1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00

[SCEV] See through op.with.overflow intrinsics

Summary:
This change teaches SCEV to see reduce `(extractvalue
0 (op.with.overflow X Y))` into `op X Y` (with a no-wrap tag if
possible).

Reviewers: atrick, regehr

Subscribers: mcrosier, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D18684

llvm-svn: 265912
This commit is contained in:
Sanjoy Das 2016-04-10 22:50:26 +00:00
parent 6ed54cb0ed
commit e72674dde8
4 changed files with 425 additions and 5 deletions

View File

@ -18,6 +18,7 @@
#include "llvm/ADT/ArrayRef.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
@ -325,6 +326,11 @@ namespace llvm {
const Instruction *CxtI = nullptr,
const DominatorTree *DT = nullptr);
/// Returns true if the arithmetic part of the \p II 's result is
/// used only along the paths control dependent on the computation
/// not overflowing, \p II being an <op>.with.overflow intrinsic.
bool isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT);
/// Return true if this function can prove that the instruction I will
/// always transfer execution to one of its successors (including the next
/// instruction that follows within a basic block). E.g. this is not

View File

@ -3831,7 +3831,7 @@ struct BinaryOp {
/// Try to map \p V into a BinaryOp, and return \c None on failure.
static Optional<BinaryOp> MatchBinaryOp(Value *V) {
static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
auto *Op = dyn_cast<Operator>(V);
if (!Op)
return None;
@ -3877,6 +3877,50 @@ static Optional<BinaryOp> MatchBinaryOp(Value *V) {
}
return BinaryOp(Op);
case Instruction::ExtractValue: {
auto *EVI = cast<ExtractValueInst>(Op);
if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
break;
auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
if (!CI)
break;
if (auto *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow: {
if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
return BinaryOp(Instruction::Add, CI->getArgOperand(0),
CI->getArgOperand(1));
// Now that we know that all uses of the arithmetic-result component of
// CI are guarded by the overflow check, we can go ahead and pretend
// that the arithmetic is non-overflowing.
if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
return BinaryOp(Instruction::Add, CI->getArgOperand(0),
CI->getArgOperand(1), /* IsNSW = */ true,
/* IsNUW = */ false);
else
return BinaryOp(Instruction::Add, CI->getArgOperand(0),
CI->getArgOperand(1), /* IsNSW = */ false,
/* IsNUW*/ true);
}
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
CI->getArgOperand(1));
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
CI->getArgOperand(1));
default:
break;
}
}
default:
break;
}
@ -3953,7 +3997,7 @@ const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
// If the increment doesn't overflow, then neither the addrec nor
// the post-increment will overflow.
if (auto BO = MatchBinaryOp(BEValueV)) {
if (auto BO = MatchBinaryOp(BEValueV, DT)) {
if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
if (BO->IsNUW)
Flags = setFlags(Flags, SCEV::FlagNUW);
@ -4833,7 +4877,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
return getUnknown(V);
Operator *U = cast<Operator>(V);
if (auto BO = MatchBinaryOp(U)) {
if (auto BO = MatchBinaryOp(U, DT)) {
switch (BO->Opcode) {
case Instruction::Add: {
// The simple thing to do would be to just call getSCEV on both operands
@ -4874,7 +4918,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
else
AddOps.push_back(getSCEV(BO->RHS));
auto NewBO = MatchBinaryOp(BO->LHS);
auto NewBO = MatchBinaryOp(BO->LHS, DT);
if (!NewBO || (NewBO->Opcode != Instruction::Add &&
NewBO->Opcode != Instruction::Sub)) {
AddOps.push_back(getSCEV(BO->LHS));
@ -4904,7 +4948,7 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
}
MulOps.push_back(getSCEV(BO->RHS));
auto NewBO = MatchBinaryOp(BO->LHS);
auto NewBO = MatchBinaryOp(BO->LHS, DT);
if (!NewBO || NewBO->Opcode != Instruction::Mul) {
MulOps.push_back(getSCEV(BO->LHS));
break;

View File

@ -3253,6 +3253,67 @@ static OverflowResult computeOverflowForSignedAdd(
return OverflowResult::MayOverflow;
}
bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
#ifndef NDEBUG
auto IID = II->getIntrinsicID();
assert((IID == Intrinsic::sadd_with_overflow ||
IID == Intrinsic::uadd_with_overflow ||
IID == Intrinsic::ssub_with_overflow ||
IID == Intrinsic::usub_with_overflow ||
IID == Intrinsic::smul_with_overflow ||
IID == Intrinsic::umul_with_overflow) &&
"Not an overflow intrinsic!");
#endif
SmallVector<BranchInst *, 2> GuardingBranches;
SmallVector<ExtractValueInst *, 2> Results;
for (User *U : II->users()) {
if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
if (EVI->getIndices()[0] == 0)
Results.push_back(EVI);
else {
assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
for (auto *U : EVI->users())
if (auto *B = dyn_cast<BranchInst>(U)) {
assert(B->isConditional() && "How else is it using an i1?");
GuardingBranches.push_back(B);
}
}
} else {
// We are using the aggregate directly in a way we don't want to analyze
// here (storing it to a global, say).
return false;
}
}
auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
if (!NoWrapEdge.isSingleEdge())
return false;
// Check if all users of the add are provably no-wrap.
for (auto *Result : Results) {
// If the extractvalue itself is not executed on overflow, the we don't
// need to check each use separately, since domination is transitive.
if (DT.dominates(NoWrapEdge, Result->getParent()))
continue;
for (auto &RU : Result->uses())
if (!DT.dominates(NoWrapEdge, RU))
return false;
}
return true;
};
return any_of(GuardingBranches, AllUsesGuardedByBranch);
}
OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,

View File

@ -0,0 +1,309 @@
; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define void @f_sadd_0(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_0
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_sadd_1(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_1
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,16) S: [0,16)
; SCEV can prove <nsw> for the above induction variable; but it does
; not bother so before it sees the sext below since it is not a 100%
; obvious.
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
br label %cont
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_sadd_2(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_2
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
br label %cont
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cond = load volatile i1, i1* %c
br i1 %cond, label %for.body, label %for.cond.cleanup
}
define void @f_sadd_3(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_3
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
br i1 %tmp1, label %trap, label %for.body, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
}
define void @f_sadd_4(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_4
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
br i1 %tmp1, label %notrap, label %merge
notrap:
br label %merge
merge:
%tmp3 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp3, label %trap, label %for.body, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
}
define void @f_sadd_may_overflow(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_may_overflow
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body> U: full-set S: full-set
%i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%cond1 = load volatile i1, i1* %c
br i1 %cond1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp1 = extractvalue { i32, i1 } %tmp0, 0
%cond = load volatile i1, i1* %c
br i1 %cond, label %for.body, label %for.cond.cleanup
}
define void @f_uadd(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_uadd
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<nuw><%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_ssub(i8* nocapture %a) {
; CHECK-LABEL: Classifying expressions for: @f_ssub
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.ssub.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp sgt i32 %tmp2, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_usub(i8* nocapture %a) {
; CHECK-LABEL: Classifying expressions for: @f_usub
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.usub.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp sgt i32 %tmp2, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define i32 @f_smul(i32 %val_a, i32 %val_b) {
; CHECK-LABEL: Classifying expressions for: @f_smul
%agg = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %val_a, i32 %val_b)
; CHECK: %mul = extractvalue { i32, i1 } %agg, 0
; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set
%mul = extractvalue { i32, i1 } %agg, 0
ret i32 %mul
}
define i32 @f_umul(i32 %val_a, i32 %val_b) {
; CHECK-LABEL: Classifying expressions for: @f_umul
%agg = tail call { i32, i1 } @llvm.umul.with.overflow.i32(i32 %val_a, i32 %val_b)
; CHECK: %mul = extractvalue { i32, i1 } %agg, 0
; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set
%mul = extractvalue { i32, i1 } %agg, 0
ret i32 %mul
}
declare { i32, i1 } @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.ssub.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.usub.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.smul.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.umul.with.overflow.i32(i32, i32) nounwind readnone
declare void @llvm.trap() #2