1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00

Reapply r286080 with a phony change in Hexagon's CMakeLists.txt

Cmake has not recognized that Hexagon.td has a new dependency in
HexagonPatterns.td. All changes to that file were not visible to
the build bots.

llvm-svn: 286084
This commit is contained in:
Krzysztof Parzyszek 2016-11-06 20:55:57 +00:00
parent 225a3d0733
commit e5c68ce5f5
3 changed files with 107 additions and 208 deletions

View File

@ -64,3 +64,4 @@ add_subdirectory(AsmParser)
add_subdirectory(TargetInfo)
add_subdirectory(MCTargetDesc)
add_subdirectory(Disassembler)

View File

@ -112,9 +112,7 @@ public:
void SelectIntrinsicWOChain(SDNode *N);
void SelectConstant(SDNode *N);
void SelectConstantFP(SDNode *N);
void SelectAdd(SDNode *N);
void SelectBitcast(SDNode *N);
void SelectBitOp(SDNode *N);
// Include the pieces autogenerated from the target description.
#include "HexagonGenDAGISel.inc"
@ -888,180 +886,6 @@ void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
}
//
// Map add followed by a asr -> asr +=.
//
void HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
// Identify nodes of the form: add(asr(...)).
SDNode* Src1 = N->getOperand(0).getNode();
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse() ||
Src1->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
// Rd and Rd' are assigned to the same register
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
N->getOperand(1),
Src1->getOperand(0),
Src1->getOperand(1));
ReplaceNode(N, Result);
}
//
// Map the following, where possible.
// AND/FABS -> clrbit
// OR -> setbit
// XOR/FNEG ->toggle_bit.
//
void HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
SDLoc dl(N);
EVT ValueVT = N->getValueType(0);
// We handle only 32 and 64-bit bit ops.
if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
ValueVT == MVT::f32 || ValueVT == MVT::f64)) {
SelectCode(N);
return;
}
// We handly only fabs and fneg for V5.
unsigned Opc = N->getOpcode();
if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps()) {
SelectCode(N);
return;
}
int64_t Val = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if (N->getOperand(1).getOpcode() == ISD::Constant)
Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
else {
SelectCode(N);
return;
}
}
if (Opc == ISD::AND) {
// Check if this is a bit-clearing AND, if not select code the usual way.
if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
(ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
Val = ~Val;
else {
SelectCode(N);
return;
}
}
// If OR or AND is being fed by shl, srl and, sra don't do this change,
// because Hexagon provide |= &= on shl, srl, and sra.
// Traverse the DAG to see if there is shl, srl and sra.
if (Opc == ISD::OR || Opc == ISD::AND) {
switch (N->getOperand(0)->getOpcode()) {
default:
break;
case ISD::SRA:
case ISD::SRL:
case ISD::SHL:
SelectCode(N);
return;
}
}
// Make sure it's power of 2.
unsigned BitPos = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
(ValueVT == MVT::i64 && !isPowerOf2_64(Val))) {
SelectCode(N);
return;
}
// Get the bit position.
BitPos = countTrailingZeros(uint64_t(Val));
} else {
// For fabs and fneg, it's always the 31st bit.
BitPos = 31;
}
unsigned BitOpc = 0;
// Set the right opcode for bitwise operations.
switch (Opc) {
default:
llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
case ISD::AND:
case ISD::FABS:
BitOpc = Hexagon::S2_clrbit_i;
break;
case ISD::OR:
BitOpc = Hexagon::S2_setbit_i;
break;
case ISD::XOR:
case ISD::FNEG:
BitOpc = Hexagon::S2_togglebit_i;
break;
}
SDNode *Result;
// Get the right SDVal for the opcode.
SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
N->getOperand(0), SDVal);
} else {
// 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
EVT SubValueVT;
if (ValueVT == MVT::i64)
SubValueVT = MVT::i32;
else
SubValueVT = MVT::f32;
SDNode *Reg = N->getOperand(0).getNode();
SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
dl, MVT::i64);
SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
MVT::i32);
SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
MVT::i32);
SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
MVT::i32, SDValue(Reg, 0));
SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
MVT::i32, SDValue(Reg, 0));
// Clear/set/toggle hi or lo registers depending on the bit position.
if (SubValueVT != MVT::f32 && BitPos < 32) {
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregLO, SDVal);
const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
SDValue(Result0, 0), SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
} else {
if (Opc != ISD::FABS && Opc != ISD::FNEG)
SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregHI, SDVal);
const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
SubregLO, SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
}
}
ReplaceNode(N, Result);
}
void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
MachineFrameInfo &MFI = MF->getFrameInfo();
const HexagonFrameLowering *HFI = HST->getFrameLowering();
@ -1127,10 +951,6 @@ void HexagonDAGToDAGISel::Select(SDNode *N) {
SelectFrameIndex(N);
return;
case ISD::ADD:
SelectAdd(N);
return;
case ISD::BITCAST:
SelectBitcast(N);
return;
@ -1151,14 +971,6 @@ void HexagonDAGToDAGISel::Select(SDNode *N) {
SelectMul(N);
return;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FABS:
case ISD::FNEG:
SelectBitOp(N);
return;
case ISD::ZERO_EXTEND:
SelectZeroExtend(N);
return;

View File

@ -24,9 +24,34 @@ def IsPow2_32 : PatLeaf<(i32 imm), [{
return isPowerOf2_32(V);
}]>;
def IsPow2_64 : PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V);
}]>;
def IsNPow2_32 : PatLeaf<(i32 imm), [{
uint32_t V = N->getZExtValue();
return isPowerOf2_32(~V);
uint32_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def IsPow2_64L : PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;
def IsPow2_64H : PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;
def IsNPow2_64L : PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;
def IsNPow2_64H : PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;
def SDEC1 : SDNodeXForm<imm, [{
@ -36,15 +61,36 @@ def SDEC1 : SDNodeXForm<imm, [{
def UDEC1 : SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V > 0);
assert(V >= 1);
return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;
def UDEC32 : SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V >= 32);
return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;
def Log2_32 : SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def Log2_64 : SDNodeXForm<imm, [{
uint64_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;
def LogN2_32 : SDNodeXForm<imm, [{
uint32_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_64 : SDNodeXForm<imm, [{
uint64_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;
class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
: Pat<(i1 (OpNode I32:$src1, ImmPred:$src2)),
@ -528,18 +574,54 @@ def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
// Count trailing ones: 32-bit.
def: Pat<(cttz (not I32:$Rs)), (S2_ct1 I32:$Rs)>;
def: Pat<(i32 (and I32:$Rs, (not (shl 1, u5_0ImmPred:$u5)))),
(S2_clrbit_i IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(i32 (or I32:$Rs, (shl 1, u5_0ImmPred:$u5))),
(S2_setbit_i IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(i32 (xor I32:$Rs, (shl 1, u5_0ImmPred:$u5))),
(S2_togglebit_i IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(i32 (and I32:$Rs, (not (shl 1, I32:$Rt)))),
(S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i32 (or I32:$Rs, (shl 1, I32:$Rt))),
(S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i32 (xor I32:$Rs, (shl 1, I32:$Rt))),
(S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I32:$Rs, IsNPow2_32:$V),
(S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
def: Pat<(or I32:$Rs, IsPow2_32:$V),
(S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(xor I32:$Rs, IsPow2_32:$V),
(S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
(S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
(S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
(S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}
// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
(REG_SEQUENCE DoubleRegs,
(i32 (HiReg $Rss)), subreg_hireg,
(S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)), subreg_loreg)>;
def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
(REG_SEQUENCE DoubleRegs,
(S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
subreg_hireg,
(i32 (LoReg $Rss)), subreg_loreg)>;
def: Pat<(or I64:$Rss, IsPow2_64L:$V),
(REG_SEQUENCE DoubleRegs,
(i32 (HiReg $Rss)), subreg_hireg,
(S2_setbit_i (LoReg $Rss), (Log2_64 $V)), subreg_loreg)>;
def: Pat<(or I64:$Rss, IsPow2_64H:$V),
(REG_SEQUENCE DoubleRegs,
(S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
subreg_hireg,
(i32 (LoReg $Rss)), subreg_loreg)>;
def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
(REG_SEQUENCE DoubleRegs,
(i32 (HiReg $Rss)), subreg_hireg,
(S2_togglebit_i (LoReg $Rss), (Log2_64 $V)), subreg_loreg)>;
def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
(REG_SEQUENCE DoubleRegs,
(S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
subreg_hireg,
(i32 (LoReg $Rss)), subreg_loreg)>;
}
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
@ -1642,11 +1724,6 @@ def LogN2_16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_32 : SDNodeXForm<imm, [{
uint32_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def NegImm8 : SDNodeXForm<imm, [{
int8_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
@ -2615,6 +2692,15 @@ def : Pat <(fneg F32:$src1),
(S2_togglebit_i F32:$src1, 31)>,
Requires<[HasV5T]>;
def: Pat<(fabs F64:$Rs),
(REG_SEQUENCE DoubleRegs,
(S2_clrbit_i (HiReg $Rs), 31), subreg_hireg,
(i32 (LoReg $Rs)), subreg_loreg)>;
def: Pat<(fneg F64:$Rs),
(REG_SEQUENCE DoubleRegs,
(S2_togglebit_i (HiReg $Rs), 31), subreg_hireg,
(i32 (LoReg $Rs)), subreg_loreg)>;
def alignedload : PatFrag<(ops node:$addr), (load $addr), [{
return isAlignedMemNode(dyn_cast<MemSDNode>(N));