value *getPointerOperand(Value *V) {
}
/// A helper function that returns the alignment of load or store instruction.
inline unsigned getLoadStoreAlignment(Value *I) {
inline MaybeAlign getLoadStoreAlignment(Value *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction");
if (auto *LI = dyn_cast<LoadInst>(I))
return LI->getAlignment();
return cast<StoreInst>(I)->getAlignment();
return MaybeAlign(LI->getAlignment());
return MaybeAlign(cast<StoreInst>(I)->getAlignment());
}
/// A helper function that returns the address space of the pointer operand of

View File

@ -741,9 +741,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Arbitrarily try a vector of 2 elements.
Type *VecTy = VectorType::get(T, /*NumElements=*/2);
assert(VecTy && "did not find vectorized version of stored type");
unsigned Alignment = getLoadStoreAlignment(ST);
const MaybeAlign Alignment = getLoadStoreAlignment(ST);
assert(Alignment && "Alignment should be set");
if (!TTI->isLegalNTStore(VecTy, Align(Alignment))) {
if (!TTI->isLegalNTStore(VecTy, *Alignment)) {
reportVectorizationFailure(
"nontemporal store instruction cannot be vectorized",
"nontemporal store instruction cannot be vectorized",
@ -758,9 +758,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// supported on the target (arbitrarily try a vector of 2 elements).
Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
assert(VecTy && "did not find vectorized version of load type");
unsigned Alignment = getLoadStoreAlignment(LD);
const MaybeAlign Alignment = getLoadStoreAlignment(LD);
assert(Alignment && "Alignment should be set");
if (!TTI->isLegalNTLoad(VecTy, Align(Alignment))) {
if (!TTI->isLegalNTLoad(VecTy, *Alignment)) {
reportVectorizationFailure(
"nontemporal load instruction cannot be vectorized",
"nontemporal load instruction cannot be vectorized",

View File

@ -1190,16 +1190,16 @@ public:
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, unsigned Alignment) {
bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
return Legal->isConsecutivePtr(Ptr) &&
TTI.isLegalMaskedStore(DataType, MaybeAlign(Alignment));
TTI.isLegalMaskedStore(DataType, Alignment);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, unsigned Alignment) {
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
return Legal->isConsecutivePtr(Ptr) &&
TTI.isLegalMaskedLoad(DataType, MaybeAlign(Alignment));
TTI.isLegalMaskedLoad(DataType, Alignment);
}
/// Returns true if the target machine supports masked scatter operation
@ -2359,12 +2359,11 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
Type *ScalarDataTy = getMemInstValueType(Instr);
Type *DataTy = VectorType::get(ScalarDataTy, VF);
Value *Ptr = getLoadStorePointerOperand(Instr);
unsigned Alignment = getLoadStoreAlignment(Instr);
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
const DataLayout &DL = Instr->getModule()->getDataLayout();
if (!Alignment)
Alignment = DL.getABITypeAlignment(ScalarDataTy);
const Align Alignment =
DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy);
unsigned AddressSpace = getLoadStoreAddressSpace(Instr);
// Determine if the pointer operand of the access is either consecutive or
@ -2428,8 +2427,8 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
MaskPart);
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep,
Alignment.value(), MaskPart);
} else {
if (Reverse) {
// If we store to reverse consecutive memory locations, then we need
@ -2440,10 +2439,11 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
}
auto *VecPtr = CreateVecPtr(Part, Ptr);
if (isMaskRequired)
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
Mask[Part]);
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr,
Alignment.value(), Mask[Part]);
else
NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
NewSI =
Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value());
}
addMetadata(NewSI, SI);
}
@ -2458,18 +2458,18 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart,
nullptr, "wide.masked.gather");
addMetadata(NewLI, LI);
} else {
auto *VecPtr = CreateVecPtr(Part, Ptr);
if (isMaskRequired)
NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment.value(), Mask[Part],
UndefValue::get(DataTy),
"wide.masked.load");
else
NewLI =
Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(),
"wide.load");
// Add metadata to the load, but setVectorValue to the reverse shuffle.
addMetadata(NewLI, LI);
@ -4553,7 +4553,6 @@ bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigne
return false;
auto *Ptr = getLoadStorePointerOperand(I);
auto *Ty = getMemInstValueType(I);
unsigned Alignment = getLoadStoreAlignment(I);
// We have already decided how to vectorize this instruction, get that
// result.
if (VF > 1) {
@ -4562,6 +4561,7 @@ bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigne
"Widening decision should be ready at this moment");
return WideningDecision == CM_Scalarize;
}
const MaybeAlign Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ?
!(isLegalMaskedLoad(Ty, Ptr, Alignment) || isLegalMaskedGather(Ty))
: !(isLegalMaskedStore(Ty, Ptr, Alignment) || isLegalMaskedScatter(Ty));
@ -4607,9 +4607,9 @@ bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
"Masked interleave-groups for predicated accesses are not enabled.");
auto *Ty = getMemInstValueType(I);
unsigned Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, MaybeAlign(Alignment))
: TTI.isLegalMaskedStore(Ty, MaybeAlign(Alignment));
const MaybeAlign Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
: TTI.isLegalMaskedStore(Ty, Alignment);
}
bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
@ -5731,7 +5731,6 @@ unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
Type *ValTy = getMemInstValueType(I);
auto SE = PSE.getSE();
unsigned Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
Value *Ptr = getLoadStorePointerOperand(I);
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
@ -5745,9 +5744,9 @@ unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
// Don't pass *I here, since it is scalar but will actually be part of a
// vectorized loop where the user of it is a vectorized instruction.
Cost += VF *
TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
AS);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
Alignment ? Alignment->value() : 0, AS);
// Get the overhead of the extractelement and insertelement instructions
// we might create due to scalarization.
@ -5772,18 +5771,20 @@ unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
Value *Ptr = getLoadStorePointerOperand(I);
unsigned AS = getLoadStoreAddressSpace(I);
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Stride should be 1 or -1 for consecutive memory access");
const MaybeAlign Alignment = getLoadStoreAlignment(I);
unsigned Cost = 0;
if (Legal->isMaskRequired(I))
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
Alignment ? Alignment->value() : 0, AS);
else
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
Alignment ? Alignment->value() : 0, AS, I);
bool Reverse = ConsecutiveStride < 0;
if (Reverse)
@ -5795,33 +5796,37 @@ unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
if (isa<LoadInst>(I)) {
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
TTI.getMemoryOpCost(Instruction::Load, ValTy,
Alignment ? Alignment->value() : 0, AS) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}
StoreInst *SI = cast<StoreInst>(I);
bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
(isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost(
Instruction::ExtractElement,
VectorTy, VF - 1));
TTI.getMemoryOpCost(Instruction::Store, ValTy,
Alignment ? Alignment->value() : 0, AS) +
(isLoopInvariantStoreValue
? 0
: TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
VF - 1));
}
unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
unsigned VF) {
Type *ValTy = getMemInstValueType(I);
Type *VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = getLoadStoreAlignment(I);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
Value *Ptr = getLoadStorePointerOperand(I);
return TTI.getAddressComputationCost(VectorTy) +
TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
Legal->isMaskRequired(I), Alignment);
Legal->isMaskRequired(I),
Alignment ? Alignment->value() : 0);
}
unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
@ -5868,11 +5873,12 @@ unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
// moment.
if (VF == 1) {
Type *ValTy = getMemInstValueType(I);
unsigned Alignment = getLoadStoreAlignment(I);
const MaybeAlign Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
TTI.getMemoryOpCost(I->getOpcode(), ValTy,
Alignment ? Alignment->value() : 0, AS, I);
}
return getWideningCost(I, VF);
}