1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00

Replaces uses of unsigned for indexes in LiveInterval and VNInfo with

a new class, MachineInstrIndex, which hides arithmetic details from
most clients. This is a step towards allowing the register allocator
to update/insert code during allocation.

llvm-svn: 81040
This commit is contained in:
Lang Hames 2009-09-04 20:41:11 +00:00
parent e5f313b4ee
commit e504e61ab5
12 changed files with 946 additions and 610 deletions

View File

@ -21,6 +21,7 @@
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/AlignOf.h"
@ -32,6 +33,217 @@ namespace llvm {
class MachineRegisterInfo;
class TargetRegisterInfo;
class raw_ostream;
/// MachineInstrIndex - An opaque wrapper around machine indexes.
class MachineInstrIndex {
friend class VNInfo;
friend class LiveInterval;
friend class LiveIntervals;
friend struct DenseMapInfo<MachineInstrIndex>;
public:
enum Slot { LOAD, USE, DEF, STORE, NUM };
private:
unsigned index;
static const unsigned PHI_BIT = 1 << 31;
public:
/// Construct a default MachineInstrIndex pointing to a reserved index.
MachineInstrIndex() : index(0) {}
/// Construct an index from the given index, pointing to the given slot.
MachineInstrIndex(MachineInstrIndex m, Slot s)
: index((m.index / NUM) * NUM + s) {}
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Print this index to the given std::ostream.
void print(std::ostream &os) const;
/// Compare two MachineInstrIndex objects for equality.
bool operator==(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) == (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects for inequality.
bool operator!=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) != (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) < (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) <= (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) > (other.index & ~PHI_BIT));
}
/// Compare two MachineInstrIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(MachineInstrIndex other) const {
return ((index & ~PHI_BIT) >= (other.index & ~PHI_BIT));
}
/// Returns true if this index represents a load.
bool isLoad() const {
return ((index % NUM) == LOAD);
}
/// Returns true if this index represents a use.
bool isUse() const {
return ((index % NUM) == USE);
}
/// Returns true if this index represents a def.
bool isDef() const {
return ((index % NUM) == DEF);
}
/// Returns true if this index represents a store.
bool isStore() const {
return ((index % NUM) == STORE);
}
/// Returns the slot for this MachineInstrIndex.
Slot getSlot() const {
return static_cast<Slot>(index % NUM);
}
/// Returns true if this index represents a non-PHI use/def.
bool isNonPHIIndex() const {
return ((index & PHI_BIT) == 0);
}
/// Returns true if this index represents a PHI use/def.
bool isPHIIndex() const {
return ((index & PHI_BIT) == PHI_BIT);
}
private:
/// Construct an index from the given index, with its PHI kill marker set.
MachineInstrIndex(bool phi, MachineInstrIndex o) : index(o.index) {
if (phi)
index |= PHI_BIT;
else
index &= ~PHI_BIT;
}
explicit MachineInstrIndex(unsigned idx)
: index(idx & ~PHI_BIT) {}
MachineInstrIndex(bool phi, unsigned idx)
: index(idx & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
MachineInstrIndex(bool phi, unsigned idx, Slot slot)
: index(((idx / NUM) * NUM + slot) & ~PHI_BIT) {
if (phi)
index |= PHI_BIT;
}
MachineInstrIndex nextSlot() const {
assert((index & PHI_BIT) == ((index + 1) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index + 1);
}
MachineInstrIndex nextIndex() const {
assert((index & PHI_BIT) == ((index + NUM) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index + NUM);
}
MachineInstrIndex prevSlot() const {
assert((index & PHI_BIT) == ((index - 1) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index - 1);
}
MachineInstrIndex prevIndex() const {
assert((index & PHI_BIT) == ((index - NUM) & PHI_BIT) &&
"Index out of bounds.");
return MachineInstrIndex(index - NUM);
}
int distance(MachineInstrIndex other) const {
return (other.index & ~PHI_BIT) - (index & ~PHI_BIT);
}
/// Returns an unsigned number suitable as an index into a
/// vector over all instructions.
unsigned getVecIndex() const {
return (index & ~PHI_BIT) / NUM;
}
/// Scale this index by the given factor.
MachineInstrIndex scale(unsigned factor) const {
unsigned i = (index & ~PHI_BIT) / NUM,
o = (index % ~PHI_BIT) % NUM;
assert(index <= (~0U & ~PHI_BIT) / (factor * NUM) &&
"Rescaled interval would overflow");
return MachineInstrIndex(i * NUM * factor, o);
}
static MachineInstrIndex emptyKey() {
return MachineInstrIndex(true, 0x7fffffff);
}
static MachineInstrIndex tombstoneKey() {
return MachineInstrIndex(true, 0x7ffffffe);
}
static unsigned getHashValue(const MachineInstrIndex &v) {
return v.index * 37;
}
};
inline raw_ostream& operator<<(raw_ostream &os, MachineInstrIndex mi) {
mi.print(os);
return os;
}
inline std::ostream& operator<<(std::ostream &os, MachineInstrIndex mi) {
mi.print(os);
return os;
}
/// Densemap specialization for MachineInstrIndex.
template <>
struct DenseMapInfo<MachineInstrIndex> {
static inline MachineInstrIndex getEmptyKey() {
return MachineInstrIndex::emptyKey();
}
static inline MachineInstrIndex getTombstoneKey() {
return MachineInstrIndex::tombstoneKey();
}
static inline unsigned getHashValue(const MachineInstrIndex &v) {
return MachineInstrIndex::getHashValue(v);
}
static inline bool isEqual(const MachineInstrIndex &LHS,
const MachineInstrIndex &RHS) {
return (LHS == RHS);
}
static inline bool isPod() { return true; }
};
/// VNInfo - Value Number Information.
/// This class holds information about a machine level values, including
@ -65,36 +277,24 @@ namespace llvm {
} cr;
public:
/// Holds information about individual kills.
struct KillInfo {
bool isPHIKill : 1;
unsigned killIdx : 31;
KillInfo(bool isPHIKill, unsigned killIdx)
: isPHIKill(isPHIKill), killIdx(killIdx) {
assert(killIdx != 0 && "Zero kill indices are no longer permitted.");
}
};
typedef SmallVector<KillInfo, 4> KillSet;
typedef SmallVector<MachineInstrIndex, 4> KillSet;
/// The ID number of this value.
unsigned id;
/// The index of the defining instruction (if isDefAccurate() returns true).
unsigned def;
MachineInstrIndex def;
KillSet kills;
VNInfo()
: flags(IS_UNUSED), id(~1U), def(0) { cr.copy = 0; }
: flags(IS_UNUSED), id(~1U) { cr.copy = 0; }
/// VNInfo constructor.
/// d is presumed to point to the actual defining instr. If it doesn't
/// setIsDefAccurate(false) should be called after construction.
VNInfo(unsigned i, unsigned d, MachineInstr *c)
VNInfo(unsigned i, MachineInstrIndex d, MachineInstr *c)
: flags(IS_DEF_ACCURATE), id(i), def(d) { cr.copy = c; }
/// VNInfo construtor, copies values from orig, except for the value number.
@ -134,6 +334,7 @@ namespace llvm {
/// Returns true if one or more kills are PHI nodes.
bool hasPHIKill() const { return flags & HAS_PHI_KILL; }
/// Set the PHI kill flag on this value.
void setHasPHIKill(bool hasKill) {
if (hasKill)
flags |= HAS_PHI_KILL;
@ -144,6 +345,7 @@ namespace llvm {
/// Returns true if this value is re-defined by an early clobber somewhere
/// during the live range.
bool hasRedefByEC() const { return flags & REDEF_BY_EC; }
/// Set the "redef by early clobber" flag on this value.
void setHasRedefByEC(bool hasRedef) {
if (hasRedef)
flags |= REDEF_BY_EC;
@ -154,6 +356,7 @@ namespace llvm {
/// Returns true if this value is defined by a PHI instruction (or was,
/// PHI instrucions may have been eliminated).
bool isPHIDef() const { return flags & IS_PHI_DEF; }
/// Set the "phi def" flag on this value.
void setIsPHIDef(bool phiDef) {
if (phiDef)
flags |= IS_PHI_DEF;
@ -163,6 +366,7 @@ namespace llvm {
/// Returns true if this value is unused.
bool isUnused() const { return flags & IS_UNUSED; }
/// Set the "is unused" flag on this value.
void setIsUnused(bool unused) {
if (unused)
flags |= IS_UNUSED;
@ -172,6 +376,7 @@ namespace llvm {
/// Returns true if the def is accurate.
bool isDefAccurate() const { return flags & IS_DEF_ACCURATE; }
/// Set the "is def accurate" flag on this value.
void setIsDefAccurate(bool defAccurate) {
if (defAccurate)
flags |= IS_DEF_ACCURATE;
@ -179,38 +384,74 @@ namespace llvm {
flags &= ~IS_DEF_ACCURATE;
}
/// Returns true if the given index is a kill of this value.
bool isKill(MachineInstrIndex k) const {
KillSet::const_iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
return (i != kills.end() && *i == k);
}
/// addKill - Add a kill instruction index to the specified value
/// number.
void addKill(MachineInstrIndex k) {
if (kills.empty()) {
kills.push_back(k);
} else {
KillSet::iterator
i = std::lower_bound(kills.begin(), kills.end(), k);
kills.insert(i, k);
}
}
/// Remove the specified kill index from this value's kills list.
/// Returns true if the value was present, otherwise returns false.
bool removeKill(MachineInstrIndex k) {
KillSet::iterator i = std::lower_bound(kills.begin(), kills.end(), k);
if (i != kills.end() && *i == k) {
kills.erase(i);
return true;
}
return false;
}
/// Remove all kills in the range [s, e).
void removeKills(MachineInstrIndex s, MachineInstrIndex e) {
KillSet::iterator
si = std::lower_bound(kills.begin(), kills.end(), s),
se = std::upper_bound(kills.begin(), kills.end(), e);
kills.erase(si, se);
}
};
inline bool operator<(const VNInfo::KillInfo &k1, const VNInfo::KillInfo &k2){
return k1.killIdx < k2.killIdx;
}
inline bool operator<(const VNInfo::KillInfo &k, unsigned idx) {
return k.killIdx < idx;
}
inline bool operator<(unsigned idx, const VNInfo::KillInfo &k) {
return idx < k.killIdx;
}
/// LiveRange structure - This represents a simple register range in the
/// program, with an inclusive start point and an exclusive end point.
/// These ranges are rendered as [start,end).
struct LiveRange {
unsigned start; // Start point of the interval (inclusive)
unsigned end; // End point of the interval (exclusive)
MachineInstrIndex start; // Start point of the interval (inclusive)
MachineInstrIndex end; // End point of the interval (exclusive)
VNInfo *valno; // identifier for the value contained in this interval.
LiveRange(unsigned S, unsigned E, VNInfo *V) : start(S), end(E), valno(V) {
LiveRange(MachineInstrIndex S, MachineInstrIndex E, VNInfo *V)
: start(S), end(E), valno(V) {
assert(S < E && "Cannot create empty or backwards range");
}
/// contains - Return true if the index is covered by this range.
///
bool contains(unsigned I) const {
bool contains(MachineInstrIndex I) const {
return start <= I && I < end;
}
/// containsRange - Return true if the given range, [S, E), is covered by
/// this range.
bool containsRange(MachineInstrIndex S, MachineInstrIndex E) const {
assert((S < E) && "Backwards interval?");
return (start <= S && S < end) && (start < E && E <= end);
}
bool operator<(const LiveRange &LR) const {
return start < LR.start || (start == LR.start && end < LR.end);
}
@ -228,11 +469,11 @@ namespace llvm {
raw_ostream& operator<<(raw_ostream& os, const LiveRange &LR);
inline bool operator<(unsigned V, const LiveRange &LR) {
inline bool operator<(MachineInstrIndex V, const LiveRange &LR) {
return V < LR.start;
}
inline bool operator<(const LiveRange &LR, unsigned V) {
inline bool operator<(const LiveRange &LR, MachineInstrIndex V) {
return LR.start < V;
}
@ -260,14 +501,6 @@ namespace llvm {
NUM = 4
};
static unsigned scale(unsigned slot, unsigned factor) {
unsigned index = slot / NUM,
offset = slot % NUM;
assert(index <= ~0U / (factor * NUM) &&
"Rescaled interval would overflow");
return index * NUM * factor + offset;
}
};
LiveInterval(unsigned Reg, float Weight, bool IsSS = false)
@ -297,8 +530,8 @@ namespace llvm {
/// end of the interval. If no LiveRange contains this position, but the
/// position is in a hole, this method returns an iterator pointing the the
/// LiveRange immediately after the hole.
iterator advanceTo(iterator I, unsigned Pos) {
if (Pos >= endNumber())
iterator advanceTo(iterator I, MachineInstrIndex Pos) {
if (Pos >= endIndex())
return end();
while (I->end <= Pos) ++I;
return I;
@ -344,15 +577,12 @@ namespace llvm {
/// getNextValue - Create a new value number and return it. MIIdx specifies
/// the instruction that defines the value number.
VNInfo *getNextValue(unsigned MIIdx, MachineInstr *CopyMI,
VNInfo *getNextValue(MachineInstrIndex def, MachineInstr *CopyMI,
bool isDefAccurate, BumpPtrAllocator &VNInfoAllocator){
assert(MIIdx != ~0u && MIIdx != ~1u &&
"PHI def / unused flags should now be passed explicitly.");
VNInfo *VNI =
static_cast<VNInfo*>(VNInfoAllocator.Allocate((unsigned)sizeof(VNInfo),
alignof<VNInfo>()));
new (VNI) VNInfo((unsigned)valnos.size(), MIIdx, CopyMI);
new (VNI) VNInfo((unsigned)valnos.size(), def, CopyMI);
VNI->setIsDefAccurate(isDefAccurate);
valnos.push_back(VNI);
return VNI;
@ -372,50 +602,52 @@ namespace llvm {
return VNI;
}
/// addKill - Add a kill instruction index to the specified value
/// number.
static void addKill(VNInfo *VNI, unsigned KillIdx, bool phiKill) {
VNInfo::KillSet &kills = VNI->kills;
VNInfo::KillInfo newKill(phiKill, KillIdx);
if (kills.empty()) {
kills.push_back(newKill);
} else {
VNInfo::KillSet::iterator
I = std::lower_bound(kills.begin(), kills.end(), newKill);
kills.insert(I, newKill);
}
}
/// addKills - Add a number of kills into the VNInfo kill vector. If this
/// interval is live at a kill point, then the kill is not added.
void addKills(VNInfo *VNI, const VNInfo::KillSet &kills) {
for (unsigned i = 0, e = static_cast<unsigned>(kills.size());
i != e; ++i) {
const VNInfo::KillInfo &Kill = kills[i];
if (!liveBeforeAndAt(Kill.killIdx)) {
VNInfo::KillSet::iterator
I = std::lower_bound(VNI->kills.begin(), VNI->kills.end(), Kill);
VNI->kills.insert(I, Kill);
if (!liveBeforeAndAt(kills[i])) {
VNI->addKill(kills[i]);
}
}
}
/* REMOVE_ME
/// addKill - Add a kill instruction index to the specified value
/// number.
static void addKill(VNInfo *VNI, MachineInstrIndex killIdx) {
assert(killIdx.isUse() && "Kill must be a use.");
if (VNI->kills.empty()) {
VNI->kills.push_back(killIdx);
} else {
VNInfo::KillSet::iterator
I = std::lower_bound(VNI->kills.begin(), VNI->kills.end(), killIdx);
VNI->kills.insert(I, killIdx);
}
}
/// removeKill - Remove the specified kill from the list of kills of
/// the specified val#.
static bool removeKill(VNInfo *VNI, unsigned KillIdx) {
VNInfo::KillSet &kills = VNI->kills;
static bool removeKill(VNInfo *VNI, MachineInstrIndex Kill) {
VNInfo::KillSet::iterator
I = std::lower_bound(kills.begin(), kills.end(), KillIdx);
if (I != kills.end() && I->killIdx == KillIdx) {
kills.erase(I);
I = std::lower_bound(VNI->kills.begin(), VNI->kills.end(), Kill);
if (I != VNI->kills.end() && (*I == Kill)) {
VNI->kills.erase(I);
return true;
}
return false;
}
/// removeKills - Remove all the kills in specified range
/// [Start, End] of the specified val#.
static void removeKills(VNInfo *VNI, unsigned Start, unsigned End) {
static void removeKills(VNInfo *VNI, MachineInstrIndex Start,
MachineInstrIndex End) {
VNInfo::KillSet &kills = VNI->kills;
VNInfo::KillSet::iterator
@ -424,15 +656,16 @@ namespace llvm {
E = std::upper_bound(kills.begin(), kills.end(), End);
kills.erase(I, E);
}
/// isKill - Return true if the specified index is a kill of the
/// specified val#.
static bool isKill(const VNInfo *VNI, unsigned KillIdx) {
const VNInfo::KillSet &kills = VNI->kills;
static bool isKill(const VNInfo *VNI, MachineInstrIndex Kill) {
VNInfo::KillSet::const_iterator
I = std::lower_bound(kills.begin(), kills.end(), KillIdx);
return I != kills.end() && I->killIdx == KillIdx;
I = std::lower_bound(VNI->kills.begin(), VNI->kills.end(), Kill);
return I != VNI->kills.end() && (*I == Kill);
}
*/
/// isOnlyLROfValNo - Return true if the specified live range is the only
/// one defined by the its val#.
@ -460,7 +693,8 @@ namespace llvm {
/// MergeInClobberRange - Same as MergeInClobberRanges except it merge in a
/// single LiveRange only.
void MergeInClobberRange(unsigned Start, unsigned End,
void MergeInClobberRange(MachineInstrIndex Start,
MachineInstrIndex End,
BumpPtrAllocator &VNInfoAllocator);
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
@ -485,58 +719,62 @@ namespace llvm {
bool empty() const { return ranges.empty(); }
/// beginNumber - Return the lowest numbered slot covered by interval.
unsigned beginNumber() const {
/// beginIndex - Return the lowest numbered slot covered by interval.
MachineInstrIndex beginIndex() const {
if (empty())
return 0;
return MachineInstrIndex();
return ranges.front().start;
}
/// endNumber - return the maximum point of the interval of the whole,
/// exclusive.
unsigned endNumber() const {
MachineInstrIndex endIndex() const {
if (empty())
return 0;
return MachineInstrIndex();
return ranges.back().end;
}
bool expiredAt(unsigned index) const {
return index >= endNumber();
bool expiredAt(MachineInstrIndex index) const {
return index >= endIndex();
}
bool liveAt(unsigned index) const;
bool liveAt(MachineInstrIndex index) const;
// liveBeforeAndAt - Check if the interval is live at the index and the
// index just before it. If index is liveAt, check if it starts a new live
// range.If it does, then check if the previous live range ends at index-1.
bool liveBeforeAndAt(unsigned index) const;
bool liveBeforeAndAt(MachineInstrIndex index) const;
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
const LiveRange *getLiveRangeContaining(unsigned Idx) const {
const LiveRange *getLiveRangeContaining(MachineInstrIndex Idx) const {
const_iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveRange *getLiveRangeContaining(unsigned Idx) {
LiveRange *getLiveRangeContaining(MachineInstrIndex Idx) {
iterator I = FindLiveRangeContaining(Idx);
return I == end() ? 0 : &*I;
}
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
const_iterator FindLiveRangeContaining(unsigned Idx) const;
const_iterator FindLiveRangeContaining(MachineInstrIndex Idx) const;
/// FindLiveRangeContaining - Return an iterator to the live range that
/// contains the specified index, or end() if there is none.
iterator FindLiveRangeContaining(unsigned Idx);
iterator FindLiveRangeContaining(MachineInstrIndex Idx);
/// findDefinedVNInfo - Find the by the specified
/// index (register interval) or defined
VNInfo *findDefinedVNInfoForRegInt(MachineInstrIndex Idx) const;
/// findDefinedVNInfo - Find the VNInfo that's defined by the specified
/// register (stack inteval only).
VNInfo *findDefinedVNInfoForStackInt(unsigned Reg) const;
/// findDefinedVNInfo - Find the VNInfo that's defined at the specified
/// index (register interval) or defined by the specified register (stack
/// inteval).
VNInfo *findDefinedVNInfo(unsigned DefIdxOrReg) const;
/// overlaps - Return true if the intersection of the two live intervals is
/// not empty.
@ -546,7 +784,7 @@ namespace llvm {
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool overlaps(unsigned Start, unsigned End) const;
bool overlaps(MachineInstrIndex Start, MachineInstrIndex End) const;
/// overlapsFrom - Return true if the intersection of the two live intervals
/// is not empty. The specified iterator is a hint that we can begin
@ -570,11 +808,12 @@ namespace llvm {
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// a single LiveRange of the live interval.
bool isInOneLiveRange(unsigned Start, unsigned End);
bool isInOneLiveRange(MachineInstrIndex Start, MachineInstrIndex End);
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be a single LiveRange in its entirety.
void removeRange(unsigned Start, unsigned End, bool RemoveDeadValNo = false);
void removeRange(MachineInstrIndex Start, MachineInstrIndex End,
bool RemoveDeadValNo = false);
void removeRange(LiveRange LR, bool RemoveDeadValNo = false) {
removeRange(LR.start, LR.end, RemoveDeadValNo);
@ -597,7 +836,7 @@ namespace llvm {
void ComputeJoinedWeight(const LiveInterval &Other);
bool operator<(const LiveInterval& other) const {
return beginNumber() < other.beginNumber();
return beginIndex() < other.beginIndex();
}
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = 0) const;
@ -606,8 +845,8 @@ namespace llvm {
private:
Ranges::iterator addRangeFrom(LiveRange LR, Ranges::iterator From);
void extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd);
Ranges::iterator extendIntervalStartTo(Ranges::iterator I, unsigned NewStr);
void extendIntervalEndTo(Ranges::iterator I, MachineInstrIndex NewEnd);
Ranges::iterator extendIntervalStartTo(Ranges::iterator I, MachineInstrIndex NewStr);
LiveInterval& operator=(const LiveInterval& rhs); // DO NOT IMPLEMENT
};

View File

@ -40,13 +40,13 @@ namespace llvm {
class TargetInstrInfo;
class TargetRegisterClass;
class VirtRegMap;
typedef std::pair<unsigned, MachineBasicBlock*> IdxMBBPair;
typedef std::pair<MachineInstrIndex, MachineBasicBlock*> IdxMBBPair;
inline bool operator<(unsigned V, const IdxMBBPair &IM) {
inline bool operator<(MachineInstrIndex V, const IdxMBBPair &IM) {
return V < IM.first;
}
inline bool operator<(const IdxMBBPair &IM, unsigned V) {
inline bool operator<(const IdxMBBPair &IM, MachineInstrIndex V) {
return IM.first < V;
}
@ -65,13 +65,16 @@ namespace llvm {
AliasAnalysis *aa_;
LiveVariables* lv_;
/// Special pool allocator for VNInfo's (LiveInterval val#).
///
BumpPtrAllocator VNInfoAllocator;
/// MBB2IdxMap - The indexes of the first and last instructions in the
/// specified basic block.
std::vector<std::pair<unsigned, unsigned> > MBB2IdxMap;
std::vector<std::pair<MachineInstrIndex, MachineInstrIndex> > MBB2IdxMap;
/// Idx2MBBMap - Sorted list of pairs of index of first instruction
/// and MBB id.
@ -80,7 +83,7 @@ namespace llvm {
/// FunctionSize - The number of instructions present in the function
uint64_t FunctionSize;
typedef DenseMap<const MachineInstr*, unsigned> Mi2IndexMap;
typedef DenseMap<const MachineInstr*, MachineInstrIndex> Mi2IndexMap;
Mi2IndexMap mi2iMap_;
typedef std::vector<MachineInstr*> Index2MiMap;
@ -89,7 +92,7 @@ namespace llvm {
typedef DenseMap<unsigned, LiveInterval*> Reg2IntervalMap;
Reg2IntervalMap r2iMap_;
DenseMap<MachineBasicBlock*, unsigned> terminatorGaps;
DenseMap<MachineBasicBlock*, MachineInstrIndex> terminatorGaps;
BitVector allocatableRegs_;
@ -101,23 +104,40 @@ namespace llvm {
static char ID; // Pass identification, replacement for typeid
LiveIntervals() : MachineFunctionPass(&ID) {}
static unsigned getBaseIndex(unsigned index) {
return index - (index % InstrSlots::NUM);
static MachineInstrIndex getBaseIndex(MachineInstrIndex index) {
return MachineInstrIndex(index, MachineInstrIndex::LOAD);
}
static unsigned getBoundaryIndex(unsigned index) {
return getBaseIndex(index + InstrSlots::NUM - 1);
static MachineInstrIndex getBoundaryIndex(MachineInstrIndex index) {
return MachineInstrIndex(index,
(MachineInstrIndex::Slot)(MachineInstrIndex::NUM - 1));
}
static unsigned getLoadIndex(unsigned index) {
return getBaseIndex(index) + InstrSlots::LOAD;
static MachineInstrIndex getLoadIndex(MachineInstrIndex index) {
return MachineInstrIndex(index, MachineInstrIndex::LOAD);
}
static unsigned getUseIndex(unsigned index) {
return getBaseIndex(index) + InstrSlots::USE;
static MachineInstrIndex getUseIndex(MachineInstrIndex index) {
return MachineInstrIndex(index, MachineInstrIndex::USE);
}
static unsigned getDefIndex(unsigned index) {
return getBaseIndex(index) + InstrSlots::DEF;
static MachineInstrIndex getDefIndex(MachineInstrIndex index) {
return MachineInstrIndex(index, MachineInstrIndex::DEF);
}
static unsigned getStoreIndex(unsigned index) {
return getBaseIndex(index) + InstrSlots::STORE;
static MachineInstrIndex getStoreIndex(MachineInstrIndex index) {
return MachineInstrIndex(index, MachineInstrIndex::STORE);
}
MachineInstrIndex getNextSlot(MachineInstrIndex m) const {
return m.nextSlot();
}
MachineInstrIndex getNextIndex(MachineInstrIndex m) const {
return m.nextIndex();
}
MachineInstrIndex getPrevSlot(MachineInstrIndex m) const {
return m.prevSlot();
}
MachineInstrIndex getPrevIndex(MachineInstrIndex m) const {
return m.prevIndex();
}
static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
@ -150,20 +170,20 @@ namespace llvm {
/// getMBBStartIdx - Return the base index of the first instruction in the
/// specified MachineBasicBlock.
unsigned getMBBStartIdx(MachineBasicBlock *MBB) const {
MachineInstrIndex getMBBStartIdx(MachineBasicBlock *MBB) const {
return getMBBStartIdx(MBB->getNumber());
}
unsigned getMBBStartIdx(unsigned MBBNo) const {
MachineInstrIndex getMBBStartIdx(unsigned MBBNo) const {
assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
return MBB2IdxMap[MBBNo].first;
}
/// getMBBEndIdx - Return the store index of the last instruction in the
/// specified MachineBasicBlock.
unsigned getMBBEndIdx(MachineBasicBlock *MBB) const {
MachineInstrIndex getMBBEndIdx(MachineBasicBlock *MBB) const {
return getMBBEndIdx(MBB->getNumber());
}
unsigned getMBBEndIdx(unsigned MBBNo) const {
MachineInstrIndex getMBBEndIdx(unsigned MBBNo) const {
assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
return MBB2IdxMap[MBBNo].second;
}
@ -184,7 +204,7 @@ namespace llvm {
/// getMBBFromIndex - given an index in any instruction of an
/// MBB return a pointer the MBB
MachineBasicBlock* getMBBFromIndex(unsigned index) const {
MachineBasicBlock* getMBBFromIndex(MachineInstrIndex index) const {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), index);
// Take the pair containing the index
@ -192,14 +212,14 @@ namespace llvm {
((I != Idx2MBBMap.end() && I->first > index) ||
(I == Idx2MBBMap.end() && Idx2MBBMap.size()>0)) ? (I-1): I;
assert(J != Idx2MBBMap.end() && J->first < index+1 &&
assert(J != Idx2MBBMap.end() && J->first <= index &&
index <= getMBBEndIdx(J->second) &&
"index does not correspond to an MBB");
return J->second;
}
/// getInstructionIndex - returns the base index of instr
unsigned getInstructionIndex(const MachineInstr* instr) const {
MachineInstrIndex getInstructionIndex(const MachineInstr* instr) const {
Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
assert(it != mi2iMap_.end() && "Invalid instruction!");
return it->second;
@ -207,48 +227,50 @@ namespace llvm {
/// getInstructionFromIndex - given an index in any slot of an
/// instruction return a pointer the instruction
MachineInstr* getInstructionFromIndex(unsigned index) const {
index /= InstrSlots::NUM; // convert index to vector index
assert(index < i2miMap_.size() &&
MachineInstr* getInstructionFromIndex(MachineInstrIndex index) const {
// convert index to vector index
unsigned i = index.getVecIndex();
assert(i < i2miMap_.size() &&
"index does not correspond to an instruction");
return i2miMap_[index];
return i2miMap_[i];
}
/// hasGapBeforeInstr - Return true if the previous instruction slot,
/// i.e. Index - InstrSlots::NUM, is not occupied.
bool hasGapBeforeInstr(unsigned Index) {
Index = getBaseIndex(Index - InstrSlots::NUM);
bool hasGapBeforeInstr(MachineInstrIndex Index) {
Index = getBaseIndex(Index.prevIndex());
return getInstructionFromIndex(Index) == 0;
}
/// hasGapAfterInstr - Return true if the successive instruction slot,
/// i.e. Index + InstrSlots::Num, is not occupied.
bool hasGapAfterInstr(unsigned Index) {
Index = getBaseIndex(Index + InstrSlots::NUM);
bool hasGapAfterInstr(MachineInstrIndex Index) {
Index = getBaseIndex(Index.nextIndex());
return getInstructionFromIndex(Index) == 0;
}
/// findGapBeforeInstr - Find an empty instruction slot before the
/// specified index. If "Furthest" is true, find one that's furthest
/// away from the index (but before any index that's occupied).
unsigned findGapBeforeInstr(unsigned Index, bool Furthest = false) {
Index = getBaseIndex(Index - InstrSlots::NUM);
MachineInstrIndex findGapBeforeInstr(MachineInstrIndex Index,
bool Furthest = false) {
Index = getBaseIndex(Index.prevIndex());
if (getInstructionFromIndex(Index))
return 0; // No gap!
return MachineInstrIndex(); // No gap!
if (!Furthest)
return Index;
unsigned PrevIndex = getBaseIndex(Index - InstrSlots::NUM);
MachineInstrIndex PrevIndex = getBaseIndex(Index.prevIndex());
while (getInstructionFromIndex(Index)) {
Index = PrevIndex;
PrevIndex = getBaseIndex(Index - InstrSlots::NUM);
PrevIndex = getBaseIndex(Index.prevIndex());
}
return Index;
}
/// InsertMachineInstrInMaps - Insert the specified machine instruction
/// into the instruction index map at the given index.
void InsertMachineInstrInMaps(MachineInstr *MI, unsigned Index) {
i2miMap_[Index / InstrSlots::NUM] = MI;
void InsertMachineInstrInMaps(MachineInstr *MI, MachineInstrIndex Index) {
i2miMap_[Index.index / MachineInstrIndex::NUM] = MI;
Mi2IndexMap::iterator it = mi2iMap_.find(MI);
assert(it == mi2iMap_.end() && "Already in map!");
mi2iMap_[MI] = Index;
@ -268,12 +290,12 @@ namespace llvm {
/// findLiveInMBBs - Given a live range, if the value of the range
/// is live in any MBB returns true as well as the list of basic blocks
/// in which the value is live.
bool findLiveInMBBs(unsigned Start, unsigned End,
bool findLiveInMBBs(MachineInstrIndex Start, MachineInstrIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const;
/// findReachableMBBs - Return a list MBB that can be reached via any
/// branch or fallthroughs. Return true if the list is not empty.
bool findReachableMBBs(unsigned Start, unsigned End,
bool findReachableMBBs(MachineInstrIndex Start, MachineInstrIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const;
// Interval creation
@ -292,7 +314,7 @@ namespace llvm {
/// addLiveRangeToEndOfBlock - Given a register and an instruction,
/// adds a live range from that instruction to the end of its MBB.
LiveRange addLiveRangeToEndOfBlock(unsigned reg,
MachineInstr* startInst);
MachineInstr* startInst);
// Interval removal
@ -315,7 +337,7 @@ namespace llvm {
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2i = mi2iMap_.find(MI);
if (mi2i != mi2iMap_.end()) {
i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
i2miMap_[mi2i->second.index/InstrSlots::NUM] = 0;
mi2iMap_.erase(mi2i);
}
}
@ -326,10 +348,10 @@ namespace llvm {
Mi2IndexMap::iterator mi2i = mi2iMap_.find(MI);
if (mi2i == mi2iMap_.end())
return;
i2miMap_[mi2i->second/InstrSlots::NUM] = NewMI;
i2miMap_[mi2i->second.index/InstrSlots::NUM] = NewMI;
Mi2IndexMap::iterator it = mi2iMap_.find(MI);
assert(it != mi2iMap_.end() && "Invalid instruction!");
unsigned Index = it->second;
MachineInstrIndex Index = it->second;
mi2iMap_.erase(it);
mi2iMap_[NewMI] = Index;
}
@ -413,27 +435,29 @@ namespace llvm {
/// (calls handlePhysicalRegisterDef and
/// handleVirtualRegisterDef)
void handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI, unsigned MIIdx,
MachineBasicBlock::iterator MI,
MachineInstrIndex MIIdx,
MachineOperand& MO, unsigned MOIdx);
/// handleVirtualRegisterDef - update intervals for a virtual
/// register def
void handleVirtualRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
unsigned MIIdx, MachineOperand& MO,
unsigned MOIdx, LiveInterval& interval);
MachineInstrIndex MIIdx, MachineOperand& MO,
unsigned MOIdx,
LiveInterval& interval);
/// handlePhysicalRegisterDef - update intervals for a physical register
/// def.
void handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned MIIdx, MachineOperand& MO,
MachineInstrIndex MIIdx, MachineOperand& MO,
LiveInterval &interval,
MachineInstr *CopyMI);
/// handleLiveInRegister - Create interval for a livein register.
void handleLiveInRegister(MachineBasicBlock* mbb,
unsigned MIIdx,
MachineInstrIndex MIIdx,
LiveInterval &interval, bool isAlias = false);
/// getReMatImplicitUse - If the remat definition MI has one (for now, we
@ -446,7 +470,7 @@ namespace llvm {
/// which reaches the given instruction also reaches the specified use
/// index.
bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
unsigned UseIdx) const;
MachineInstrIndex UseIdx) const;
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable. Also returns true
@ -461,9 +485,9 @@ namespace llvm {
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
MachineInstr *DefMI, unsigned InstrIdx,
MachineInstr *DefMI, MachineInstrIndex InstrIdx,
SmallVector<unsigned, 2> &Ops,
bool isSS, int Slot, unsigned Reg);
bool isSS, int FrameIndex, unsigned Reg);
/// canFoldMemoryOperand - Return true if the specified load / store
/// folding is possible.
@ -474,7 +498,8 @@ namespace llvm {
/// anyKillInMBBAfterIdx - Returns true if there is a kill of the specified
/// VNInfo that's after the specified index but is within the basic block.
bool anyKillInMBBAfterIdx(const LiveInterval &li, const VNInfo *VNI,
MachineBasicBlock *MBB, unsigned Idx) const;
MachineBasicBlock *MBB,
MachineInstrIndex Idx) const;
/// hasAllocatableSuperReg - Return true if the specified physical register
/// has any super register that's allocatable.
@ -482,16 +507,17 @@ namespace llvm {
/// SRInfo - Spill / restore info.
struct SRInfo {
int index;
MachineInstrIndex index;
unsigned vreg;
bool canFold;
SRInfo(int i, unsigned vr, bool f) : index(i), vreg(vr), canFold(f) {};
SRInfo(MachineInstrIndex i, unsigned vr, bool f)
: index(i), vreg(vr), canFold(f) {}
};
bool alsoFoldARestore(int Id, int index, unsigned vr,
bool alsoFoldARestore(int Id, MachineInstrIndex index, unsigned vr,
BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> >&RestoreIdxes);
void eraseRestoreInfo(int Id, int index, unsigned vr,
void eraseRestoreInfo(int Id, MachineInstrIndex index, unsigned vr,
BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> >&RestoreIdxes);
@ -510,8 +536,9 @@ namespace llvm {
/// functions for addIntervalsForSpills to rewrite uses / defs for the given
/// live range.
bool rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
bool TrySplit, unsigned index, unsigned end, MachineInstr *MI,
MachineInstr *OrigDefMI, MachineInstr *DefMI, unsigned Slot, int LdSlot,
bool TrySplit, MachineInstrIndex index, MachineInstrIndex end,
MachineInstr *MI, MachineInstr *OrigDefMI, MachineInstr *DefMI,
unsigned Slot, int LdSlot,
bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
VirtRegMap &vrm, const TargetRegisterClass* rc,
SmallVector<int, 4> &ReMatIds, const MachineLoopInfo *loopInfo,

View File

@ -28,6 +28,11 @@
#include <algorithm>
using namespace llvm;
// Print a MachineInstrIndex to a raw_ostream.
void MachineInstrIndex::print(raw_ostream &os) const {
os << (index & ~PHI_BIT);
}
// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining this
@ -35,7 +40,7 @@ using namespace llvm;
// variable it represents. This is because slot 1 is used (def slot) and spans
// up to slot 3 (store slot).
//
bool LiveInterval::liveAt(unsigned I) const {
bool LiveInterval::liveAt(MachineInstrIndex I) const {
Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I);
if (r == ranges.begin())
@ -48,7 +53,7 @@ bool LiveInterval::liveAt(unsigned I) const {
// liveBeforeAndAt - Check if the interval is live at the index and the index
// just before it. If index is liveAt, check if it starts a new live range.
// If it does, then check if the previous live range ends at index-1.
bool LiveInterval::liveBeforeAndAt(unsigned I) const {
bool LiveInterval::liveBeforeAndAt(MachineInstrIndex I) const {
Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I);
if (r == ranges.begin())
@ -126,7 +131,7 @@ bool LiveInterval::overlapsFrom(const LiveInterval& other,
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool LiveInterval::overlaps(unsigned Start, unsigned End) const {
bool LiveInterval::overlaps(MachineInstrIndex Start, MachineInstrIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = begin();
const_iterator E = end();
@ -144,10 +149,10 @@ bool LiveInterval::overlaps(unsigned Start, unsigned End) const {
/// specified by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with. The iterator is
/// not invalidated.
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, MachineInstrIndex NewEnd) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
unsigned OldEnd = I->end;
MachineInstrIndex OldEnd = I->end;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = next(I);
@ -162,7 +167,7 @@ void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
ranges.erase(next(I), MergeTo);
// Update kill info.
removeKills(ValNo, OldEnd, I->end-1);
ValNo->removeKills(OldEnd, I->end.prevSlot());
// If the newly formed range now touches the range after it and if they have
// the same value number, merge the two ranges into one range.
@ -178,7 +183,7 @@ void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
/// specified by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with.
LiveInterval::Ranges::iterator
LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) {
LiveInterval::extendIntervalStartTo(Ranges::iterator I, MachineInstrIndex NewStart) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
@ -211,7 +216,7 @@ LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) {
LiveInterval::iterator
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
unsigned Start = LR.start, End = LR.end;
MachineInstrIndex Start = LR.start, End = LR.end;
iterator it = std::upper_bound(From, ranges.end(), Start);
// If the inserted interval starts in the middle or right at the end of
@ -245,7 +250,7 @@ LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
extendIntervalEndTo(it, End);
else if (End < it->end)
// Overlapping intervals, there might have been a kill here.
removeKill(it->valno, End);
it->valno->removeKill(End);
return it;
}
} else {
@ -261,33 +266,32 @@ LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
return ranges.insert(it, LR);
}
/// isInOneLiveRange - Return true if the range specified is entirely in the
/// isInOneLiveRange - Return true if the range specified is entirely in
/// a single LiveRange of the live interval.
bool LiveInterval::isInOneLiveRange(unsigned Start, unsigned End) {
bool LiveInterval::isInOneLiveRange(MachineInstrIndex Start, MachineInstrIndex End) {
Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start);
if (I == ranges.begin())
return false;
--I;
return I->contains(Start) && I->contains(End-1);
return I->containsRange(Start, End);
}
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be in a single LiveRange in its entirety.
void LiveInterval::removeRange(unsigned Start, unsigned End,
void LiveInterval::removeRange(MachineInstrIndex Start, MachineInstrIndex End,
bool RemoveDeadValNo) {
// Find the LiveRange containing this span.
Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start);
assert(I != ranges.begin() && "Range is not in interval!");
--I;
assert(I->contains(Start) && I->contains(End-1) &&
"Range is not entirely in interval!");
assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
// If the span we are removing is at the start of the LiveRange, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
removeKills(I->valno, Start, End);
ValNo->removeKills(Start, End);
if (RemoveDeadValNo) {
// Check if val# is dead.
bool isDead = true;
@ -321,13 +325,13 @@ void LiveInterval::removeRange(unsigned Start, unsigned End,
// Otherwise if the span we are removing is at the end of the LiveRange,
// adjust the other way.
if (I->end == End) {
removeKills(ValNo, Start, End);
ValNo->removeKills(Start, End);
I->end = Start;
return;
}
// Otherwise, we are splitting the LiveRange into two pieces.
unsigned OldEnd = I->end;
MachineInstrIndex OldEnd = I->end;
I->end = Start; // Trim the old interval.
// Insert the new one.
@ -361,11 +365,12 @@ void LiveInterval::removeValNo(VNInfo *ValNo) {
/// scaleNumbering - Renumber VNI and ranges to provide gaps for new
/// instructions.
void LiveInterval::scaleNumbering(unsigned factor) {
// Scale ranges.
for (iterator RI = begin(), RE = end(); RI != RE; ++RI) {
RI->start = InstrSlots::scale(RI->start, factor);
RI->end = InstrSlots::scale(RI->end, factor);
RI->start = RI->start.scale(factor);
RI->end = RI->end.scale(factor);
}
// Scale VNI info.
@ -373,20 +378,20 @@ void LiveInterval::scaleNumbering(unsigned factor) {
VNInfo *vni = *VNI;
if (vni->isDefAccurate())
vni->def = InstrSlots::scale(vni->def, factor);
vni->def = vni->def.scale(factor);
for (unsigned i = 0; i < vni->kills.size(); ++i) {
if (!vni->kills[i].isPHIKill)
vni->kills[i].killIdx =
InstrSlots::scale(vni->kills[i].killIdx, factor);
if (!vni->kills[i].isPHIIndex())
vni->kills[i] = vni->kills[i].scale(factor);
}
}
}
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveInterval::const_iterator
LiveInterval::FindLiveRangeContaining(unsigned Idx) const {
LiveInterval::FindLiveRangeContaining(MachineInstrIndex Idx) const {
const_iterator It = std::upper_bound(begin(), end(), Idx);
if (It != ranges.begin()) {
--It;
@ -398,7 +403,7 @@ LiveInterval::FindLiveRangeContaining(unsigned Idx) const {
}
LiveInterval::iterator
LiveInterval::FindLiveRangeContaining(unsigned Idx) {
LiveInterval::FindLiveRangeContaining(MachineInstrIndex Idx) {
iterator It = std::upper_bound(begin(), end(), Idx);
if (It != begin()) {
--It;
@ -409,17 +414,27 @@ LiveInterval::FindLiveRangeContaining(unsigned Idx) {
return end();
}
/// findDefinedVNInfo - Find the VNInfo that's defined at the specified index
/// (register interval) or defined by the specified register (stack inteval).
VNInfo *LiveInterval::findDefinedVNInfo(unsigned DefIdxOrReg) const {
VNInfo *VNI = NULL;
/// findDefinedVNInfo - Find the VNInfo defined by the specified
/// index (register interval).
VNInfo *LiveInterval::findDefinedVNInfoForRegInt(MachineInstrIndex Idx) const {
for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
i != e; ++i)
if ((*i)->def == DefIdxOrReg) {
VNI = *i;
break;
}
return VNI;
i != e; ++i) {
if ((*i)->def == Idx)
return *i;
}
return 0;
}
/// findDefinedVNInfo - Find the VNInfo defined by the specified
/// register (stack inteval).
VNInfo *LiveInterval::findDefinedVNInfoForStackInt(unsigned reg) const {
for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
i != e; ++i) {
if ((*i)->getReg() == reg)
return *i;
}
return 0;
}
/// join - Join two live intervals (this, and other) together. This applies
@ -546,7 +561,7 @@ void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
if (I->valno != RHSValNo)
continue;
unsigned Start = I->start, End = I->end;
MachineInstrIndex Start = I->start, End = I->end;
IP = std::upper_bound(IP, end(), Start);
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > Start) {
@ -622,20 +637,21 @@ void LiveInterval::MergeInClobberRanges(const LiveInterval &Clobbers,
else if (UnusedValNo)
ClobberValNo = UnusedValNo;
else {
UnusedValNo = ClobberValNo = getNextValue(0, 0, false, VNInfoAllocator);
UnusedValNo = ClobberValNo =
getNextValue(MachineInstrIndex(), 0, false, VNInfoAllocator);
ValNoMaps.insert(std::make_pair(I->valno, ClobberValNo));
}
bool Done = false;
unsigned Start = I->start, End = I->end;
MachineInstrIndex Start = I->start, End = I->end;
// If a clobber range starts before an existing range and ends after
// it, the clobber range will need to be split into multiple ranges.
// Loop until the entire clobber range is handled.
while (!Done) {
Done = true;
IP = std::upper_bound(IP, end(), Start);
unsigned SubRangeStart = Start;
unsigned SubRangeEnd = End;
MachineInstrIndex SubRangeStart = Start;
MachineInstrIndex SubRangeEnd = End;
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > SubRangeStart) {
@ -671,11 +687,13 @@ void LiveInterval::MergeInClobberRanges(const LiveInterval &Clobbers,
}
}
void LiveInterval::MergeInClobberRange(unsigned Start, unsigned End,
void LiveInterval::MergeInClobberRange(MachineInstrIndex Start,
MachineInstrIndex End,
BumpPtrAllocator &VNInfoAllocator) {
// Find a value # to use for the clobber ranges. If there is already a value#
// for unknown values, use it.
VNInfo *ClobberValNo = getNextValue(0, 0, false, VNInfoAllocator);
VNInfo *ClobberValNo =
getNextValue(MachineInstrIndex(), 0, false, VNInfoAllocator);
iterator IP = begin();
IP = std::upper_bound(IP, end(), Start);
@ -788,7 +806,7 @@ void LiveInterval::Copy(const LiveInterval &RHS,
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
for (const_iterator I = begin(), E = end(); I != E; ++I)
Sum += I->end - I->start;
Sum += I->start.distance(I->end);
return Sum;
}
@ -862,8 +880,8 @@ void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
if (ee || vni->hasPHIKill()) {
OS << "-(";
for (unsigned j = 0; j != ee; ++j) {
OS << vni->kills[j].killIdx;
if (vni->kills[j].isPHIKill)
OS << vni->kills[j];
if (vni->kills[j].isPHIIndex())
OS << "*";
if (j != ee-1)
OS << " ";

View File

@ -254,6 +254,7 @@ void LiveIntervals::processImplicitDefs() {
}
}
void LiveIntervals::computeNumbering() {
Index2MiMap OldI2MI = i2miMap_;
std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
@ -268,15 +269,16 @@ void LiveIntervals::computeNumbering() {
// Number MachineInstrs and MachineBasicBlocks.
// Initialize MBB indexes to a sentinal.
MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
MBB2IdxMap.resize(mf_->getNumBlockIDs(),
std::make_pair(MachineInstrIndex(),MachineInstrIndex()));
unsigned MIIndex = 0;
MachineInstrIndex MIIndex;
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
MBB != E; ++MBB) {
unsigned StartIdx = MIIndex;
MachineInstrIndex StartIdx = MIIndex;
// Insert an empty slot at the beginning of each block.
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
i2miMap_.push_back(0);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
@ -285,47 +287,51 @@ void LiveIntervals::computeNumbering() {
if (I == MBB->getFirstTerminator()) {
// Leave a gap for before terminators, this is where we will point
// PHI kills.
MachineInstrIndex tGap(true, MIIndex);
bool inserted =
terminatorGaps.insert(std::make_pair(&*MBB, MIIndex)).second;
terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
assert(inserted &&
"Multiple 'first' terminators encountered during numbering.");
inserted = inserted; // Avoid compiler warning if assertions turned off.
i2miMap_.push_back(0);
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
}
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
inserted = true;
i2miMap_.push_back(I);
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
FunctionSize++;
// Insert max(1, numdefs) empty slots after every instruction.
unsigned Slots = I->getDesc().getNumDefs();
if (Slots == 0)
Slots = 1;
MIIndex += InstrSlots::NUM * Slots;
while (Slots--)
while (Slots--) {
MIIndex = MIIndex.nextIndex();
i2miMap_.push_back(0);
}
}
if (MBB->getFirstTerminator() == MBB->end()) {
// Leave a gap for before terminators, this is where we will point
// PHI kills.
MachineInstrIndex tGap(true, MIIndex);
bool inserted =
terminatorGaps.insert(std::make_pair(&*MBB, MIIndex)).second;
terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
assert(inserted &&
"Multiple 'first' terminators encountered during numbering.");
inserted = inserted; // Avoid compiler warning if assertions turned off.
i2miMap_.push_back(0);
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
}
// Set the MBB2IdxMap entry for this MBB.
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex.prevSlot());
Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
}
@ -340,9 +346,9 @@ void LiveIntervals::computeNumbering() {
// number, or our best guess at what it _should_ correspond to if the
// original instruction has been erased. This is either the following
// instruction or its predecessor.
unsigned index = LI->start / InstrSlots::NUM;
unsigned offset = LI->start % InstrSlots::NUM;
if (offset == InstrSlots::LOAD) {
unsigned index = LI->start.getVecIndex();
MachineInstrIndex::Slot offset = LI->start.getSlot();
if (LI->start.isLoad()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start);
// Take the pair containing the index
@ -351,29 +357,34 @@ void LiveIntervals::computeNumbering() {
LI->start = getMBBStartIdx(J->second);
} else {
LI->start = mi2iMap_[OldI2MI[index]] + offset;
LI->start = MachineInstrIndex(
MachineInstrIndex(mi2iMap_[OldI2MI[index]]),
(MachineInstrIndex::Slot)offset);
}
// Remap the ending index in the same way that we remapped the start,
// except for the final step where we always map to the immediately
// following instruction.
index = (LI->end - 1) / InstrSlots::NUM;
offset = LI->end % InstrSlots::NUM;
if (offset == InstrSlots::LOAD) {
index = (LI->end.prevSlot()).getVecIndex();
offset = LI->end.getSlot();
if (LI->end.isLoad()) {
// VReg dies at end of block.
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end);
--I;
LI->end = getMBBEndIdx(I->second) + 1;
LI->end = getMBBEndIdx(I->second).nextSlot();
} else {
unsigned idx = index;
while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
if (index != OldI2MI.size())
LI->end = mi2iMap_[OldI2MI[index]] + (idx == index ? offset : 0);
LI->end =
MachineInstrIndex(mi2iMap_[OldI2MI[index]],
(idx == index ? offset : MachineInstrIndex::LOAD));
else
LI->end = InstrSlots::NUM * i2miMap_.size();
LI->end =
MachineInstrIndex(MachineInstrIndex::NUM * i2miMap_.size());
}
}
@ -385,9 +396,9 @@ void LiveIntervals::computeNumbering() {
// start indices above. VN's with special sentinel defs
// don't need to be remapped.
if (vni->isDefAccurate() && !vni->isUnused()) {
unsigned index = vni->def / InstrSlots::NUM;
unsigned offset = vni->def % InstrSlots::NUM;
if (offset == InstrSlots::LOAD) {
unsigned index = vni->def.getVecIndex();
MachineInstrIndex::Slot offset = vni->def.getSlot();
if (vni->def.isLoad()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def);
// Take the pair containing the index
@ -396,19 +407,17 @@ void LiveIntervals::computeNumbering() {
vni->def = getMBBStartIdx(J->second);
} else {
vni->def = mi2iMap_[OldI2MI[index]] + offset;
vni->def = MachineInstrIndex(mi2iMap_[OldI2MI[index]], offset);
}
}
// Remap the VNInfo kill indices, which works the same as
// the end indices above.
for (size_t i = 0; i < vni->kills.size(); ++i) {
unsigned killIdx = vni->kills[i].killIdx;
unsigned index = vni->kills[i].prevSlot().getVecIndex();
MachineInstrIndex::Slot offset = vni->kills[i].getSlot();
unsigned index = (killIdx - 1) / InstrSlots::NUM;
unsigned offset = killIdx % InstrSlots::NUM;
if (offset == InstrSlots::LOAD) {
if (vni->kills[i].isLoad()) {
assert("Value killed at a load slot.");
/*std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
@ -416,15 +425,15 @@ void LiveIntervals::computeNumbering() {
vni->kills[i] = getMBBEndIdx(I->second);*/
} else {
if (vni->kills[i].isPHIKill) {
if (vni->kills[i].isPHIIndex()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), index);
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
--I;
vni->kills[i].killIdx = terminatorGaps[I->second];
vni->kills[i] = terminatorGaps[I->second];
} else {
assert(OldI2MI[index] != 0 &&
"Kill refers to instruction not present in index maps.");
vni->kills[i].killIdx = mi2iMap_[OldI2MI[index]] + offset;
vni->kills[i] = MachineInstrIndex(mi2iMap_[OldI2MI[index]], offset);
}
/*
@ -454,18 +463,18 @@ void LiveIntervals::scaleNumbering(int factor) {
Idx2MBBMap.clear();
for (MachineFunction::iterator MBB = mf_->begin(), MBBE = mf_->end();
MBB != MBBE; ++MBB) {
std::pair<unsigned, unsigned> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
mbbIndices.first = InstrSlots::scale(mbbIndices.first, factor);
mbbIndices.second = InstrSlots::scale(mbbIndices.second, factor);
std::pair<MachineInstrIndex, MachineInstrIndex> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
mbbIndices.first = mbbIndices.first.scale(factor);
mbbIndices.second = mbbIndices.second.scale(factor);
Idx2MBBMap.push_back(std::make_pair(mbbIndices.first, MBB));
}
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
// Scale terminator gaps.
for (DenseMap<MachineBasicBlock*, unsigned>::iterator
for (DenseMap<MachineBasicBlock*, MachineInstrIndex>::iterator
TGI = terminatorGaps.begin(), TGE = terminatorGaps.end();
TGI != TGE; ++TGI) {
terminatorGaps[TGI->first] = InstrSlots::scale(TGI->second, factor);
terminatorGaps[TGI->first] = TGI->second.scale(factor);
}
// Scale the intervals.
@ -475,19 +484,20 @@ void LiveIntervals::scaleNumbering(int factor) {
// Scale MachineInstrs.
Mi2IndexMap oldmi2iMap = mi2iMap_;
unsigned highestSlot = 0;
MachineInstrIndex highestSlot;
for (Mi2IndexMap::iterator MI = oldmi2iMap.begin(), ME = oldmi2iMap.end();
MI != ME; ++MI) {
unsigned newSlot = InstrSlots::scale(MI->second, factor);
MachineInstrIndex newSlot = MI->second.scale(factor);
mi2iMap_[MI->first] = newSlot;
highestSlot = std::max(highestSlot, newSlot);
}
unsigned highestVIndex = highestSlot.getVecIndex();
i2miMap_.clear();
i2miMap_.resize(highestSlot + 1);
i2miMap_.resize(highestVIndex + 1);
for (Mi2IndexMap::iterator MI = mi2iMap_.begin(), ME = mi2iMap_.end();
MI != ME; ++MI) {
i2miMap_[MI->second] = const_cast<MachineInstr *>(MI->first);
i2miMap_[MI->second.getVecIndex()] = const_cast<MachineInstr *>(MI->first);
}
}
@ -541,12 +551,12 @@ bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
VirtRegMap &vrm, unsigned reg) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (unsigned index = getBaseIndex(I->start),
end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
index += InstrSlots::NUM) {
for (MachineInstrIndex index = getBaseIndex(I->start),
end = getBaseIndex(I->end.prevSlot()).nextIndex(); index != end;
index = index.nextIndex()) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
index += InstrSlots::NUM;
index = index.nextIndex();
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
@ -582,16 +592,16 @@ bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (unsigned index = getBaseIndex(I->start),
end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
index += InstrSlots::NUM) {
for (MachineInstrIndex index = getBaseIndex(I->start),
end = getBaseIndex(I->end.prevSlot()).nextIndex(); index != end;
index = index.nextIndex()) {
// Skip deleted instructions.
MachineInstr *MI = 0;
while (index != end) {
MI = getInstructionFromIndex(index);
if (MI)
break;
index += InstrSlots::NUM;
index = index.nextIndex();
}
if (index == end) break;
@ -625,7 +635,8 @@ void LiveIntervals::printRegName(unsigned reg) const {
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
MachineBasicBlock::iterator mi,
unsigned MIIdx, MachineOperand& MO,
MachineInstrIndex MIIdx,
MachineOperand& MO,
unsigned MOIdx,
LiveInterval &interval) {
DEBUG({
@ -640,7 +651,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(MIIdx);
MachineInstrIndex defIndex = getDefIndex(MIIdx);
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
@ -663,11 +674,11 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
unsigned killIdx;
MachineInstrIndex killIdx;
if (vi.Kills[0] != mi)
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0])).nextSlot();
else
killIdx = defIndex+1;
killIdx = defIndex.nextSlot();
// If the kill happens after the definition, we have an intra-block
// live range.
@ -677,7 +688,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
LiveRange LR(defIndex, killIdx, ValNo);
interval.addRange(LR);
DEBUG(errs() << " +" << LR << "\n");
interval.addKill(ValNo, killIdx, false);
ValNo->addKill(killIdx);
return;
}
}
@ -686,7 +697,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb)+1, ValNo);
LiveRange NewLR(defIndex, getMBBEndIdx(mbb).nextSlot(), ValNo);
DEBUG(errs() << " +" << NewLR);
interval.addRange(NewLR);
@ -696,7 +707,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
LiveRange LR(getMBBStartIdx(*I),
getMBBEndIdx(*I)+1, // MBB ends at -1.
getMBBEndIdx(*I).nextSlot(), // MBB ends at -1.
ValNo);
interval.addRange(LR);
DEBUG(errs() << " +" << LR);
@ -706,11 +717,11 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
MachineInstrIndex killIdx = getUseIndex(getInstructionIndex(Kill)).nextSlot();
LiveRange LR(getMBBStartIdx(Kill->getParent()),
killIdx, ValNo);
interval.addRange(LR);
interval.addKill(ValNo, killIdx, false);
ValNo->addKill(killIdx);
DEBUG(errs() << " +" << LR);
}
@ -726,12 +737,12 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// need to take the LiveRegion that defines this register and split it
// into two values.
assert(interval.containsOneValue());
unsigned DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
unsigned RedefIndex = getDefIndex(MIIdx);
MachineInstrIndex DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
MachineInstrIndex RedefIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
RedefIndex = getUseIndex(MIIdx);
const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.prevSlot());
VNInfo *OldValNo = OldLR->valno;
// Delete the initial value, which should be short and continuous,
@ -759,12 +770,12 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
LiveRange LR(DefIndex, RedefIndex, ValNo);
DEBUG(errs() << " replace range with " << LR);
interval.addRange(LR);
interval.addKill(ValNo, RedefIndex, false);
ValNo->addKill(RedefIndex);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
if (MO.isDead())
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
interval.addRange(LiveRange(RedefIndex, RedefIndex.nextSlot(), OldValNo));
DEBUG({
errs() << " RESULT: ";
@ -781,8 +792,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// Remove the old range that we now know has an incorrect number.
VNInfo *VNI = interval.getValNumInfo(0);
MachineInstr *Killer = vi.Kills[0];
unsigned Start = getMBBStartIdx(Killer->getParent());
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
MachineInstrIndex Start = getMBBStartIdx(Killer->getParent());
MachineInstrIndex End = getUseIndex(getInstructionIndex(Killer)).nextSlot();
DEBUG({
errs() << " Removing [" << Start << "," << End << "] from: ";
interval.print(errs(), tri_);
@ -791,8 +802,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
interval.removeRange(Start, End);
assert(interval.ranges.size() == 1 &&
"newly discovered PHI interval has >1 ranges.");
MachineBasicBlock *killMBB = getMBBFromIndex(interval.endNumber());
interval.addKill(VNI, terminatorGaps[killMBB], true);
MachineBasicBlock *killMBB = getMBBFromIndex(interval.endIndex());
VNI->addKill(terminatorGaps[killMBB]);
VNI->setHasPHIKill(true);
DEBUG({
errs() << " RESULT: ";
@ -802,11 +813,12 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// Replace the interval with one of a NEW value number. Note that this
// value number isn't actually defined by an instruction, weird huh? :)
LiveRange LR(Start, End,
interval.getNextValue(mbb->getNumber(), 0, false, VNInfoAllocator));
interval.getNextValue(MachineInstrIndex(mbb->getNumber()),
0, false, VNInfoAllocator));
LR.valno->setIsPHIDef(true);
DEBUG(errs() << " replace range with " << LR);
interval.addRange(LR);
interval.addKill(LR.valno, End, false);
LR.valno->addKill(End);
DEBUG({
errs() << " RESULT: ";
interval.print(errs(), tri_);
@ -816,7 +828,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
unsigned defIndex = getDefIndex(MIIdx);
MachineInstrIndex defIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
@ -830,10 +842,10 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
unsigned killIndex = getMBBEndIdx(mbb) + 1;
MachineInstrIndex killIndex = getMBBEndIdx(mbb).nextSlot();
LiveRange LR(defIndex, killIndex, ValNo);
interval.addRange(LR);
interval.addKill(ValNo, terminatorGaps[mbb], true);
ValNo->addKill(terminatorGaps[mbb]);
ValNo->setHasPHIKill(true);
DEBUG(errs() << " +" << LR);
}
@ -844,7 +856,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator mi,
unsigned MIIdx,
MachineInstrIndex MIIdx,
MachineOperand& MO,
LiveInterval &interval,
MachineInstr *CopyMI) {
@ -855,33 +867,33 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
printRegName(interval.reg);
});
unsigned baseIndex = MIIdx;
unsigned start = getDefIndex(baseIndex);
MachineInstrIndex baseIndex = MIIdx;
MachineInstrIndex start = getDefIndex(baseIndex);
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
start = getUseIndex(MIIdx);
unsigned end = start;
MachineInstrIndex end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
if (MO.isDead()) {
DEBUG(errs() << " dead");
end = start + 1;
end = start.nextSlot();
goto exit;
}
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
baseIndex += InstrSlots::NUM;
baseIndex = baseIndex.nextIndex();
while (++mi != MBB->end()) {
while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
baseIndex += InstrSlots::NUM;
baseIndex = baseIndex.nextIndex();
if (mi->killsRegister(interval.reg, tri_)) {
DEBUG(errs() << " killed");
end = getUseIndex(baseIndex) + 1;
end = getUseIndex(baseIndex).nextSlot();
goto exit;
} else {
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
@ -897,20 +909,20 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
DEBUG(errs() << " dead");
end = start + 1;
end = start.nextSlot();
}
goto exit;
}
}
baseIndex += InstrSlots::NUM;
baseIndex = baseIndex.nextIndex();
}
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
// and never used. Another possible case is the implicit use of the
// physical register has been deleted by two-address pass.
end = start + 1;
end = start.nextSlot();
exit:
assert(start < end && "did not find end of interval?");
@ -924,13 +936,13 @@ exit:
ValNo->setHasRedefByEC(true);
LiveRange LR(start, end, ValNo);
interval.addRange(LR);
interval.addKill(LR.valno, end, false);
LR.valno->addKill(end);
DEBUG(errs() << " +" << LR << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
unsigned MIIdx,
MachineInstrIndex MIIdx,
MachineOperand& MO,
unsigned MOIdx) {
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
@ -957,7 +969,7 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
}
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
unsigned MIIdx,
MachineInstrIndex MIIdx,
LiveInterval &interval, bool isAlias) {
DEBUG({
errs() << "\t\tlivein register: ";
@ -967,18 +979,18 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
// Look for kills, if it reaches a def before it's killed, then it shouldn't
// be considered a livein.
MachineBasicBlock::iterator mi = MBB->begin();
unsigned baseIndex = MIIdx;
unsigned start = baseIndex;
while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
MachineInstrIndex baseIndex = MIIdx;
MachineInstrIndex start = baseIndex;
while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
baseIndex += InstrSlots::NUM;
unsigned end = baseIndex;
baseIndex = baseIndex.nextIndex();
MachineInstrIndex end = baseIndex;
bool SeenDefUse = false;
while (mi != MBB->end()) {
if (mi->killsRegister(interval.reg, tri_)) {
DEBUG(errs() << " killed");
end = getUseIndex(baseIndex) + 1;
end = getUseIndex(baseIndex).nextSlot();
SeenDefUse = true;
break;
} else if (mi->modifiesRegister(interval.reg, tri_)) {
@ -987,17 +999,17 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
DEBUG(errs() << " dead");
end = getDefIndex(start) + 1;
end = getDefIndex(start).nextSlot();
SeenDefUse = true;
break;
}
baseIndex += InstrSlots::NUM;
baseIndex = baseIndex.nextIndex();
++mi;
if (mi != MBB->end()) {
while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
baseIndex += InstrSlots::NUM;
baseIndex = baseIndex.nextIndex();
}
}
@ -1005,7 +1017,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
if (!SeenDefUse) {
if (isAlias) {
DEBUG(errs() << " dead");
end = getDefIndex(MIIdx) + 1;
end = getDefIndex(MIIdx).nextSlot();
} else {
DEBUG(errs() << " live through");
end = baseIndex;
@ -1013,12 +1025,13 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
}
VNInfo *vni =
interval.getNextValue(MBB->getNumber(), 0, false, VNInfoAllocator);
interval.getNextValue(MachineInstrIndex(MBB->getNumber()),
0, false, VNInfoAllocator);
vni->setIsPHIDef(true);
LiveRange LR(start, end, vni);
interval.addRange(LR);
interval.addKill(LR.valno, end, false);
LR.valno->addKill(end);
DEBUG(errs() << " +" << LR << '\n');
}
@ -1036,7 +1049,7 @@ void LiveIntervals::computeIntervals() {
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
// Track the index of the current machine instr.
unsigned MIIndex = getMBBStartIdx(MBB);
MachineInstrIndex MIIndex = getMBBStartIdx(MBB);
DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
@ -1053,9 +1066,9 @@ void LiveIntervals::computeIntervals() {
}
// Skip over empty initial indices.
while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
while (MIIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(MIIndex) == 0)
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
for (; MI != miEnd; ++MI) {
DEBUG(errs() << MIIndex << "\t" << *MI);
@ -1077,12 +1090,14 @@ void LiveIntervals::computeIntervals() {
unsigned Slots = MI->getDesc().getNumDefs();
if (Slots == 0)
Slots = 1;
MIIndex += InstrSlots::NUM * Slots;
while (Slots--)
MIIndex = MIIndex.nextIndex();
// Skip over empty indices.
while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
while (MIIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(MIIndex) == 0)
MIIndex += InstrSlots::NUM;
MIIndex = MIIndex.nextIndex();
}
}
@ -1095,7 +1110,8 @@ void LiveIntervals::computeIntervals() {
}
}
bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
bool LiveIntervals::findLiveInMBBs(
MachineInstrIndex Start, MachineInstrIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
@ -1111,7 +1127,8 @@ bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
return ResVal;
}
bool LiveIntervals::findReachableMBBs(unsigned Start, unsigned End,
bool LiveIntervals::findReachableMBBs(
MachineInstrIndex Start, MachineInstrIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
@ -1203,8 +1220,8 @@ unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use index.
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
unsigned UseIdx) const {
unsigned Index = getInstructionIndex(MI);
MachineInstrIndex UseIdx) const {
MachineInstrIndex Index = getInstructionIndex(MI);
VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
return UI != li.end() && UI->valno == ValNo;
@ -1314,7 +1331,7 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
re = mri_->use_end(); ri != re; ++ri) {
MachineInstr *UseMI = &*ri;
unsigned UseIdx = getInstructionIndex(UseMI);
MachineInstrIndex UseIdx = getInstructionIndex(UseMI);
if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
continue;
if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
@ -1399,7 +1416,7 @@ static bool FilterFoldedOps(MachineInstr *MI,
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
VirtRegMap &vrm, MachineInstr *DefMI,
unsigned InstrIdx,
MachineInstrIndex InstrIdx,
SmallVector<unsigned, 2> &Ops,
bool isSS, int Slot, unsigned Reg) {
// If it is an implicit def instruction, just delete it.
@ -1438,7 +1455,7 @@ bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
vrm.transferRestorePts(MI, fmi);
vrm.transferEmergencySpills(MI, fmi);
mi2iMap_.erase(MI);
i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
i2miMap_[InstrIdx.getVecIndex()] = fmi;
mi2iMap_[fmi] = InstrIdx;
MI = MBB.insert(MBB.erase(MI), fmi);
++numFolds;
@ -1511,7 +1528,8 @@ void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
bool LiveIntervals::
rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
bool TrySplit, unsigned index, unsigned end, MachineInstr *MI,
bool TrySplit, MachineInstrIndex index, MachineInstrIndex end,
MachineInstr *MI,
MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
unsigned Slot, int LdSlot,
bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
@ -1687,13 +1705,14 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
if (HasUse) {
if (CreatedNewVReg) {
LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
nI.getNextValue(0, 0, false, VNInfoAllocator));
LiveRange LR(getLoadIndex(index), getUseIndex(index).nextSlot(),
nI.getNextValue(MachineInstrIndex(), 0, false,
VNInfoAllocator));
DEBUG(errs() << " +" << LR);
nI.addRange(LR);
} else {
// Extend the split live interval to this def / use.
unsigned End = getUseIndex(index)+1;
MachineInstrIndex End = getUseIndex(index).nextSlot();
LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
nI.getValNumInfo(nI.getNumValNums()-1));
DEBUG(errs() << " +" << LR);
@ -1702,7 +1721,8 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
}
if (HasDef) {
LiveRange LR(getDefIndex(index), getStoreIndex(index),
nI.getNextValue(0, 0, false, VNInfoAllocator));
nI.getNextValue(MachineInstrIndex(), 0, false,
VNInfoAllocator));
DEBUG(errs() << " +" << LR);
nI.addRange(LR);
}
@ -1717,13 +1737,14 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
}
bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
const VNInfo *VNI,
MachineBasicBlock *MBB, unsigned Idx) const {
unsigned End = getMBBEndIdx(MBB);
MachineBasicBlock *MBB,
MachineInstrIndex Idx) const {
MachineInstrIndex End = getMBBEndIdx(MBB);
for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
if (VNI->kills[j].isPHIKill)
if (VNI->kills[j].isPHIIndex())
continue;
unsigned KillIdx = VNI->kills[j].killIdx;
MachineInstrIndex KillIdx = VNI->kills[j];
if (KillIdx > Idx && KillIdx < End)
return true;
}
@ -1734,11 +1755,11 @@ bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
/// during spilling.
namespace {
struct RewriteInfo {
unsigned Index;
MachineInstrIndex Index;
MachineInstr *MI;
bool HasUse;
bool HasDef;
RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d)
RewriteInfo(MachineInstrIndex i, MachineInstr *mi, bool u, bool d)
: Index(i), MI(mi), HasUse(u), HasDef(d) {}
};
@ -1767,8 +1788,8 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
std::vector<LiveInterval*> &NewLIs) {
bool AllCanFold = true;
unsigned NewVReg = 0;
unsigned start = getBaseIndex(I->start);
unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
MachineInstrIndex start = getBaseIndex(I->start);
MachineInstrIndex end = getBaseIndex(I->end.prevSlot()).nextIndex();
// First collect all the def / use in this live range that will be rewritten.
// Make sure they are sorted according to instruction index.
@ -1779,7 +1800,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
MachineOperand &O = ri.getOperand();
++ri;
assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
unsigned index = getInstructionIndex(MI);
MachineInstrIndex index = getInstructionIndex(MI);
if (index < start || index >= end)
continue;
@ -1803,7 +1824,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
RewriteInfo &rwi = RewriteMIs[i];
++i;
unsigned index = rwi.Index;
MachineInstrIndex index = rwi.Index;
bool MIHasUse = rwi.HasUse;
bool MIHasDef = rwi.HasDef;
MachineInstr *MI = rwi.MI;
@ -1889,7 +1910,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
else {
// If this is a two-address code, then this index starts a new VNInfo.
const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index));
const VNInfo *VNI = li.findDefinedVNInfoForRegInt(getDefIndex(index));
if (VNI)
HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
}
@ -1902,7 +1923,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillIdxes.insert(std::make_pair(MBBId, S));
} else if (SII->second.back().vreg != NewVReg) {
SII->second.push_back(SRInfo(index, NewVReg, true));
} else if ((int)index > SII->second.back().index) {
} else if (index > SII->second.back().index) {
// If there is an earlier def and this is a two-address
// instruction, then it's not possible to fold the store (which
// would also fold the load).
@ -1913,7 +1934,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillMBBs.set(MBBId);
} else if (SII != SpillIdxes.end() &&
SII->second.back().vreg == NewVReg &&
(int)index > SII->second.back().index) {
index > SII->second.back().index) {
// There is an earlier def that's not killed (must be two-address).
// The spill is no longer needed.
SII->second.pop_back();
@ -1930,7 +1951,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillIdxes.find(MBBId);
if (SII != SpillIdxes.end() &&
SII->second.back().vreg == NewVReg &&
(int)index > SII->second.back().index)
index > SII->second.back().index)
// Use(s) following the last def, it's not safe to fold the spill.
SII->second.back().canFold = false;
DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
@ -1964,8 +1985,8 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
}
}
bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
BitVector &RestoreMBBs,
bool LiveIntervals::alsoFoldARestore(int Id, MachineInstrIndex index,
unsigned vr, BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
if (!RestoreMBBs[Id])
return false;
@ -1978,15 +1999,15 @@ bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
return false;
}
void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
BitVector &RestoreMBBs,
void LiveIntervals::eraseRestoreInfo(int Id, MachineInstrIndex index,
unsigned vr, BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
if (!RestoreMBBs[Id])
return;
std::vector<SRInfo> &Restores = RestoreIdxes[Id];
for (unsigned i = 0, e = Restores.size(); i != e; ++i)
if (Restores[i].index == index && Restores[i].vreg)
Restores[i].index = -1;
Restores[i].index = MachineInstrIndex();
}
/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
@ -2085,17 +2106,19 @@ addIntervalsForSpillsFast(const LiveInterval &li,
}
// Fill in the new live interval.
unsigned index = getInstructionIndex(MI);
MachineInstrIndex index = getInstructionIndex(MI);
if (HasUse) {
LiveRange LR(getLoadIndex(index), getUseIndex(index),
nI.getNextValue(0, 0, false, getVNInfoAllocator()));
nI.getNextValue(MachineInstrIndex(), 0, false,
getVNInfoAllocator()));
DEBUG(errs() << " +" << LR);
nI.addRange(LR);
vrm.addRestorePoint(NewVReg, MI);
}
if (HasDef) {
LiveRange LR(getDefIndex(index), getStoreIndex(index),
nI.getNextValue(0, 0, false, getVNInfoAllocator()));
nI.getNextValue(MachineInstrIndex(), 0, false,
getVNInfoAllocator()));
DEBUG(errs() << " +" << LR);
nI.addRange(LR);
vrm.addSpillPoint(NewVReg, true, MI);
@ -2158,8 +2181,8 @@ addIntervalsForSpills(const LiveInterval &li,
if (vrm.getPreSplitReg(li.reg)) {
vrm.setIsSplitFromReg(li.reg, 0);
// Unset the split kill marker on the last use.
unsigned KillIdx = vrm.getKillPoint(li.reg);
if (KillIdx) {
MachineInstrIndex KillIdx = vrm.getKillPoint(li.reg);
if (KillIdx != MachineInstrIndex()) {
MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
assert(KillMI && "Last use disappeared?");
int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
@ -2287,7 +2310,7 @@ addIntervalsForSpills(const LiveInterval &li,
while (Id != -1) {
std::vector<SRInfo> &spills = SpillIdxes[Id];
for (unsigned i = 0, e = spills.size(); i != e; ++i) {
int index = spills[i].index;
MachineInstrIndex index = spills[i].index;
unsigned VReg = spills[i].vreg;
LiveInterval &nI = getOrCreateInterval(VReg);
bool isReMat = vrm.isReMaterialized(VReg);
@ -2325,7 +2348,7 @@ addIntervalsForSpills(const LiveInterval &li,
if (FoundUse) {
// Also folded uses, do not issue a load.
eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
nI.removeRange(getLoadIndex(index), getUseIndex(index).nextSlot());
}
nI.removeRange(getDefIndex(index), getStoreIndex(index));
}
@ -2350,8 +2373,8 @@ addIntervalsForSpills(const LiveInterval &li,
while (Id != -1) {
std::vector<SRInfo> &restores = RestoreIdxes[Id];
for (unsigned i = 0, e = restores.size(); i != e; ++i) {
int index = restores[i].index;
if (index == -1)
MachineInstrIndex index = restores[i].index;
if (index == MachineInstrIndex())
continue;
unsigned VReg = restores[i].vreg;
LiveInterval &nI = getOrCreateInterval(VReg);
@ -2406,7 +2429,7 @@ addIntervalsForSpills(const LiveInterval &li,
// If folding is not possible / failed, then tell the spiller to issue a
// load / rematerialization for us.
if (Folded)
nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
nI.removeRange(getLoadIndex(index), getUseIndex(index).nextSlot());
else
vrm.addRestorePoint(VReg, MI);
}
@ -2422,7 +2445,7 @@ addIntervalsForSpills(const LiveInterval &li,
LI->weight /= InstrSlots::NUM * getApproximateInstructionCount(*LI);
if (!AddedKill.count(LI)) {
LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
unsigned LastUseIdx = getBaseIndex(LR->end);
MachineInstrIndex LastUseIdx = getBaseIndex(LR->end);
MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
assert(UseIdx != -1);
@ -2473,7 +2496,7 @@ unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
E = mri_->reg_end(); I != E; ++I) {
MachineOperand &O = I.getOperand();
MachineInstr *MI = O.getParent();
unsigned Index = getInstructionIndex(MI);
MachineInstrIndex Index = getInstructionIndex(MI);
if (pli.liveAt(Index))
++NumConflicts;
}
@ -2504,11 +2527,11 @@ bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
if (SeenMIs.count(MI))
continue;
SeenMIs.insert(MI);
unsigned Index = getInstructionIndex(MI);
MachineInstrIndex Index = getInstructionIndex(MI);
if (pli.liveAt(Index)) {
vrm.addEmergencySpill(SpillReg, MI);
unsigned StartIdx = getLoadIndex(Index);
unsigned EndIdx = getStoreIndex(Index)+1;
MachineInstrIndex StartIdx = getLoadIndex(Index);
MachineInstrIndex EndIdx = getStoreIndex(Index).nextSlot();
if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
pli.removeRange(StartIdx, EndIdx);
Cut = true;
@ -2528,7 +2551,7 @@ bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
continue;
LiveInterval &spli = getInterval(*AS);
if (spli.liveAt(Index))
spli.removeRange(getLoadIndex(Index), getStoreIndex(Index)+1);
spli.removeRange(getLoadIndex(Index), getStoreIndex(Index).nextSlot());
}
}
}
@ -2539,13 +2562,13 @@ LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
MachineInstr* startInst) {
LiveInterval& Interval = getOrCreateInterval(reg);
VNInfo* VN = Interval.getNextValue(
getInstructionIndex(startInst) + InstrSlots::DEF,
startInst, true, getVNInfoAllocator());
MachineInstrIndex(getInstructionIndex(startInst), MachineInstrIndex::DEF),
startInst, true, getVNInfoAllocator());
VN->setHasPHIKill(true);
VN->kills.push_back(
VNInfo::KillInfo(terminatorGaps[startInst->getParent()], true));
LiveRange LR(getInstructionIndex(startInst) + InstrSlots::DEF,
getMBBEndIdx(startInst->getParent()) + 1, VN);
VN->kills.push_back(terminatorGaps[startInst->getParent()]);
LiveRange LR(
MachineInstrIndex(getInstructionIndex(startInst), MachineInstrIndex::DEF),
getMBBEndIdx(startInst->getParent()).nextSlot(), VN);
Interval.addRange(LR);
return LR;

View File

@ -68,7 +68,7 @@ namespace {
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
unsigned BarrierIdx;
MachineInstrIndex BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
@ -83,7 +83,7 @@ namespace {
DenseMap<unsigned, int> IntervalSSMap;
// Def2SpillMap - A map from a def instruction index to spill index.
DenseMap<unsigned, unsigned> Def2SpillMap;
DenseMap<MachineInstrIndex, MachineInstrIndex> Def2SpillMap;
public:
static char ID;
@ -129,22 +129,23 @@ namespace {
private:
MachineBasicBlock::iterator
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
unsigned&);
MachineInstrIndex&);
MachineBasicBlock::iterator
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
SmallPtrSet<MachineInstr*, 4>&, MachineInstrIndex&);
MachineBasicBlock::iterator
findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
findRestorePoint(MachineBasicBlock*, MachineInstr*, MachineInstrIndex,
SmallPtrSet<MachineInstr*, 4>&, MachineInstrIndex&);
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
unsigned&, int&) const;
bool IsAvailableInStack(MachineBasicBlock*, unsigned,
MachineInstrIndex, MachineInstrIndex,
MachineInstrIndex&, int&) const;
void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
void UpdateSpillSlotInterval(VNInfo*, MachineInstrIndex, MachineInstrIndex);
bool SplitRegLiveInterval(LiveInterval*);
@ -156,7 +157,7 @@ namespace {
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
unsigned RestoreIdx,
MachineInstrIndex RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
MachineInstr* DefMI,
@ -208,11 +209,12 @@ const PassInfo *const llvm::PreAllocSplittingID = &X;
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned &SpotIndex) {
MachineInstrIndex &SpotIndex) {
MachineBasicBlock::iterator MII = MI;
if (++MII != MBB->end()) {
unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
if (Index) {
MachineInstrIndex Index =
LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
if (Index != MachineInstrIndex()) {
SpotIndex = Index;
return MII;
}
@ -228,7 +230,7 @@ MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
MachineInstr *DefMI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &SpillIndex) {
MachineInstrIndex &SpillIndex) {
MachineBasicBlock::iterator Pt = MBB->begin();
MachineBasicBlock::iterator MII = MI;
@ -241,7 +243,7 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
while (MII != EndPt && !RefsInMBB.count(MII)) {
unsigned Index = LIs->getInstructionIndex(MII);
MachineInstrIndex Index = LIs->getInstructionIndex(MII);
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
@ -274,9 +276,9 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned LastIdx,
MachineInstrIndex LastIdx,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &RestoreIndex) {
MachineInstrIndex &RestoreIndex) {
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
// begin index accordingly.
MachineBasicBlock::iterator Pt = MBB->end();
@ -297,10 +299,10 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
// FIXME: Limit the number of instructions to examine to reduce
// compile time?
while (MII != EndPt) {
unsigned Index = LIs->getInstructionIndex(MII);
MachineInstrIndex Index = LIs->getInstructionIndex(MII);
if (Index > LastIdx)
break;
unsigned Gap = LIs->findGapBeforeInstr(Index);
MachineInstrIndex Gap = LIs->findGapBeforeInstr(Index);
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
@ -309,7 +311,7 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
++MII;
} while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
} else if (Gap) {
} else if (Gap != MachineInstrIndex()) {
Pt = MII;
RestoreIndex = Gap;
}
@ -342,7 +344,8 @@ int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
CurrSValNo = CurrSLI->getNextValue(MachineInstrIndex(), 0, false,
LSs->getVNInfoAllocator());
return SS;
}
@ -350,8 +353,9 @@ int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
unsigned Reg, unsigned DefIndex,
unsigned RestoreIndex, unsigned &SpillIndex,
unsigned Reg, MachineInstrIndex DefIndex,
MachineInstrIndex RestoreIndex,
MachineInstrIndex &SpillIndex,
int& SS) const {
if (!DefMBB)
return false;
@ -359,7 +363,8 @@ PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I == IntervalSSMap.end())
return false;
DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
DenseMap<MachineInstrIndex, MachineInstrIndex>::iterator
II = Def2SpillMap.find(DefIndex);
if (II == Def2SpillMap.end())
return false;
@ -379,8 +384,8 @@ PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
unsigned RestoreIndex) {
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, MachineInstrIndex SpillIndex,
MachineInstrIndex RestoreIndex) {
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
"Expect restore in the barrier mbb");
@ -393,8 +398,8 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
}
SmallPtrSet<MachineBasicBlock*, 4> Processed;
unsigned EndIdx = LIs->getMBBEndIdx(MBB);
LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
MachineInstrIndex EndIdx = LIs->getMBBEndIdx(MBB);
LiveRange SLR(SpillIndex, LIs->getNextSlot(EndIdx), CurrSValNo);
CurrSLI->addRange(SLR);
Processed.insert(MBB);
@ -413,7 +418,7 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
WorkList.pop_back();
if (Processed.count(MBB))
continue;
unsigned Idx = LIs->getMBBStartIdx(MBB);
MachineInstrIndex Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
if (LR && LR->valno == ValNo) {
EndIdx = LIs->getMBBEndIdx(MBB);
@ -423,7 +428,7 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
CurrSLI->addRange(SLR);
} else if (LR->end > EndIdx) {
// Live range extends beyond end of mbb, process successors.
LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
LiveRange SLR(Idx, LIs->getNextIndex(EndIdx), CurrSValNo);
CurrSLI->addRange(SLR);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
@ -486,12 +491,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
}
// Once we've found it, extend its VNInfo to our instruction.
unsigned DefIndex = LIs->getInstructionIndex(Walker);
MachineInstrIndex DefIndex = LIs->getInstructionIndex(Walker);
DefIndex = LiveIntervals::getDefIndex(DefIndex);
unsigned EndIndex = LIs->getMBBEndIdx(MBB);
MachineInstrIndex EndIndex = LIs->getMBBEndIdx(MBB);
RetVNI = NewVNs[Walker];
LI->addRange(LiveRange(DefIndex, EndIndex+1, RetVNI));
LI->addRange(LiveRange(DefIndex, LIs->getNextSlot(EndIndex), RetVNI));
} else if (!ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
@ -523,9 +528,9 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
IsTopLevel, IsIntraBlock);
}
unsigned UseIndex = LIs->getInstructionIndex(Walker);
MachineInstrIndex UseIndex = LIs->getInstructionIndex(Walker);
UseIndex = LiveIntervals::getUseIndex(UseIndex);
unsigned EndIndex = 0;
MachineInstrIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
EndIndex = LiveIntervals::getUseIndex(EndIndex);
@ -537,12 +542,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
LI->addRange(LiveRange(UseIndex, EndIndex+1, RetVNI));
LI->addRange(LiveRange(UseIndex, LIs->getNextSlot(EndIndex), RetVNI));
// FIXME: Need to set kills properly for inter-block stuff.
if (LI->isKill(RetVNI, UseIndex)) LI->removeKill(RetVNI, UseIndex);
if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex);
if (IsIntraBlock)
LI->addKill(RetVNI, EndIndex, false);
RetVNI->addKill(EndIndex);
} else if (ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
@ -583,10 +588,10 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
IsTopLevel, IsIntraBlock);
}
unsigned StartIndex = LIs->getInstructionIndex(Walker);
MachineInstrIndex StartIndex = LIs->getInstructionIndex(Walker);
StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
LiveIntervals::getUseIndex(StartIndex);
unsigned EndIndex = 0;
MachineInstrIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
EndIndex = LiveIntervals::getUseIndex(EndIndex);
@ -599,12 +604,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
if (foundUse && LI->isKill(RetVNI, StartIndex))
LI->removeKill(RetVNI, StartIndex);
if (foundUse && RetVNI->isKill(StartIndex))
RetVNI->removeKill(StartIndex);
if (IsIntraBlock) {
LI->addKill(RetVNI, EndIndex, false);
RetVNI->addKill(EndIndex);
}
}
@ -635,9 +640,10 @@ PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator Us
// assume that we are not intrablock here.
if (Phis.count(MBB)) return Phis[MBB];
unsigned StartIndex = LIs->getMBBStartIdx(MBB);
MachineInstrIndex StartIndex = LIs->getMBBStartIdx(MBB);
VNInfo *RetVNI = Phis[MBB] =
LI->getNextValue(0, /*FIXME*/ 0, false, LIs->getVNInfoAllocator());
LI->getNextValue(MachineInstrIndex(), /*FIXME*/ 0, false,
LIs->getVNInfoAllocator());
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
@ -679,21 +685,21 @@ PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator Us
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
I->second->setHasPHIKill(true);
unsigned KillIndex = LIs->getMBBEndIdx(I->first);
if (!LiveInterval::isKill(I->second, KillIndex))
LI->addKill(I->second, KillIndex, false);
MachineInstrIndex KillIndex = LIs->getMBBEndIdx(I->first);
if (!I->second->isKill(KillIndex))
I->second->addKill(KillIndex);
}
}
unsigned EndIndex = 0;
MachineInstrIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
EndIndex = LiveIntervals::getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
if (IsIntraBlock)
LI->addKill(RetVNI, EndIndex, false);
RetVNI->addKill(EndIndex);
// Memoize results so we don't have to recompute them.
if (!IsIntraBlock)
@ -727,7 +733,7 @@ void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
DE = MRI->def_end(); DI != DE; ++DI) {
Defs[(*DI).getParent()].insert(&*DI);
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
MachineInstrIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = LiveIntervals::getDefIndex(DefIdx);
assert(DI->getOpcode() != TargetInstrInfo::PHI &&
@ -763,14 +769,14 @@ void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
// Add ranges for dead defs
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
MachineInstrIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = LiveIntervals::getDefIndex(DefIdx);
if (LI->liveAt(DefIdx)) continue;
VNInfo* DeadVN = NewVNs[&*DI];
LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
LI->addKill(DeadVN, DefIdx, false);
LI->addRange(LiveRange(DefIdx, LIs->getNextSlot(DefIdx), DeadVN));
DeadVN->addKill(DefIdx);
}
}
@ -802,13 +808,15 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
// Locate two-address redefinitions
for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
KE = OldVN->kills.end(); KI != KE; ++KI) {
assert(!KI->isPHIKill && "VN previously reported having no PHI kills.");
MachineInstr* MI = LIs->getInstructionFromIndex(KI->killIdx);
assert(!KI->isPHIIndex() &&
"VN previously reported having no PHI kills.");
MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
if (DefIdx == ~0U) continue;
if (MI->isRegTiedToUseOperand(DefIdx)) {
VNInfo* NextVN =
CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(KI->killIdx));
CurrLI->findDefinedVNInfoForRegInt(
LiveIntervals::getDefIndex(*KI));
if (NextVN == OldVN) continue;
Stack.push_back(NextVN);
}
@ -840,7 +848,7 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand& MO = I.getOperand();
unsigned InstrIdx = LIs->getInstructionIndex(&*I);
MachineInstrIndex InstrIdx = LIs->getInstructionIndex(&*I);
if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
(MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
@ -868,12 +876,12 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
unsigned RestoreIdx,
MachineInstrIndex RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock& MBB = *RestorePt->getParent();
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
unsigned KillIdx = 0;
MachineInstrIndex KillIdx;
if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
else
@ -886,9 +894,9 @@ bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
ReconstructLiveInterval(CurrLI);
unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
MachineInstrIndex RematIdx = LIs->getInstructionIndex(prior(RestorePt));
RematIdx = LiveIntervals::getDefIndex(RematIdx);
RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
++NumSplits;
++NumRemats;
@ -943,7 +951,8 @@ MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
CurrSValNo = CurrSLI->getNextValue(MachineInstrIndex(), 0, false,
LSs->getVNInfoAllocator());
}
return FMI;
@ -1052,7 +1061,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
}
// Find a point to restore the value after the barrier.
unsigned RestoreIndex = 0;
MachineInstrIndex RestoreIndex;
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
if (RestorePt == BarrierMBB->end())
@ -1066,7 +1075,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
// Add a spill either before the barrier or after the definition.
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
unsigned SpillIndex = 0;
MachineInstrIndex SpillIndex;
MachineInstr *SpillMI = NULL;
int SS = -1;
if (!ValNo->isDefAccurate()) {
@ -1138,15 +1147,15 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
}
// Update spill stack slot live interval.
UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
UpdateSpillSlotInterval(ValNo, LIs->getNextSlot(LIs->getUseIndex(SpillIndex)),
LIs->getDefIndex(RestoreIndex));
ReconstructLiveInterval(CurrLI);
if (!FoldedRestore) {
unsigned RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
MachineInstrIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
RestoreIdx = LiveIntervals::getDefIndex(RestoreIdx);
RenumberValno(CurrLI->findDefinedVNInfo(RestoreIdx));
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
}
++NumSplits;
@ -1232,7 +1241,7 @@ bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
// reaching definition (VNInfo).
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
unsigned index = LIs->getInstructionIndex(&*UI);
MachineInstrIndex index = LIs->getInstructionIndex(&*UI);
index = LiveIntervals::getUseIndex(index);
const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
@ -1382,7 +1391,7 @@ bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
if (LR->valno->hasPHIKill())
return false;
unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
MachineInstrIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
if (LR->end < MBBEnd)
return false;

View File

@ -176,11 +176,11 @@ namespace {
/// processActiveIntervals - expire old intervals and move non-overlapping
/// ones to the inactive list.
void processActiveIntervals(unsigned CurPoint);
void processActiveIntervals(MachineInstrIndex CurPoint);
/// processInactiveIntervals - expire old intervals and move overlapping
/// ones to the active list.
void processInactiveIntervals(unsigned CurPoint);
void processInactiveIntervals(MachineInstrIndex CurPoint);
/// hasNextReloadInterval - Return the next liveinterval that's being
/// defined by a reload from the same SS as the specified one.
@ -366,7 +366,8 @@ unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
return Reg;
VNInfo *vni = cur.begin()->valno;
if (!vni->def || vni->isUnused() || !vni->isDefAccurate())
if ((vni->def == MachineInstrIndex()) ||
vni->isUnused() || !vni->isDefAccurate())
return Reg;
MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
@ -503,8 +504,8 @@ void RALinScan::linearScan() {
DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n');
if (!cur->empty()) {
processActiveIntervals(cur->beginNumber());
processInactiveIntervals(cur->beginNumber());
processActiveIntervals(cur->beginIndex());
processInactiveIntervals(cur->beginIndex());
assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
"Can only allocate virtual registers!");
@ -585,7 +586,7 @@ void RALinScan::linearScan() {
/// processActiveIntervals - expire old intervals and move non-overlapping ones
/// to the inactive list.
void RALinScan::processActiveIntervals(unsigned CurPoint)
void RALinScan::processActiveIntervals(MachineInstrIndex CurPoint)
{
DEBUG(errs() << "\tprocessing active intervals:\n");
@ -631,7 +632,7 @@ void RALinScan::processActiveIntervals(unsigned CurPoint)
/// processInactiveIntervals - expire old intervals and move overlapping
/// ones to the active list.
void RALinScan::processInactiveIntervals(unsigned CurPoint)
void RALinScan::processInactiveIntervals(MachineInstrIndex CurPoint)
{
DEBUG(errs() << "\tprocessing inactive intervals:\n");
@ -712,7 +713,7 @@ FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
return IP.end();
}
static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, MachineInstrIndex Point){
for (unsigned i = 0, e = V.size(); i != e; ++i) {
RALinScan::IntervalPtr &IP = V[i];
LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
@ -738,7 +739,8 @@ static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
if (SI.hasAtLeastOneValue())
VNI = SI.getValNumInfo(0);
else
VNI = SI.getNextValue(0, 0, false, ls_->getVNInfoAllocator());
VNI = SI.getNextValue(MachineInstrIndex(), 0, false,
ls_->getVNInfoAllocator());
LiveInterval &RI = li_->getInterval(cur->reg);
// FIXME: This may be overly conservative.
@ -880,7 +882,7 @@ void RALinScan::UpgradeRegister(unsigned Reg) {
namespace {
struct LISorter {
bool operator()(LiveInterval* A, LiveInterval* B) {
return A->beginNumber() < B->beginNumber();
return A->beginIndex() < B->beginIndex();
}
};
}
@ -905,7 +907,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
backUpRegUses();
std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
unsigned StartPosition = cur->beginNumber();
MachineInstrIndex StartPosition = cur->beginIndex();
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
// If start of this live interval is defined by a move instruction and its
@ -915,7 +917,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
// one, e.g. X86::mov32to32_. These move instructions are not coalescable.
if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
VNInfo *vni = cur->begin()->valno;
if (vni->def && !vni->isUnused() && vni->isDefAccurate()) {
if ((vni->def != MachineInstrIndex()) && !vni->isUnused() &&
vni->isDefAccurate()) {
MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (CopyMI &&
@ -977,7 +980,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
// Okay, this reg is on the fixed list. Check to see if we actually
// conflict.
LiveInterval *I = IP.first;
if (I->endNumber() > StartPosition) {
if (I->endIndex() > StartPosition) {
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
IP.second = II;
if (II != I->begin() && II->start > StartPosition)
@ -1002,7 +1005,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
I->endNumber() > StartPosition) {
I->endIndex() > StartPosition) {
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
IP.second = II;
if (II != I->begin() && II->start > StartPosition)
@ -1170,14 +1173,14 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
unsigned ReloadIdx = ReloadLi->beginNumber();
MachineInstrIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginNumber() < ReloadIdx);
assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
@ -1226,7 +1229,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
spillIs.pop_back();
DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
earliestStartInterval =
(earliestStartInterval->beginNumber() < sli->beginNumber()) ?
(earliestStartInterval->beginIndex() < sli->beginIndex()) ?
earliestStartInterval : sli;
std::vector<LiveInterval*> newIs;
@ -1240,7 +1243,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
spilled.insert(sli->reg);
}
unsigned earliestStart = earliestStartInterval->beginNumber();
MachineInstrIndex earliestStart = earliestStartInterval->beginIndex();
DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
@ -1250,7 +1253,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
while (!handled_.empty()) {
LiveInterval* i = handled_.back();
// If this interval starts before t we are done.
if (i->beginNumber() < earliestStart)
if (i->beginIndex() < earliestStart)
break;
DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
handled_.pop_back();
@ -1301,7 +1304,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
LiveInterval *HI = handled_[i];
if (!HI->expiredAt(earliestStart) &&
HI->expiredAt(cur->beginNumber())) {
HI->expiredAt(cur->beginIndex())) {
DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
active_.push_back(std::make_pair(HI, HI->begin()));
assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
@ -1321,14 +1324,14 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
unsigned ReloadIdx = ReloadLi->beginNumber();
MachineInstrIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginNumber() < ReloadIdx);
assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;

View File

@ -683,7 +683,8 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
if (stackInterval.getNumValNums() != 0)
vni = stackInterval.getValNumInfo(0);
else
vni = stackInterval.getNextValue(0, 0, false, lss->getVNInfoAllocator());
vni = stackInterval.getNextValue(
MachineInstrIndex(), 0, false, lss->getVNInfoAllocator());
LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
stackInterval.MergeRangesInAsValue(rhsInterval, vni);

View File

@ -108,7 +108,7 @@ void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
LiveInterval &IntB,
MachineInstr *CopyMI) {
unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
MachineInstrIndex CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
@ -123,7 +123,7 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A3 in the example.
unsigned CopyUseIdx = li_->getUseIndex(CopyIdx);
MachineInstrIndex CopyUseIdx = li_->getUseIndex(CopyIdx);
LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
assert(ALR != IntA.end() && "Live range not found!");
VNInfo *AValNo = ALR->valno;
@ -160,12 +160,14 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
if (SrcReg != IntB.reg) return false;
// Get the LiveRange in IntB that this value number starts with.
LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
LiveInterval::iterator ValLR =
IntB.FindLiveRangeContaining(li_->getPrevSlot(AValNo->def));
assert(ValLR != IntB.end() && "Live range not found!");
// Make sure that the end of the live range is inside the same block as
// CopyMI.
MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
MachineInstr *ValLREndInst =
li_->getInstructionFromIndex(li_->getPrevSlot(ValLR->end));
if (!ValLREndInst ||
ValLREndInst->getParent() != CopyMI->getParent()) return false;
@ -194,7 +196,7 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
IntB.print(errs(), tri_);
});
unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
MachineInstrIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'. Update the the valnum with the new defining
// instruction #.
@ -233,7 +235,7 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
if (UIdx != -1) {
ValLREndInst->getOperand(UIdx).setIsKill(false);
IntB.removeKill(ValLR->valno, FillerStart);
ValLR->valno->removeKill(FillerStart);
}
// If the copy instruction was killing the destination register before the
@ -297,7 +299,8 @@ bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
LiveInterval &IntB,
MachineInstr *CopyMI) {
unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
MachineInstrIndex CopyIdx =
li_->getDefIndex(li_->getInstructionIndex(CopyMI));
// FIXME: For now, only eliminate the copy by commuting its def when the
// source register is a virtual register. We want to guard against cases
@ -319,7 +322,9 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A3 in the example.
LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
LiveInterval::iterator ALR =
IntA.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
assert(ALR != IntA.end() && "Live range not found!");
VNInfo *AValNo = ALR->valno;
// If other defs can reach uses of this def, then it's not safe to perform
@ -364,7 +369,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
UE = mri_->use_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
unsigned UseIdx = li_->getInstructionIndex(UseMI);
MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end())
continue;
@ -389,7 +394,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
bool BHasPHIKill = BValNo->hasPHIKill();
SmallVector<VNInfo*, 4> BDeadValNos;
VNInfo::KillSet BKills;
std::map<unsigned, unsigned> BExtend;
std::map<MachineInstrIndex, MachineInstrIndex> BExtend;
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
// A = or A, B
@ -416,7 +421,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
++UI;
if (JoinedCopies.count(UseMI))
continue;
unsigned UseIdx = li_->getInstructionIndex(UseMI);
MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end() || ULR->valno != AValNo)
continue;
@ -427,7 +432,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
if (Extended)
UseMO.setIsKill(false);
else
BKills.push_back(VNInfo::KillInfo(false, li_->getUseIndex(UseIdx)+1));
BKills.push_back(li_->getNextSlot(li_->getUseIndex(UseIdx)));
}
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
@ -436,7 +441,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
// This copy will become a noop. If it's defining a new val#,
// remove that val# as well. However this live range is being
// extended to the end of the existing live range defined by the copy.
unsigned DefIdx = li_->getDefIndex(UseIdx);
MachineInstrIndex DefIdx = li_->getDefIndex(UseIdx);
const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
BHasPHIKill |= DLR->valno->hasPHIKill();
assert(DLR->valno->def == DefIdx);
@ -476,16 +481,16 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
ValNo->def = AValNo->def;
ValNo->setCopy(0);
for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
unsigned Kill = ValNo->kills[j].killIdx;
if (Kill != BLR->end)
BKills.push_back(VNInfo::KillInfo(ValNo->kills[j].isPHIKill, Kill));
if (ValNo->kills[j] != BLR->end)
BKills.push_back(ValNo->kills[j]);
}
ValNo->kills.clear();
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
unsigned End = AI->end;
std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
MachineInstrIndex End = AI->end;
std::map<MachineInstrIndex, MachineInstrIndex>::iterator
EI = BExtend.find(End);
if (EI != BExtend.end())
End = EI->second;
IntB.addRange(LiveRange(AI->start, End, ValNo));
@ -538,7 +543,8 @@ static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
static void removeRange(LiveInterval &li,
MachineInstrIndex Start, MachineInstrIndex End,
LiveIntervals *li_, const TargetRegisterInfo *tri_) {
li.removeRange(Start, End, true);
if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
@ -546,7 +552,7 @@ static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
if (!li_->hasInterval(*SR))
continue;
LiveInterval &sli = li_->getInterval(*SR);
unsigned RemoveEnd = Start;
MachineInstrIndex RemoveEnd = Start;
while (RemoveEnd != End) {
LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
if (LR == sli.end())
@ -563,14 +569,14 @@ static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
/// as the copy instruction, trim the live interval to the last use and return
/// true.
bool
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx,
MachineBasicBlock *CopyMBB,
LiveInterval &li,
const LiveRange *LR) {
unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
unsigned LastUseIdx;
MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
LastUseIdx);
MachineInstrIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
MachineInstrIndex LastUseIdx;
MachineOperand *LastUse =
lastRegisterUse(LR->start, li_->getPrevSlot(CopyIdx), li.reg, LastUseIdx);
if (LastUse) {
MachineInstr *LastUseMI = LastUse->getParent();
if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
@ -590,7 +596,7 @@ SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
// of last use.
LastUse->setIsKill();
removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
li.addKill(LR->valno, LastUseIdx+1, false);
LR->valno->addKill(li_->getNextSlot(LastUseIdx));
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
DstReg == li.reg) {
@ -603,7 +609,7 @@ SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
// Is it livein?
if (LR->start <= MBBStart && LR->end > MBBStart) {
if (LR->start == 0) {
if (LR->start == MachineInstrIndex()) {
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
// Live-in to the function but dead. Remove it from entry live-in set.
mf_->begin()->removeLiveIn(li.reg);
@ -620,7 +626,7 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
unsigned DstReg,
unsigned DstSubIdx,
MachineInstr *CopyMI) {
unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
MachineInstrIndex CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
assert(SrcLR != SrcInt.end() && "Live range not found!");
VNInfo *ValNo = SrcLR->valno;
@ -654,7 +660,7 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
return false;
}
unsigned DefIdx = li_->getDefIndex(CopyIdx);
MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
DLR->valno->setCopy(0);
// Don't forget to update sub-register intervals.
@ -687,7 +693,7 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
// should mark it dead:
if (DefMI->getParent() == MBB) {
DefMI->addRegisterDead(SrcInt.reg, tri_);
SrcLR->end = SrcLR->start + 1;
SrcLR->end = li_->getNextSlot(SrcLR->start);
}
}
@ -726,12 +732,12 @@ bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
return false;
LiveInterval &LI = li_->getInterval(DstReg);
unsigned DefIdx = li_->getInstructionIndex(CopyMI);
MachineInstrIndex DefIdx = li_->getInstructionIndex(CopyMI);
LiveInterval::const_iterator DstLR =
LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
if (DstLR == LI.end())
return false;
if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIKill)
if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIIndex())
return true;
return false;
}
@ -807,7 +813,8 @@ SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
(TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
allocatableRegs_[CopyDstReg])) {
LiveInterval &LI = li_->getInterval(CopyDstReg);
unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
MachineInstrIndex DefIdx =
li_->getDefIndex(li_->getInstructionIndex(UseMI));
if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
if (DLR->valno->def == DefIdx)
DLR->valno->setCopy(UseMI);
@ -826,10 +833,11 @@ void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
if (!UseMO.isKill())
continue;
MachineInstr *UseMI = UseMO.getParent();
unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
MachineInstrIndex UseIdx =
li_->getUseIndex(li_->getInstructionIndex(UseMI));
const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
if (!LR || !LI.isKill(LR->valno, UseIdx+1)) {
if (LR->valno->def != UseIdx+1) {
if (!LR || !LR->valno->isKill(li_->getNextSlot(UseIdx))) {
if (LR->valno->def != li_->getNextSlot(UseIdx)) {
// Interesting problem. After coalescing reg1027's def and kill are both
// at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
//
@ -871,16 +879,16 @@ static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
LiveInterval::iterator MLR =
li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
if (MLR == li.end())
return false; // Already removed by ShortenDeadCopySrcLiveRange.
unsigned RemoveStart = MLR->start;
unsigned RemoveEnd = MLR->end;
unsigned DefIdx = li_->getDefIndex(CopyIdx);
MachineInstrIndex RemoveStart = MLR->start;
MachineInstrIndex RemoveEnd = MLR->end;
MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
// Remove the liverange that's defined by this.
if (RemoveStart == DefIdx && RemoveEnd == DefIdx+1) {
if (RemoveStart == DefIdx && RemoveEnd == li_->getNextSlot(DefIdx)) {
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
return removeIntervalIfEmpty(li, li_, tri_);
}
@ -891,7 +899,7 @@ bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
MachineInstr *DefMI) {
unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
MachineInstrIndex DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
if (DefIdx != MLR->valno->def)
return false;
@ -902,7 +910,7 @@ bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
unsigned &LRStart, LiveIntervals *li_,
MachineInstrIndex &LRStart, LiveIntervals *li_,
const TargetRegisterInfo* tri_) {
MachineInstr *DefMI =
li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
@ -913,7 +921,7 @@ static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
else
DefMI->addOperand(MachineOperand::CreateReg(li.reg,
true, true, false, true));
++LRStart;
LRStart = li_->getNextSlot(LRStart);
}
}
@ -924,8 +932,8 @@ static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
if (CopyIdx == 0) {
MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
if (CopyIdx == MachineInstrIndex()) {
// FIXME: special case: function live in. It can be a general case if the
// first instruction index starts at > 0 value.
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
@ -937,13 +945,14 @@ SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
return removeIntervalIfEmpty(li, li_, tri_);
}
LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
LiveInterval::iterator LR =
li.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
if (LR == li.end())
// Livein but defined by a phi.
return false;
unsigned RemoveStart = LR->start;
unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
MachineInstrIndex RemoveStart = LR->start;
MachineInstrIndex RemoveEnd = li_->getNextSlot(li_->getDefIndex(CopyIdx));
if (LR->end > RemoveEnd)
// More uses past this copy? Nothing to do.
return false;
@ -963,7 +972,7 @@ SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
// If the live range starts in another mbb and the copy mbb is not a fall
// through mbb, then we can only cut the range from the beginning of the
// copy mbb.
RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
RemoveStart = li_->getNextSlot(li_->getMBBStartIdx(CopyMBB));
if (LR->valno->def == RemoveStart) {
// If the def MI defines the val# and this copy is the only kill of the
@ -971,8 +980,8 @@ SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
++numDeadValNo;
if (li.isKill(LR->valno, RemoveEnd))
li.removeKill(LR->valno, RemoveEnd);
if (LR->valno->isKill(RemoveEnd))
LR->valno->removeKill(RemoveEnd);
}
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
@ -1019,13 +1028,14 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
// If the virtual register live interval extends into a loop, turn down
// aggressiveness.
unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
MachineInstrIndex CopyIdx =
li_->getDefIndex(li_->getInstructionIndex(CopyMI));
const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
if (!L) {
// Let's see if the virtual register live interval extends into the loop.
LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
assert(DLR != DstInt.end() && "Live range not found!");
DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
DLR = DstInt.FindLiveRangeContaining(li_->getNextSlot(DLR->end));
if (DLR != DstInt.end()) {
CopyMBB = li_->getMBBFromIndex(DLR->start);
L = loopInfo->getLoopFor(CopyMBB);
@ -1035,7 +1045,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
if (!L || Length <= Threshold)
return true;
unsigned UseIdx = li_->getUseIndex(CopyIdx);
MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
if (loopInfo->getLoopFor(SMBB) != L) {
@ -1048,7 +1058,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
if (SuccMBB == CopyMBB)
continue;
if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
li_->getMBBEndIdx(SuccMBB)+1))
li_->getNextSlot(li_->getMBBEndIdx(SuccMBB))))
return false;
}
}
@ -1079,11 +1089,12 @@ SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
// If the virtual register live interval is defined or cross a loop, turn
// down aggressiveness.
unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
unsigned UseIdx = li_->getUseIndex(CopyIdx);
MachineInstrIndex CopyIdx =
li_->getDefIndex(li_->getInstructionIndex(CopyMI));
MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
assert(SLR != SrcInt.end() && "Live range not found!");
SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
SLR = SrcInt.FindLiveRangeContaining(li_->getPrevSlot(SLR->start));
if (SLR == SrcInt.end())
return true;
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
@ -1103,7 +1114,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
if (PredMBB == SMBB)
continue;
if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
li_->getMBBEndIdx(PredMBB)+1))
li_->getNextSlot(li_->getMBBEndIdx(PredMBB))))
return false;
}
}
@ -1729,7 +1740,8 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
e = ResSrcInt->vni_end(); i != e; ++i) {
const VNInfo *vni = *i;
// FIXME: Do isPHIDef and isDefAccurate both need to be tested?
if (!vni->def || vni->isUnused() || vni->isPHIDef() || !vni->isDefAccurate())
if (vni->def == MachineInstrIndex() || vni->isUnused() || vni->isPHIDef() ||
!vni->isDefAccurate())
continue;
MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
@ -2141,7 +2153,8 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
}
} else {
// It was defined as a copy from the LHS, find out what value # it is.
RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
RHSValNoInfo =
LHS.getLiveRangeContaining(li_->getPrevSlot(RHSValNoInfo0->def))->valno;
RHSValID = RHSValNoInfo->id;
RHSVal0DefinedFromLHS = RHSValID;
}
@ -2204,7 +2217,8 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
continue;
// Figure out the value # from the RHS.
LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
LHSValsDefinedFromRHS[VNI]=
RHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
}
// Loop over the value numbers of the RHS, seeing if any are defined from
@ -2221,7 +2235,8 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
continue;
// Figure out the value # from the LHS.
RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
RHSValsDefinedFromLHS[VNI]=
LHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
}
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
@ -2305,7 +2320,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned LHSValID = LHSValNoAssignments[VNI->id];
LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
NewVNInfo[LHSValID]->removeKill(VNI->def);
if (VNI->hasPHIKill())
NewVNInfo[LHSValID]->setHasPHIKill(true);
RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
@ -2316,7 +2331,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned RHSValID = RHSValNoAssignments[VNI->id];
LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
NewVNInfo[RHSValID]->removeKill(VNI->def);
if (VNI->hasPHIKill())
NewVNInfo[RHSValID]->setHasPHIKill(true);
LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
@ -2541,9 +2556,11 @@ SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End or NULL if there are no uses.
MachineOperand *
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
unsigned Reg, unsigned &UseIdx) const{
UseIdx = 0;
SimpleRegisterCoalescing::lastRegisterUse(MachineInstrIndex Start,
MachineInstrIndex End,
unsigned Reg,
MachineInstrIndex &UseIdx) const{
UseIdx = MachineInstrIndex();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
MachineOperand *LastUse = NULL;
for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
@ -2555,7 +2572,7 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
SrcReg == DstReg)
// Ignore identity copies.
continue;
unsigned Idx = li_->getInstructionIndex(UseMI);
MachineInstrIndex Idx = li_->getInstructionIndex(UseMI);
if (Idx >= Start && Idx < End && Idx >= UseIdx) {
LastUse = &Use;
UseIdx = li_->getUseIndex(Idx);
@ -2564,13 +2581,13 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
return LastUse;
}
int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
int s = Start;
MachineInstrIndex s = Start;
MachineInstrIndex e = li_->getBaseIndex(li_->getPrevSlot(End));
while (e >= s) {
// Skip deleted instructions
MachineInstr *MI = li_->getInstructionFromIndex(e);
while ((e - InstrSlots::NUM) >= s && !MI) {
e -= InstrSlots::NUM;
while (e != MachineInstrIndex() && li_->getPrevIndex(e) >= s && !MI) {
e = li_->getPrevIndex(e);
MI = li_->getInstructionFromIndex(e);
}
if (e < s || MI == NULL)
@ -2589,7 +2606,7 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
}
}
e -= InstrSlots::NUM;
e = li_->getPrevIndex(e);
}
return NULL;
@ -2609,10 +2626,10 @@ void SimpleRegisterCoalescing::releaseMemory() {
ReMatDefs.clear();
}
static bool isZeroLengthInterval(LiveInterval *li) {
bool SimpleRegisterCoalescing::isZeroLengthInterval(LiveInterval *li) const {
for (LiveInterval::Ranges::const_iterator
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
if (i->end - i->start > LiveInterval::InstrSlots::NUM)
if (li_->getPrevIndex(i->end) > i->start)
return false;
return true;
}

View File

@ -196,7 +196,7 @@ namespace llvm {
/// TrimLiveIntervalToLastUse - If there is a last use in the same basic
/// block as the copy instruction, trim the ive interval to the last use
/// and return true.
bool TrimLiveIntervalToLastUse(unsigned CopyIdx,
bool TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx,
MachineBasicBlock *CopyMBB,
LiveInterval &li, const LiveRange *LR);
@ -289,10 +289,13 @@ namespace llvm {
/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End or NULL if there are no uses.
MachineOperand *lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
unsigned &LastUseIdx) const;
MachineOperand *lastRegisterUse(MachineInstrIndex Start, MachineInstrIndex End,
unsigned Reg, MachineInstrIndex &LastUseIdx) const;
void printRegName(unsigned reg) const;
/// Returns true if the given live interval is zero length.
bool isZeroLengthInterval(LiveInterval *li) const;
};
} // End llvm namespace

View File

@ -51,13 +51,13 @@ protected:
/// Ensures there is space before the given machine instruction, returns the
/// instruction's new number.
unsigned makeSpaceBefore(MachineInstr *mi) {
MachineInstrIndex makeSpaceBefore(MachineInstr *mi) {
if (!lis->hasGapBeforeInstr(lis->getInstructionIndex(mi))) {
lis->scaleNumbering(2);
ls->scaleNumbering(2);
}
unsigned miIdx = lis->getInstructionIndex(mi);
MachineInstrIndex miIdx = lis->getInstructionIndex(mi);
assert(lis->hasGapBeforeInstr(miIdx));
@ -66,13 +66,13 @@ protected:
/// Ensure there is space after the given machine instruction, returns the
/// instruction's new number.
unsigned makeSpaceAfter(MachineInstr *mi) {
MachineInstrIndex makeSpaceAfter(MachineInstr *mi) {
if (!lis->hasGapAfterInstr(lis->getInstructionIndex(mi))) {
lis->scaleNumbering(2);
ls->scaleNumbering(2);
}
unsigned miIdx = lis->getInstructionIndex(mi);
MachineInstrIndex miIdx = lis->getInstructionIndex(mi);
assert(lis->hasGapAfterInstr(miIdx));
@ -83,19 +83,19 @@ protected:
/// after the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsible for adding an appropriate
/// LiveInterval to the LiveIntervals analysis.
unsigned insertStoreAfter(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineInstrIndex insertStoreAfter(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineBasicBlock::iterator nextInstItr(next(mi));
unsigned miIdx = makeSpaceAfter(mi);
MachineInstrIndex miIdx = makeSpaceAfter(mi);
tii->storeRegToStackSlot(*mi->getParent(), nextInstItr, vreg,
true, ss, trc);
MachineBasicBlock::iterator storeInstItr(next(mi));
MachineInstr *storeInst = &*storeInstItr;
unsigned storeInstIdx = miIdx + LiveInterval::InstrSlots::NUM;
MachineInstrIndex storeInstIdx = lis->getNextIndex(miIdx);
assert(lis->getInstructionFromIndex(storeInstIdx) == 0 &&
"Store inst index already in use.");
@ -108,15 +108,15 @@ protected:
/// Insert a store of the given vreg to the given stack slot immediately
/// before the given instructnion. Returns the base index of the inserted
/// Instruction.
unsigned insertStoreBefore(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
unsigned miIdx = makeSpaceBefore(mi);
MachineInstrIndex insertStoreBefore(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineInstrIndex miIdx = makeSpaceBefore(mi);
tii->storeRegToStackSlot(*mi->getParent(), mi, vreg, true, ss, trc);
MachineBasicBlock::iterator storeInstItr(prior(mi));
MachineInstr *storeInst = &*storeInstItr;
unsigned storeInstIdx = miIdx - LiveInterval::InstrSlots::NUM;
MachineInstrIndex storeInstIdx = lis->getPrevIndex(miIdx);
assert(lis->getInstructionFromIndex(storeInstIdx) == 0 &&
"Store inst index already in use.");
@ -131,13 +131,13 @@ protected:
unsigned vreg,
const TargetRegisterClass *trc) {
unsigned storeInstIdx = insertStoreAfter(mi, ss, vreg, trc);
unsigned start = lis->getDefIndex(lis->getInstructionIndex(mi)),
end = lis->getUseIndex(storeInstIdx);
MachineInstrIndex storeInstIdx = insertStoreAfter(mi, ss, vreg, trc);
MachineInstrIndex start = lis->getDefIndex(lis->getInstructionIndex(mi)),
end = lis->getUseIndex(storeInstIdx);
VNInfo *vni =
li->getNextValue(storeInstIdx, 0, true, lis->getVNInfoAllocator());
li->addKill(vni, storeInstIdx, false);
vni->addKill(storeInstIdx);
DEBUG(errs() << " Inserting store range: [" << start
<< ", " << end << ")\n");
LiveRange lr(start, end, vni);
@ -149,18 +149,18 @@ protected:
/// after the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsibel for adding/removing an appropriate
/// range vreg's LiveInterval.
unsigned insertLoadAfter(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineInstrIndex insertLoadAfter(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineBasicBlock::iterator nextInstItr(next(mi));
unsigned miIdx = makeSpaceAfter(mi);
MachineInstrIndex miIdx = makeSpaceAfter(mi);
tii->loadRegFromStackSlot(*mi->getParent(), nextInstItr, vreg, ss, trc);
MachineBasicBlock::iterator loadInstItr(next(mi));
MachineInstr *loadInst = &*loadInstItr;
unsigned loadInstIdx = miIdx + LiveInterval::InstrSlots::NUM;
MachineInstrIndex loadInstIdx = lis->getNextIndex(miIdx);
assert(lis->getInstructionFromIndex(loadInstIdx) == 0 &&
"Store inst index already in use.");
@ -174,15 +174,15 @@ protected:
/// before the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsible for adding an appropriate
/// LiveInterval to the LiveIntervals analysis.
unsigned insertLoadBefore(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
unsigned miIdx = makeSpaceBefore(mi);
MachineInstrIndex insertLoadBefore(MachineInstr *mi, unsigned ss,
unsigned vreg,
const TargetRegisterClass *trc) {
MachineInstrIndex miIdx = makeSpaceBefore(mi);
tii->loadRegFromStackSlot(*mi->getParent(), mi, vreg, ss, trc);
MachineBasicBlock::iterator loadInstItr(prior(mi));
MachineInstr *loadInst = &*loadInstItr;
unsigned loadInstIdx = miIdx - LiveInterval::InstrSlots::NUM;
MachineInstrIndex loadInstIdx = lis->getPrevIndex(miIdx);
assert(lis->getInstructionFromIndex(loadInstIdx) == 0 &&
"Load inst index already in use.");
@ -197,13 +197,13 @@ protected:
unsigned vreg,
const TargetRegisterClass *trc) {
unsigned loadInstIdx = insertLoadBefore(mi, ss, vreg, trc);
unsigned start = lis->getDefIndex(loadInstIdx),
end = lis->getUseIndex(lis->getInstructionIndex(mi));
MachineInstrIndex loadInstIdx = insertLoadBefore(mi, ss, vreg, trc);
MachineInstrIndex start = lis->getDefIndex(loadInstIdx),
end = lis->getUseIndex(lis->getInstructionIndex(mi));
VNInfo *vni =
li->getNextValue(loadInstIdx, 0, true, lis->getVNInfoAllocator());
li->addKill(vni, lis->getInstructionIndex(mi), false);
vni->addKill(lis->getInstructionIndex(mi));
DEBUG(errs() << " Intserting load range: [" << start
<< ", " << end << ")\n");
LiveRange lr(start, end, vni);
@ -321,23 +321,21 @@ public:
vrm->assignVirt2StackSlot(li->reg, ss);
MachineInstr *mi = 0;
unsigned storeIdx = 0;
MachineInstrIndex storeIdx = MachineInstrIndex();
if (valno->isDefAccurate()) {
// If we have an accurate def we can just grab an iterator to the instr
// after the def.
mi = lis->getInstructionFromIndex(valno->def);
storeIdx = insertStoreAfter(mi, ss, li->reg, trc) +
LiveInterval::InstrSlots::DEF;
storeIdx = lis->getDefIndex(insertStoreAfter(mi, ss, li->reg, trc));
} else {
// if we get here we have a PHI def.
mi = &lis->getMBBFromIndex(valno->def)->front();
storeIdx = insertStoreBefore(mi, ss, li->reg, trc) +
LiveInterval::InstrSlots::DEF;
storeIdx = lis->getDefIndex(insertStoreBefore(mi, ss, li->reg, trc));
}
MachineBasicBlock *defBlock = mi->getParent();
unsigned loadIdx = 0;
MachineInstrIndex loadIdx = MachineInstrIndex();
// Now we need to find the load...
MachineBasicBlock::iterator useItr(mi);
@ -345,13 +343,11 @@ public:
if (useItr != defBlock->end()) {
MachineInstr *loadInst = useItr;
loadIdx = insertLoadBefore(loadInst, ss, li->reg, trc) +
LiveInterval::InstrSlots::USE;
loadIdx = lis->getUseIndex(insertLoadBefore(loadInst, ss, li->reg, trc));
}
else {
MachineInstr *loadInst = &defBlock->back();
loadIdx = insertLoadAfter(loadInst, ss, li->reg, trc) +
LiveInterval::InstrSlots::USE;
loadIdx = lis->getUseIndex(insertLoadAfter(loadInst, ss, li->reg, trc));
}
li->removeRange(storeIdx, loadIdx, true);

View File

@ -295,7 +295,7 @@ StrongPHIElimination::computeDomForest(
static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
LiveIntervals& LI) {
LiveInterval& I = LI.getOrCreateInterval(r);
unsigned idx = LI.getMBBStartIdx(MBB);
MachineInstrIndex idx = LI.getMBBStartIdx(MBB);
return I.liveAt(idx);
}
@ -428,7 +428,7 @@ void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
}
LiveInterval& PI = LI.getOrCreateInterval(DestReg);
unsigned pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
MachineInstrIndex pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
@ -748,7 +748,7 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
LiveInterval& I = LI.getInterval(curr.second);
MachineBasicBlock::iterator term = MBB->getFirstTerminator();
unsigned endIdx = 0;
MachineInstrIndex endIdx = MachineInstrIndex();
if (term != MBB->end())
endIdx = LI.getInstructionIndex(term);
else
@ -784,10 +784,10 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
if (RegHandled.insert(I->first).second) {
LiveInterval& Int = LI.getOrCreateInterval(I->first);
unsigned instrIdx = LI.getInstructionIndex(I->second);
MachineInstrIndex instrIdx = LI.getInstructionIndex(I->second);
if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
LI.getMBBEndIdx(I->second->getParent())+1,
LI.getNextSlot(LI.getMBBEndIdx(I->second->getParent())),
true);
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
@ -831,11 +831,11 @@ void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
VNInfo* FirstVN = *Int.vni_begin();
FirstVN->setHasPHIKill(false);
if (I->getOperand(i).isKill())
Int.addKill(FirstVN,
LiveIntervals::getUseIndex(LI.getInstructionIndex(I)), false);
FirstVN->addKill(
LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
LiveRange LR (LI.getMBBStartIdx(I->getParent()),
LiveIntervals::getUseIndex(LI.getInstructionIndex(I))+1,
LI.getNextSlot(LI.getUseIndex(LI.getInstructionIndex(I))),
FirstVN);
Int.addRange(LR);
@ -870,8 +870,8 @@ bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
LiveRange R = *I;
unsigned Start = R.start;
unsigned End = R.end;
MachineInstrIndex Start = R.start;
MachineInstrIndex End = R.end;
if (LHS.getLiveRangeContaining(Start))
return false;
@ -968,11 +968,11 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
LI.computeNumbering();
LiveInterval& Int = LI.getOrCreateInterval(I->first);
unsigned instrIdx =
MachineInstrIndex instrIdx =
LI.getInstructionIndex(--SI->second->getFirstTerminator());
if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
LI.getMBBEndIdx(SI->second)+1, true);
LI.getNextSlot(LI.getMBBEndIdx(SI->second)), true);
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
--SI->second->getFirstTerminator());
@ -1012,7 +1012,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
if (PI.containsOneValue()) {
LI.removeInterval(DestReg);
} else {
unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
MachineInstrIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
PI.removeRange(*PI.getLiveRangeContaining(idx), true);
}
} else {
@ -1026,8 +1026,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
LiveInterval& InputI = LI.getInterval(reg);
if (MBB != PInstr->getParent() &&
InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
InputI.expiredAt(LI.getInstructionIndex(PInstr) +
LiveInterval::InstrSlots::NUM))
InputI.expiredAt(LI.getNextIndex(LI.getInstructionIndex(PInstr))))
InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
LI.getInstructionIndex(PInstr),
true);
@ -1035,7 +1034,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
// If the PHI is not dead, then the valno defined by the PHI
// now has an unknown def.
unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
MachineInstrIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
const LiveRange* PLR = PI.getLiveRangeContaining(idx);
PLR->valno->setIsPHIDef(true);
LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),

View File

@ -18,6 +18,7 @@
#define LLVM_CODEGEN_VIRTREGMAP_H
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
@ -79,7 +80,7 @@ namespace llvm {
/// Virt2SplitKillMap - This is splitted virtual register to its last use
/// (kill) index mapping.
IndexedMap<unsigned> Virt2SplitKillMap;
IndexedMap<MachineInstrIndex> Virt2SplitKillMap;
/// ReMatMap - This is virtual register to re-materialized instruction
/// mapping. Each virtual register whose definition is going to be
@ -141,7 +142,7 @@ namespace llvm {
VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG),
Virt2StackSlotMap(NO_STACK_SLOT),
Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
Virt2SplitKillMap(0), ReMatMap(NULL),
Virt2SplitKillMap(MachineInstrIndex()), ReMatMap(NULL),
ReMatId(MAX_STACK_SLOT+1),
LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
@ -265,17 +266,17 @@ namespace llvm {
}
/// @brief record the last use (kill) of a split virtual register.
void addKillPoint(unsigned virtReg, unsigned index) {
void addKillPoint(unsigned virtReg, MachineInstrIndex index) {
Virt2SplitKillMap[virtReg] = index;
}
unsigned getKillPoint(unsigned virtReg) const {
MachineInstrIndex getKillPoint(unsigned virtReg) const {
return Virt2SplitKillMap[virtReg];
}
/// @brief remove the last use (kill) of a split virtual register.
void removeKillPoint(unsigned virtReg) {
Virt2SplitKillMap[virtReg] = 0;
Virt2SplitKillMap[virtReg] = MachineInstrIndex();
}
/// @brief returns true if the specified MachineInstr is a spill point.