1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00

[PGO] Make indirect call promotion a utility

This patch factors out the main code transformation utilities in the pgo-driven
indirect call promotion pass and places them in Transforms/Utils. The change is
intended to be a non-functional change, letting non-pgo-driven passes share a
common implementation with the existing pgo-driven pass.

The common utilities are used to conditionally promote indirect call sites to
direct call sites. They perform the underlying transformation, and do not
consider profile information. The pgo-specific details (e.g., the computation
of branch weight metadata) have been left in the indirect call promotion pass.

Differential Revision: https://reviews.llvm.org/D40658

llvm-svn: 319963
This commit is contained in:
Matthew Simpson 2017-12-06 21:22:54 +00:00
parent 5fdb149e58
commit e71eaed450
6 changed files with 394 additions and 319 deletions

View File

@ -77,9 +77,12 @@ ModulePass *createPGOIndirectCallPromotionLegacyPass(bool InLTO = false,
bool SamplePGO = false);
FunctionPass *createPGOMemOPSizeOptLegacyPass();
// Helper function to check if it is legal to promote indirect call \p Inst
// to a direct call of function \p F. Stores the reason in \p Reason.
bool isLegalToPromote(Instruction *Inst, Function *F, const char **Reason);
// The pgo-specific indirect call promotion function declared below is used by
// the pgo-driven indirect call promotion and sample profile passes. It's a
// wrapper around llvm::promoteCall, et al. that additionally computes !prof
// metadata. We place it in a pgo namespace so it's not confused with the
// generic utilities.
namespace pgo {
// Helper function that transforms Inst (either an indirect-call instruction, or
// an invoke instruction , to a conditional call to F. This is like:
@ -98,6 +101,7 @@ Instruction *promoteIndirectCall(Instruction *Inst, Function *F, uint64_t Count,
uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE);
} // namespace pgo
/// Options for the frontend instrumentation based profiling pass.
struct InstrProfOptions {

View File

@ -0,0 +1,44 @@
//===- CallPromotionUtils.h - Utilities for call promotion ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares utilities useful for promoting indirect call sites to
// direct call sites.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_CALLPROMOTIONUTILS_H
#define LLVM_TRANSFORMS_UTILS_CALLPROMOTIONUTILS_H
#include "llvm/IR/CallSite.h"
namespace llvm {
/// Return true if the given indirect call site can be made to call \p Callee.
///
/// This function ensures that the number and type of the call site's arguments
/// and return value match those of the given function. If the types do not
/// match exactly, they must at least be bitcast compatible. If \p FailureReason
/// is non-null and the indirect call cannot be promoted, the failure reason
/// will be stored in it.
bool isLegalToPromote(CallSite CS, Function *Callee,
const char **FailureReason = nullptr);
/// Promote the given indirect call site to conditionally call \p Callee.
///
/// This function creates an if-then-else structure at the location of the call
/// site. The original call site is promoted and moved into the "then" block. A
/// clone of the indirect call site is placed in the "else" block and returned.
/// If \p BranchWeights is non-null, it will be used to set !prof metadata on
/// the new conditional branch.
Instruction *promoteCallWithIfThenElse(CallSite CS, Function *Callee,
MDNode *BranchWeights = nullptr);
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_CALLPROMOTIONUTILS_H

View File

@ -69,6 +69,7 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
#include <cassert>
@ -823,10 +824,10 @@ bool SampleProfileLoader::inlineHotFunctions(
if (R != SymbolMap.end() && R->getValue() &&
!R->getValue()->isDeclaration() &&
R->getValue()->getSubprogram() &&
isLegalToPromote(I, R->getValue(), &Reason)) {
isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
uint64_t C = FS->getEntrySamples();
Instruction *DI = promoteIndirectCall(
I, R->getValue(), C, Sum, false, ORE);
Instruction *DI =
pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
Sum -= C;
PromotedInsns.insert(I);
// If profile mismatches, we should not attempt to inline DI.

View File

@ -47,6 +47,7 @@
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include <cassert>
#include <cstdint>
#include <memory>
@ -214,49 +215,6 @@ public:
} // end anonymous namespace
bool llvm::isLegalToPromote(Instruction *Inst, Function *F,
const char **Reason) {
// Check the return type.
Type *CallRetType = Inst->getType();
if (!CallRetType->isVoidTy()) {
Type *FuncRetType = F->getReturnType();
if (FuncRetType != CallRetType &&
!CastInst::isBitCastable(FuncRetType, CallRetType)) {
if (Reason)
*Reason = "Return type mismatch";
return false;
}
}
// Check if the arguments are compatible with the parameters
FunctionType *DirectCalleeType = F->getFunctionType();
unsigned ParamNum = DirectCalleeType->getFunctionNumParams();
CallSite CS(Inst);
unsigned ArgNum = CS.arg_size();
if (ParamNum != ArgNum && !DirectCalleeType->isVarArg()) {
if (Reason)
*Reason = "The number of arguments mismatch";
return false;
}
for (unsigned I = 0; I < ParamNum; ++I) {
Type *PTy = DirectCalleeType->getFunctionParamType(I);
Type *ATy = CS.getArgument(I)->getType();
if (PTy == ATy)
continue;
if (!CastInst::castIsValid(Instruction::BitCast, CS.getArgument(I), PTy)) {
if (Reason)
*Reason = "Argument type mismatch";
return false;
}
}
DEBUG(dbgs() << " #" << NumOfPGOICallPromotion << " Promote the icall to "
<< F->getName() << "\n");
return true;
}
// Indirect-call promotion heuristic. The direct targets are sorted based on
// the count. Stop at the first target that is not promoted.
std::vector<ICallPromotionFunc::PromotionCandidate>
@ -317,7 +275,7 @@ ICallPromotionFunc::getPromotionCandidatesForCallSite(
}
const char *Reason = nullptr;
if (!isLegalToPromote(Inst, TargetFunction, &Reason)) {
if (!isLegalToPromote(CallSite(Inst), TargetFunction, &Reason)) {
using namespace ore;
ORE.emit([&]() {
@ -335,23 +293,11 @@ ICallPromotionFunc::getPromotionCandidatesForCallSite(
return Ret;
}
// Create a diamond structure for If_Then_Else. Also update the profile
// count. Do the fix-up for the invoke instruction.
static void createIfThenElse(Instruction *Inst, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
BasicBlock **DirectCallBB,
BasicBlock **IndirectCallBB,
BasicBlock **MergeBB) {
CallSite CS(Inst);
Value *OrigCallee = CS.getCalledValue();
IRBuilder<> BBBuilder(Inst);
LLVMContext &Ctx = Inst->getContext();
Value *BCI1 =
BBBuilder.CreateBitCast(OrigCallee, Type::getInt8PtrTy(Ctx), "");
Value *BCI2 =
BBBuilder.CreateBitCast(DirectCallee, Type::getInt8PtrTy(Ctx), "");
Value *PtrCmp = BBBuilder.CreateICmpEQ(BCI1, BCI2, "");
Instruction *llvm::pgo::promoteIndirectCall(Instruction *Inst,
Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE) {
uint64_t ElseCount = TotalCount - Count;
uint64_t MaxCount = (Count >= ElseCount ? Count : ElseCount);
@ -359,231 +305,9 @@ static void createIfThenElse(Instruction *Inst, Function *DirectCallee,
MDBuilder MDB(Inst->getContext());
MDNode *BranchWeights = MDB.createBranchWeights(
scaleBranchCount(Count, Scale), scaleBranchCount(ElseCount, Scale));
TerminatorInst *ThenTerm, *ElseTerm;
SplitBlockAndInsertIfThenElse(PtrCmp, Inst, &ThenTerm, &ElseTerm,
BranchWeights);
*DirectCallBB = ThenTerm->getParent();
(*DirectCallBB)->setName("if.true.direct_targ");
*IndirectCallBB = ElseTerm->getParent();
(*IndirectCallBB)->setName("if.false.orig_indirect");
*MergeBB = Inst->getParent();
(*MergeBB)->setName("if.end.icp");
// Special handing of Invoke instructions.
InvokeInst *II = dyn_cast<InvokeInst>(Inst);
if (!II)
return;
// We don't need branch instructions for invoke.
ThenTerm->eraseFromParent();
ElseTerm->eraseFromParent();
// Add jump from Merge BB to the NormalDest. This is needed for the newly
// created direct invoke stmt -- as its NormalDst will be fixed up to MergeBB.
BranchInst::Create(II->getNormalDest(), *MergeBB);
}
// Find the PHI in BB that have the CallResult as the operand.
static bool getCallRetPHINode(BasicBlock *BB, Instruction *Inst) {
BasicBlock *From = Inst->getParent();
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(From);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
if (dyn_cast<Instruction>(V) == Inst)
return true;
}
return false;
}
// This method fixes up PHI nodes in BB where BB is the UnwindDest of an
// invoke instruction. In BB, there may be PHIs with incoming block being
// OrigBB (the MergeBB after if-then-else splitting). After moving the invoke
// instructions to its own BB, OrigBB is no longer the predecessor block of BB.
// Instead two new predecessors are added: IndirectCallBB and DirectCallBB,
// so the PHI node's incoming BBs need to be fixed up accordingly.
static void fixupPHINodeForUnwind(Instruction *Inst, BasicBlock *BB,
BasicBlock *OrigBB,
BasicBlock *IndirectCallBB,
BasicBlock *DirectCallBB) {
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(OrigBB);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
PHI->addIncoming(V, IndirectCallBB);
PHI->setIncomingBlock(IX, DirectCallBB);
}
}
// This method fixes up PHI nodes in BB where BB is the NormalDest of an
// invoke instruction. In BB, there may be PHIs with incoming block being
// OrigBB (the MergeBB after if-then-else splitting). After moving the invoke
// instructions to its own BB, a new incoming edge will be added to the original
// NormalDstBB from the IndirectCallBB.
static void fixupPHINodeForNormalDest(Instruction *Inst, BasicBlock *BB,
BasicBlock *OrigBB,
BasicBlock *IndirectCallBB,
Instruction *NewInst) {
for (auto &I : *BB) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
continue;
int IX = PHI->getBasicBlockIndex(OrigBB);
if (IX == -1)
continue;
Value *V = PHI->getIncomingValue(IX);
if (dyn_cast<Instruction>(V) == Inst) {
PHI->setIncomingBlock(IX, IndirectCallBB);
PHI->addIncoming(NewInst, OrigBB);
continue;
}
PHI->addIncoming(V, IndirectCallBB);
}
}
// Add a bitcast instruction to the direct-call return value if needed.
static Instruction *insertCallRetCast(const Instruction *Inst,
Instruction *DirectCallInst,
Function *DirectCallee) {
if (Inst->getType()->isVoidTy())
return DirectCallInst;
Type *CallRetType = Inst->getType();
Type *FuncRetType = DirectCallee->getReturnType();
if (FuncRetType == CallRetType)
return DirectCallInst;
BasicBlock *InsertionBB;
if (CallInst *CI = dyn_cast<CallInst>(DirectCallInst))
InsertionBB = CI->getParent();
else
InsertionBB = (dyn_cast<InvokeInst>(DirectCallInst))->getNormalDest();
return (new BitCastInst(DirectCallInst, CallRetType, "",
InsertionBB->getTerminator()));
}
// Create a DirectCall instruction in the DirectCallBB.
// Parameter Inst is the indirect-call (invoke) instruction.
// DirectCallee is the decl of the direct-call (invoke) target.
// DirecallBB is the BB that the direct-call (invoke) instruction is inserted.
// MergeBB is the bottom BB of the if-then-else-diamond after the
// transformation. For invoke instruction, the edges from DirectCallBB and
// IndirectCallBB to MergeBB are removed before this call (during
// createIfThenElse). Stores the pointer to the Instruction that cast
// the direct call in \p CastInst.
static Instruction *createDirectCallInst(const Instruction *Inst,
Function *DirectCallee,
BasicBlock *DirectCallBB,
BasicBlock *MergeBB,
Instruction *&CastInst) {
Instruction *NewInst = Inst->clone();
if (CallInst *CI = dyn_cast<CallInst>(NewInst)) {
CI->setCalledFunction(DirectCallee);
CI->mutateFunctionType(DirectCallee->getFunctionType());
} else {
// Must be an invoke instruction. Direct invoke's normal destination is
// fixed up to MergeBB. MergeBB is the place where return cast is inserted.
// Also since IndirectCallBB does not have an edge to MergeBB, there is no
// need to insert new PHIs into MergeBB.
InvokeInst *II = dyn_cast<InvokeInst>(NewInst);
assert(II);
II->setCalledFunction(DirectCallee);
II->mutateFunctionType(DirectCallee->getFunctionType());
II->setNormalDest(MergeBB);
}
DirectCallBB->getInstList().insert(DirectCallBB->getFirstInsertionPt(),
NewInst);
// Clear the value profile data.
NewInst->setMetadata(LLVMContext::MD_prof, nullptr);
CallSite NewCS(NewInst);
FunctionType *DirectCalleeType = DirectCallee->getFunctionType();
unsigned ParamNum = DirectCalleeType->getFunctionNumParams();
for (unsigned I = 0; I < ParamNum; ++I) {
Type *ATy = NewCS.getArgument(I)->getType();
Type *PTy = DirectCalleeType->getParamType(I);
if (ATy != PTy) {
BitCastInst *BI = new BitCastInst(NewCS.getArgument(I), PTy, "", NewInst);
NewCS.setArgument(I, BI);
}
}
CastInst = insertCallRetCast(Inst, NewInst, DirectCallee);
return NewInst;
}
// Create a PHI to unify the return values of calls.
static void insertCallRetPHI(Instruction *Inst, Instruction *CallResult,
Function *DirectCallee) {
if (Inst->getType()->isVoidTy())
return;
if (Inst->use_empty())
return;
BasicBlock *RetValBB = CallResult->getParent();
BasicBlock *PHIBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(CallResult))
RetValBB = II->getNormalDest();
PHIBB = RetValBB->getSingleSuccessor();
if (getCallRetPHINode(PHIBB, Inst))
return;
PHINode *CallRetPHI = PHINode::Create(Inst->getType(), 0);
PHIBB->getInstList().push_front(CallRetPHI);
Inst->replaceAllUsesWith(CallRetPHI);
CallRetPHI->addIncoming(Inst, Inst->getParent());
CallRetPHI->addIncoming(CallResult, RetValBB);
}
// This function does the actual indirect-call promotion transformation:
// For an indirect-call like:
// Ret = (*Foo)(Args);
// It transforms to:
// if (Foo == DirectCallee)
// Ret1 = DirectCallee(Args);
// else
// Ret2 = (*Foo)(Args);
// Ret = phi(Ret1, Ret2);
// It adds type casts for the args do not match the parameters and the return
// value. Branch weights metadata also updated.
// If \p AttachProfToDirectCall is true, a prof metadata is attached to the
// new direct call to contain \p Count. This is used by SamplePGO inliner to
// check callsite hotness.
// Returns the promoted direct call instruction.
Instruction *llvm::promoteIndirectCall(Instruction *Inst,
Function *DirectCallee, uint64_t Count,
uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE) {
assert(DirectCallee != nullptr);
BasicBlock *BB = Inst->getParent();
// Just to suppress the non-debug build warning.
(void)BB;
DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
DEBUG(dbgs() << *BB << "\n");
BasicBlock *DirectCallBB, *IndirectCallBB, *MergeBB;
createIfThenElse(Inst, DirectCallee, Count, TotalCount, &DirectCallBB,
&IndirectCallBB, &MergeBB);
// If the return type of the NewInst is not the same as the Inst, a CastInst
// is needed for type casting. Otherwise CastInst is the same as NewInst.
Instruction *CastInst = nullptr;
Instruction *NewInst =
createDirectCallInst(Inst, DirectCallee, DirectCallBB, MergeBB, CastInst);
promoteCallWithIfThenElse(CallSite(Inst), DirectCallee, BranchWeights);
if (AttachProfToDirectCall) {
SmallVector<uint32_t, 1> Weights;
@ -592,33 +316,6 @@ Instruction *llvm::promoteIndirectCall(Instruction *Inst,
NewInst->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
}
// Move Inst from MergeBB to IndirectCallBB.
Inst->removeFromParent();
IndirectCallBB->getInstList().insert(IndirectCallBB->getFirstInsertionPt(),
Inst);
if (InvokeInst *II = dyn_cast<InvokeInst>(Inst)) {
// At this point, the original indirect invoke instruction has the original
// UnwindDest and NormalDest. For the direct invoke instruction, the
// NormalDest points to MergeBB, and MergeBB jumps to the original
// NormalDest. MergeBB might have a new bitcast instruction for the return
// value. The PHIs are with the original NormalDest. Since we now have two
// incoming edges to NormalDest and UnwindDest, we have to do some fixups.
//
// UnwindDest will not use the return value. So pass nullptr here.
fixupPHINodeForUnwind(Inst, II->getUnwindDest(), MergeBB, IndirectCallBB,
DirectCallBB);
// We don't need to update the operand from NormalDest for DirectCallBB.
// Pass nullptr here.
fixupPHINodeForNormalDest(Inst, II->getNormalDest(), MergeBB,
IndirectCallBB, CastInst);
}
insertCallRetPHI(Inst, CastInst, DirectCallee);
DEBUG(dbgs() << "\n== Basic Blocks After ==\n");
DEBUG(dbgs() << *BB << *DirectCallBB << *IndirectCallBB << *MergeBB << "\n");
using namespace ore;
if (ORE)
@ -639,8 +336,8 @@ uint32_t ICallPromotionFunc::tryToPromote(
for (auto &C : Candidates) {
uint64_t Count = C.Count;
promoteIndirectCall(Inst, C.TargetFunction, Count, TotalCount, SamplePGO,
&ORE);
pgo::promoteIndirectCall(Inst, C.TargetFunction, Count, TotalCount,
SamplePGO, &ORE);
assert(TotalCount >= Count);
TotalCount -= Count;
NumOfPGOICallPromotion++;

View File

@ -5,6 +5,7 @@ add_llvm_library(LLVMTransformUtils
BreakCriticalEdges.cpp
BuildLibCalls.cpp
BypassSlowDivision.cpp
CallPromotionUtils.cpp
CloneFunction.cpp
CloneModule.cpp
CodeExtractor.cpp

View File

@ -0,0 +1,328 @@
//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities useful for promoting indirect call sites to
// direct call sites.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "call-promotion-utils"
/// Fix-up phi nodes in an invoke instruction's normal destination.
///
/// After versioning an invoke instruction, values coming from the original
/// block will now either be coming from the original block or the "else" block.
static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
BasicBlock *ElseBlock,
Instruction *NewInst) {
for (auto &I : *Invoke->getNormalDest()) {
auto *Phi = dyn_cast<PHINode>(&I);
if (!Phi)
break;
int Idx = Phi->getBasicBlockIndex(OrigBlock);
if (Idx == -1)
continue;
Value *V = Phi->getIncomingValue(Idx);
if (dyn_cast<Instruction>(V) == Invoke) {
Phi->setIncomingBlock(Idx, ElseBlock);
Phi->addIncoming(NewInst, OrigBlock);
continue;
}
Phi->addIncoming(V, ElseBlock);
}
}
/// Fix-up phi nodes in an invoke instruction's unwind destination.
///
/// After versioning an invoke instruction, values coming from the original
/// block will now be coming from either the "then" block or the "else" block.
static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
BasicBlock *ThenBlock,
BasicBlock *ElseBlock) {
for (auto &I : *Invoke->getUnwindDest()) {
auto *Phi = dyn_cast<PHINode>(&I);
if (!Phi)
break;
int Idx = Phi->getBasicBlockIndex(OrigBlock);
if (Idx == -1)
continue;
auto *V = Phi->getIncomingValue(Idx);
Phi->setIncomingBlock(Idx, ThenBlock);
Phi->addIncoming(V, ElseBlock);
}
}
/// Get the phi node having the returned value of a call or invoke instruction
/// as it's operand.
static bool getRetPhiNode(Instruction *Inst, BasicBlock *Block) {
BasicBlock *FromBlock = Inst->getParent();
for (auto &I : *Block) {
PHINode *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
break;
int Idx = PHI->getBasicBlockIndex(FromBlock);
if (Idx == -1)
continue;
auto *V = PHI->getIncomingValue(Idx);
if (V == Inst)
return true;
}
return false;
}
/// Create a phi node for the returned value of a call or invoke instruction.
///
/// After versioning a call or invoke instruction that returns a value, we have
/// to merge the value of the original and new instructions. We do this by
/// creating a phi node and replacing uses of the original instruction with this
/// phi node.
static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst) {
if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
return;
BasicBlock *RetValBB = NewInst->getParent();
if (auto *Invoke = dyn_cast<InvokeInst>(NewInst))
RetValBB = Invoke->getNormalDest();
BasicBlock *PhiBB = RetValBB->getSingleSuccessor();
if (getRetPhiNode(OrigInst, PhiBB))
return;
IRBuilder<> Builder(&PhiBB->front());
PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
SmallVector<User *, 16> UsersToUpdate;
for (User *U : OrigInst->users())
UsersToUpdate.push_back(U);
for (User *U : UsersToUpdate)
U->replaceUsesOfWith(OrigInst, Phi);
Phi->addIncoming(OrigInst, OrigInst->getParent());
Phi->addIncoming(NewInst, RetValBB);
}
/// Cast a call or invoke instruction to the given type.
///
/// When promoting a call site, the return type of the call site might not match
/// that of the callee. If this is the case, we have to cast the returned value
/// to the correct type. The location of the cast depends on if we have a call
/// or invoke instruction.
Instruction *createRetBitCast(CallSite CS, Type *RetTy) {
// Save the users of the calling instruction. These uses will be changed to
// use the bitcast after we create it.
SmallVector<User *, 16> UsersToUpdate;
for (User *U : CS.getInstruction()->users())
UsersToUpdate.push_back(U);
// Determine an appropriate location to create the bitcast for the return
// value. The location depends on if we have a call or invoke instruction.
Instruction *InsertBefore = nullptr;
if (auto *Invoke = dyn_cast<InvokeInst>(CS.getInstruction()))
InsertBefore = &*Invoke->getNormalDest()->getFirstInsertionPt();
else
InsertBefore = &*std::next(CS.getInstruction()->getIterator());
// Bitcast the return value to the correct type.
auto *Cast = CastInst::Create(Instruction::BitCast, CS.getInstruction(),
RetTy, "", InsertBefore);
// Replace all the original uses of the calling instruction with the bitcast.
for (User *U : UsersToUpdate)
U->replaceUsesOfWith(CS.getInstruction(), Cast);
return Cast;
}
/// Predicate and clone the given call site.
///
/// This function creates an if-then-else structure at the location of the call
/// site. The "if" condition compares the call site's called value to the given
/// callee. The original call site is moved into the "else" block, and a clone
/// of the call site is placed in the "then" block. The cloned instruction is
/// returned.
static Instruction *versionCallSite(CallSite CS, Value *Callee,
MDNode *BranchWeights,
BasicBlock *&ThenBlock,
BasicBlock *&ElseBlock,
BasicBlock *&MergeBlock) {
IRBuilder<> Builder(CS.getInstruction());
Instruction *OrigInst = CS.getInstruction();
// Create the compare. The called value and callee must have the same type to
// be compared.
auto *LHS =
Builder.CreateBitCast(CS.getCalledValue(), Builder.getInt8PtrTy());
auto *RHS = Builder.CreateBitCast(Callee, Builder.getInt8PtrTy());
auto *Cond = Builder.CreateICmpEQ(LHS, RHS);
// Create an if-then-else structure. The original instruction is moved into
// the "else" block, and a clone of the original instruction is placed in the
// "then" block.
TerminatorInst *ThenTerm = nullptr;
TerminatorInst *ElseTerm = nullptr;
SplitBlockAndInsertIfThenElse(Cond, CS.getInstruction(), &ThenTerm, &ElseTerm,
BranchWeights);
ThenBlock = ThenTerm->getParent();
ElseBlock = ElseTerm->getParent();
MergeBlock = OrigInst->getParent();
ThenBlock->setName("if.true.direct_targ");
ElseBlock->setName("if.false.orig_indirect");
MergeBlock->setName("if.end.icp");
Instruction *NewInst = OrigInst->clone();
OrigInst->moveBefore(ElseTerm);
NewInst->insertBefore(ThenTerm);
// If the original call site is an invoke instruction, we have extra work to
// do since invoke instructions are terminating.
if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
auto *NewInvoke = cast<InvokeInst>(NewInst);
// Invoke instructions are terminating, so we don't need the terminator
// instructions that were just created.
ThenTerm->eraseFromParent();
ElseTerm->eraseFromParent();
// Branch from the "merge" block to the original normal destination.
Builder.SetInsertPoint(MergeBlock);
Builder.CreateBr(OrigInvoke->getNormalDest());
// Now set the normal destination of new the invoke instruction to be the
// "merge" block.
NewInvoke->setNormalDest(MergeBlock);
}
return NewInst;
}
bool llvm::isLegalToPromote(CallSite CS, Function *Callee,
const char **FailureReason) {
assert(!CS.getCalledFunction() && "Only indirect call sites can be promoted");
// Check the return type. The callee's return value type must be bitcast
// compatible with the call site's type.
Type *CallRetTy = CS.getInstruction()->getType();
Type *FuncRetTy = Callee->getReturnType();
if (CallRetTy != FuncRetTy)
if (!CastInst::isBitCastable(FuncRetTy, CallRetTy)) {
if (FailureReason)
*FailureReason = "Return type mismatch";
return false;
}
// The number of formal arguments of the callee.
unsigned NumParams = Callee->getFunctionType()->getNumParams();
// Check the number of arguments. The callee and call site must agree on the
// number of arguments.
if (CS.arg_size() != NumParams && !Callee->isVarArg()) {
if (FailureReason)
*FailureReason = "The number of arguments mismatch";
return false;
}
// Check the argument types. The callee's formal argument types must be
// bitcast compatible with the corresponding actual argument types of the call
// site.
for (unsigned I = 0; I < NumParams; ++I) {
Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
Type *ActualTy = CS.getArgument(I)->getType();
if (FormalTy == ActualTy)
continue;
if (!CastInst::isBitCastable(ActualTy, FormalTy)) {
if (FailureReason)
*FailureReason = "Argument type mismatch";
return false;
}
}
return true;
}
static void promoteCall(CallSite CS, Function *Callee, Instruction *&Cast) {
assert(!CS.getCalledFunction() && "Only indirect call sites can be promoted");
// Set the called function of the call site to be the given callee.
CS.setCalledFunction(Callee);
// Since the call site will no longer be direct, we must clear metadata that
// is only appropriate for indirect calls. This includes !prof and !callees
// metadata.
CS.getInstruction()->setMetadata(LLVMContext::MD_prof, nullptr);
CS.getInstruction()->setMetadata(LLVMContext::MD_callees, nullptr);
// If the function type of the call site matches that of the callee, no
// additional work is required.
if (CS.getFunctionType() == Callee->getFunctionType())
return;
// Save the return types of the call site and callee.
Type *CallSiteRetTy = CS.getInstruction()->getType();
Type *CalleeRetTy = Callee->getReturnType();
// Change the function type of the call site the match that of the callee.
CS.mutateFunctionType(Callee->getFunctionType());
// Inspect the arguments of the call site. If an argument's type doesn't
// match the corresponding formal argument's type in the callee, bitcast it
// to the correct type.
for (Use &U : CS.args()) {
unsigned ArgNo = CS.getArgumentNo(&U);
Type *FormalTy = Callee->getFunctionType()->getParamType(ArgNo);
Type *ActualTy = U.get()->getType();
if (FormalTy != ActualTy) {
auto *Cast = CastInst::Create(Instruction::BitCast, U.get(), FormalTy, "",
CS.getInstruction());
CS.setArgument(ArgNo, Cast);
}
}
// If the return type of the call site doesn't match that of the callee, cast
// the returned value to the appropriate type.
if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy)
Cast = createRetBitCast(CS, CallSiteRetTy);
}
Instruction *llvm::promoteCallWithIfThenElse(CallSite CS, Function *Callee,
MDNode *BranchWeights) {
// Version the indirect call site. If the called value is equal to the given
// callee, 'NewInst' will be executed, otherwise the original call site will
// be executed.
BasicBlock *ThenBlock, *ElseBlock, *MergeBlock;
Instruction *NewInst = versionCallSite(CS, Callee, BranchWeights, ThenBlock,
ElseBlock, MergeBlock);
// Promote 'NewInst' so that it directly calls the desired function.
Instruction *Cast = NewInst;
promoteCall(CallSite(NewInst), Callee, Cast);
// If the original call site is an invoke instruction, we have to fix-up phi
// nodes in the invoke's normal and unwind destinations.
if (auto *OrigInvoke = dyn_cast<InvokeInst>(CS.getInstruction())) {
fixupPHINodeForNormalDest(OrigInvoke, MergeBlock, ElseBlock, Cast);
fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
}
// Create a phi node for the returned value of the call site.
createRetPHINode(CS.getInstruction(), Cast ? Cast : NewInst);
// Return the new direct call.
return NewInst;
}
#undef DEBUG_TYPE