mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
InstCombine rule to fold truncs whose value is available
We can fold truncs whose operand feeds from a load, if the trunc value is available through a prior load/store. This change is from: http://reviews.llvm.org/D21246, which folded the trunc but missed the bitcast or ptrtoint/inttoptr required in the RAUW call, when the load type didnt match the prior load/store type. Differential Revision: http://reviews.llvm.org/D21791 llvm-svn: 274853
This commit is contained in:
parent
a15c7e6b71
commit
e3fa3bfe94
@ -58,6 +58,44 @@ bool isSafeToLoadUnconditionally(Value *V, unsigned Align,
|
||||
/// to scan in the block, used by FindAvailableLoadedValue().
|
||||
extern cl::opt<unsigned> DefMaxInstsToScan;
|
||||
|
||||
/// \brief Scan backwards to see if we have the value of type \p AccessTy
|
||||
/// at the memory address \p Ptr locally available within a
|
||||
/// small number of instructions. If the value is available, return it.
|
||||
///
|
||||
/// You can use this function to scan across multiple blocks: after you call
|
||||
/// this function, if ScanFrom points at the beginning of the block, it's safe
|
||||
/// to continue scanning the predecessors.
|
||||
/// Note that we assume the \p *Ptr is accessed through a non-volatile but
|
||||
/// potentially atomic load. Any other constraints should be verified at the
|
||||
/// caller.
|
||||
///
|
||||
/// \param Ptr The memory location whose contents we are retrieving
|
||||
/// \param AccessTy The type (and size) of the contents we need from \p Ptr
|
||||
/// \param IsAtomicMemOp specifies the atomicity of the memory operation that accesses
|
||||
/// \p *Ptr. We verify atomicity constraints are satisfied when value forwarding
|
||||
/// from another memory operation that has value \p *Ptr available.
|
||||
/// \param ScanBB The basic block to scan. FIXME: This is redundant.
|
||||
/// \param [in,out] ScanFrom The location to start scanning from. When this
|
||||
/// function returns, it points at the last instruction scanned.
|
||||
/// \param MaxInstsToScan The maximum number of instructions to scan. If this
|
||||
/// is zero, the whole block will be scanned.
|
||||
/// \param AA Optional pointer to alias analysis, to make the scan more
|
||||
/// precise.
|
||||
/// \param [out] AATags The aliasing metadata for the operation which produced
|
||||
/// the value. FIXME: This is basically useless.
|
||||
///
|
||||
/// \param [out] IsLoadCSE Whether the returned value is a load from the same
|
||||
/// location in memory, as opposed to the value operand of a store.
|
||||
///
|
||||
/// \returns The found value, or nullptr if no value is found.
|
||||
Value *FindAvailableLoadedValue(Value *Ptr, Type *AccessTy, bool IsAtomicMemOp,
|
||||
BasicBlock *ScanBB,
|
||||
BasicBlock::iterator &ScanFrom,
|
||||
unsigned MaxInstsToScan,
|
||||
AliasAnalysis *AA = nullptr,
|
||||
AAMDNodes *AATags = nullptr,
|
||||
bool *IsLoadCSE = nullptr);
|
||||
|
||||
/// \brief Scan backwards to see if we have the value of the given load
|
||||
/// available locally within a small number of instructions.
|
||||
///
|
||||
|
@ -297,27 +297,17 @@ llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
|
||||
"to scan backward from a given instruction, when searching for "
|
||||
"available loaded value"));
|
||||
|
||||
Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
|
||||
|
||||
Value *llvm::FindAvailableLoadedValue(Value *Ptr, Type *AccessTy,
|
||||
bool IsAtomicMemOp, BasicBlock *ScanBB,
|
||||
BasicBlock::iterator &ScanFrom,
|
||||
unsigned MaxInstsToScan,
|
||||
AliasAnalysis *AA, AAMDNodes *AATags,
|
||||
bool *IsLoadCSE) {
|
||||
|
||||
if (MaxInstsToScan == 0)
|
||||
MaxInstsToScan = ~0U;
|
||||
|
||||
Value *Ptr = Load->getPointerOperand();
|
||||
Type *AccessTy = Load->getType();
|
||||
|
||||
// We can never remove a volatile load
|
||||
if (Load->isVolatile())
|
||||
return nullptr;
|
||||
|
||||
// Anything stronger than unordered is currently unimplemented.
|
||||
if (!Load->isUnordered())
|
||||
return nullptr;
|
||||
|
||||
const DataLayout &DL = ScanBB->getModule()->getDataLayout();
|
||||
|
||||
// Try to get the store size for the type.
|
||||
uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
|
||||
|
||||
@ -348,7 +338,7 @@ Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
|
||||
|
||||
// We can value forward from an atomic to a non-atomic, but not the
|
||||
// other way around.
|
||||
if (LI->isAtomic() < Load->isAtomic())
|
||||
if (LI->isAtomic() < IsAtomicMemOp)
|
||||
return nullptr;
|
||||
|
||||
if (AATags)
|
||||
@ -369,7 +359,7 @@ Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
|
||||
|
||||
// We can value forward from an atomic to a non-atomic, but not the
|
||||
// other way around.
|
||||
if (SI->isAtomic() < Load->isAtomic())
|
||||
if (SI->isAtomic() < IsAtomicMemOp)
|
||||
return nullptr;
|
||||
|
||||
if (AATags)
|
||||
@ -413,3 +403,24 @@ Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
|
||||
// block.
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
||||
Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
|
||||
BasicBlock::iterator &ScanFrom,
|
||||
unsigned MaxInstsToScan,
|
||||
AliasAnalysis *AA, AAMDNodes *AATags,
|
||||
bool *IsLoadCSE) {
|
||||
|
||||
// We can never remove a volatile load
|
||||
if (Load->isVolatile())
|
||||
return nullptr;
|
||||
|
||||
// Anything stronger than unordered is currently unimplemented.
|
||||
if (!Load->isUnordered())
|
||||
return nullptr;
|
||||
|
||||
// Return the full value of the load if available.
|
||||
return FindAvailableLoadedValue(Load->getPointerOperand(), Load->getType(),
|
||||
Load->isAtomic(), ScanBB, ScanFrom,
|
||||
MaxInstsToScan, AA, AATags, IsLoadCSE);
|
||||
}
|
||||
|
@ -13,9 +13,10 @@
|
||||
|
||||
#include "InstCombineInternal.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/Loads.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/IR/DataLayout.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
using namespace llvm;
|
||||
using namespace PatternMatch;
|
||||
|
||||
@ -575,6 +576,27 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
||||
if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
|
||||
return I;
|
||||
|
||||
// When trunc operand is a widened load, see if we can get the value from a
|
||||
// previous store/load
|
||||
if (auto *LI = dyn_cast<LoadInst>(Src)) {
|
||||
BasicBlock::iterator BBI(*LI);
|
||||
|
||||
// Scan a few instructions up from LI and if we find a partial load/store
|
||||
// of Type DestTy that feeds into LI, we can replace all uses of the trunc
|
||||
// with the load/store value.
|
||||
// This replacement can be done only in the case of non-volatile loads, with
|
||||
// ordering at most unordered. If the load is atomic, its only use should be
|
||||
// the trunc instruction. We don't want to allow other users of LI to see a
|
||||
// value that is out of sync with the value we're folding the trunc to (in
|
||||
// case of a race).
|
||||
if (LI->isUnordered() && (!LI->isAtomic() || LI->hasOneUse()))
|
||||
if (Value *AvailableVal = FindAvailableLoadedValue(
|
||||
LI->getPointerOperand(), DestTy, LI->isAtomic(), LI->getParent(),
|
||||
BBI, DefMaxInstsToScan))
|
||||
return replaceInstUsesWith(
|
||||
CI, Builder->CreateBitOrPointerCast(AvailableVal, CI.getType(),
|
||||
CI.getName() + ".cast"));
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
@ -181,3 +181,133 @@ bb1:
|
||||
bb2:
|
||||
unreachable
|
||||
}
|
||||
|
||||
|
||||
; the trunc can be replaced from value available from store
|
||||
; load feeding into trunc left as-is.
|
||||
declare void @consume(i8) readonly
|
||||
define i1 @trunc_load_store(i8* align 2 %a) {
|
||||
store i8 0, i8 *%a, align 2
|
||||
%bca = bitcast i8* %a to i16*
|
||||
%wide.load = load i16, i16* %bca, align 2
|
||||
%lowhalf.1 = trunc i16 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf.1)
|
||||
%cmp.2 = icmp ult i16 %wide.load, 256
|
||||
ret i1 %cmp.2
|
||||
; CHECK-LABEL: @trunc_load_store
|
||||
; CHECK: %wide.load = load i16, i16* %bca, align 2
|
||||
; CHECK-NOT: trunc
|
||||
; CHECK: call void @consume(i8 0)
|
||||
}
|
||||
|
||||
|
||||
; The trunc can be replaced with the load value.
|
||||
; both loads left as-is, since they have uses.
|
||||
define i1 @trunc_load_load(i8* align 2 %a) {
|
||||
%pload = load i8, i8* %a, align 2
|
||||
%bca = bitcast i8* %a to i16*
|
||||
%wide.load = load i16, i16* %bca, align 2
|
||||
%lowhalf = trunc i16 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
call void @consume(i8 %pload)
|
||||
%cmp.2 = icmp ult i16 %wide.load, 256
|
||||
ret i1 %cmp.2
|
||||
; CHECK-LABEL: @trunc_load_load
|
||||
; CHECK-NEXT: %pload = load i8, i8* %a, align 2
|
||||
; CHECK-NEXT: %bca = bitcast i8* %a to i16*
|
||||
; CHECK-NEXT: %wide.load = load i16, i16* %bca, align 2
|
||||
; CHECK-NEXT: call void @consume(i8 %pload)
|
||||
; CHECK-NEXT: call void @consume(i8 %pload)
|
||||
; CHECK-NEXT: %cmp.2 = icmp ult i16 %wide.load, 256
|
||||
}
|
||||
|
||||
; Store and load to same memory location address generated through GEP.
|
||||
; trunc can be removed by using the store value.
|
||||
define void @trunc_with_gep_memaccess(i16* align 2 %p) {
|
||||
%t0 = getelementptr i16, i16* %p, i32 1
|
||||
store i16 2, i16* %t0
|
||||
%t1 = getelementptr i16, i16* %p, i32 1
|
||||
%x = load i16, i16* %t1
|
||||
%lowhalf = trunc i16 %x to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
ret void
|
||||
; CHECK-LABEL: @trunc_with_gep_memaccess
|
||||
; CHECK-NOT: trunc
|
||||
; CHECK: call void @consume(i8 2)
|
||||
}
|
||||
|
||||
; trunc should not be replaced since atomic load %wide.load has more than one use.
|
||||
; different values can be seen by the uses of %wide.load in case of race.
|
||||
define i1 @trunc_atomic_loads(i8* align 2 %a) {
|
||||
%pload = load atomic i8, i8* %a unordered, align 2
|
||||
%bca = bitcast i8* %a to i16*
|
||||
%wide.load = load atomic i16, i16* %bca unordered, align 2
|
||||
%lowhalf = trunc i16 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
call void @consume(i8 %pload)
|
||||
%cmp.2 = icmp ult i16 %wide.load, 256
|
||||
ret i1 %cmp.2
|
||||
; CHECK-LABEL: @trunc_atomic_loads
|
||||
; CHECK: trunc
|
||||
}
|
||||
|
||||
; trunc can be replaced since atomic load has single use.
|
||||
; atomic load is also removed since use is removed.
|
||||
define void @trunc_atomic_single_load(i8* align 2 %a) {
|
||||
%pload = load atomic i8, i8* %a unordered, align 2
|
||||
%bca = bitcast i8* %a to i16*
|
||||
%wide.load = load atomic i16, i16* %bca unordered, align 2
|
||||
%lowhalf = trunc i16 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
call void @consume(i8 %pload)
|
||||
ret void
|
||||
; CHECK-LABEL: @trunc_atomic_single_load
|
||||
; CHECK-NOT: trunc
|
||||
; CHECK-NOT: %wide.load = load atomic i16, i16* %bca unordered, align 2
|
||||
}
|
||||
|
||||
|
||||
; trunc cannot be replaced since load's atomic ordering is higher than unordered
|
||||
define void @trunc_atomic_monotonic(i8* align 2 %a) {
|
||||
%pload = load atomic i8, i8* %a monotonic, align 2
|
||||
%bca = bitcast i8* %a to i16*
|
||||
%wide.load = load atomic i16, i16* %bca monotonic, align 2
|
||||
%lowhalf = trunc i16 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
call void @consume(i8 %pload)
|
||||
ret void
|
||||
; CHECK-LABEL: @trunc_atomic_monotonic
|
||||
; CHECK: %wide.load = load atomic i16, i16* %bca monotonic, align 2
|
||||
; CHECK: trunc
|
||||
}
|
||||
|
||||
; trunc cannot be replaced since store size (i16) is not trunc result size (i8).
|
||||
; FIXME: we could get the i8 content of trunc from the i16 store value.
|
||||
define i1 @trunc_different_size_load(i16 * align 2 %a) {
|
||||
store i16 0, i16 *%a, align 2
|
||||
%bca = bitcast i16* %a to i32*
|
||||
%wide.load = load i32, i32* %bca, align 2
|
||||
%lowhalf = trunc i32 %wide.load to i8
|
||||
call void @consume(i8 %lowhalf)
|
||||
%cmp.2 = icmp ult i32 %wide.load, 256
|
||||
ret i1 %cmp.2
|
||||
; CHECK-LABEL: @trunc_different_size_load
|
||||
; CHECK: %lowhalf = trunc i32 %wide.load to i8
|
||||
}
|
||||
|
||||
declare void @consume_f(float) readonly
|
||||
; bitcast required since trunc result type and %fload are different types.
|
||||
; so replace the trunc with bitcast.
|
||||
define i1 @trunc_avoid_bitcast(float* %b) {
|
||||
%fload = load float, float* %b
|
||||
%bca = bitcast float* %b to i64*
|
||||
%iload = load i64, i64* %bca
|
||||
%low32 = trunc i64 %iload to i32
|
||||
call void @consume_f(float %fload)
|
||||
%cmp.2 = icmp ult i32 %low32, 256
|
||||
ret i1 %cmp.2
|
||||
; CHECK-LABEL: @trunc_avoid_bitcast
|
||||
; CHECK-NOT: %low32 = trunc i64 %iload to i32
|
||||
; CHECK: %low32.cast = bitcast float %fload to i32
|
||||
; CHECK: %cmp.2 = icmp ult i32 %low32.cast, 256
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user